舒更葡糖钠对体内各系统功能影响的研究进展
Research Progress on the Effects of Sugammadex on Physiological System Functions
DOI: 10.12677/acm.2025.1592571, PDF, HTML, XML,   
作者: 杨嘉仪:西安医学院研究生工作部,陕西 西安;高昌俊*:空军军医大学唐都医院麻醉手术科,陕西 西安
关键词: 舒更葡糖钠体内系统功能肌松拮抗剂Sugammadex Systemic Functions Neuromuscular Blocking Agent
摘要: 舒更葡糖钠,又称布瑞亭,2017年在中国上市,对罗库溴铵等氨基甾体类非去极化肌松药具有特异性的拮抗作用。目前舒更葡糖钠在临床上的应用日趋广泛,本文结合近年来的文献报道,重点总结其对体内各系统功能的影响,旨在为麻醉医师提供该药的临床使用参考依据。
Abstract: Sugammadex, also known as Bridion, was approved in China in 2017 and exhibits specific antagonistic effects on aminosteroid non-depolarizing neuromuscular blocking agents such as rocuronium. With its increasingly widespread clinical application, this article reviews recent literature to comprehensively summarize its impacts on various physiological systems, aiming to provide anesthesiologists with evidence-based references for clinical practice.
文章引用:杨嘉仪, 高昌俊. 舒更葡糖钠对体内各系统功能影响的研究进展[J]. 临床医学进展, 2025, 15(9): 901-907. https://doi.org/10.12677/acm.2025.1592571

1. 引言

舒更葡糖钠(Sugammadex)是一种人工合成的γ-环糊精类衍生物,作为新型神经肌肉阻滞剂(neuromuscular blocking agents, NMBAs)的拮抗剂,主要用于逆转罗库溴铵和维库溴铵等非去极化肌肉松弛药的作用。舒更葡糖钠分子结构中O6位的羧基硫醚基团不仅增强了静电相互作用,还通过打开环糊精空腔选择性包裹住药物分子,阻止其与神经肌肉接头的受体结合;由于罗库溴铵在舒更葡糖钠的空腔中主要呈现“向上”的取向,二者的结合具有高度稳定性,从而能够快速恢复肌肉功能[1]

2. 对呼吸系统的影响

术中使用NMBA与术后肺部并发症(postoperative pulmonary complications, PPC)风险增加有关,由此可能引发多种临床症状,包括胸闷气短、干咳和肺顺应性下降等[2] [3]。而术后肌松残余(residual neuromuscular blockade, RNMB)的影响可能会持续到患者离开手术室之后,并且引发临床相关的下游并发症,严重时甚至发生呼吸衰竭。

舒更葡糖钠在逆转神经肌肉阻滞的同时能够显著降低PPC的发生率,包括肺炎、支气管痉挛和肺不张等,尤其在肺炎和呼吸衰竭方面表现尤为突出,且使用效果显著优于新斯的明[4]。欧洲一家三级医疗机构通过构建为期一年的决策分析模型发现,使用舒更葡糖钠可以减少12%的PPC [5]。通过超声测量腹内斜肌增厚分数和膈肌位移来评估呼气肌和吸气肌的恢复情况,推测舒更葡糖钠降低PPC发生率的潜在机制可能是因为其在拔管后即刻能有效地恢复呼气肌力量,比新斯的明更迅速、更有效地促进术后早期肌肉力量的恢复[3] [6]。因此,相较于新斯的明,对于有呼吸系统疾病的患者舒更葡糖钠成为更具优势的选择。患有阻塞性睡眠呼吸暂停综合征(obstructive sleep apnea syndrome, OSAS)的成年患者在全麻下接受择期减肥手术后,将肌松拮抗剂从新斯的明改为舒更葡糖钠后,发现呼吸衰竭导致的重新插管、新启动的无创通气(noninvasive ventilation, NIV)以及术后低氧事件的发生率显著降低[7],但是在手术室的停留时间和住院时间没有明显缩短[8]

当然,舒更葡糖钠的使用也存在着尚未解决的争议,特别是舒更葡糖钠是否可能引发支气管痉挛和喉痉挛,目前推测在喉内肌(主要的张力性喉部肌肉)中,舒更葡糖钠引起的突然恢复的肌肉张力比喉外肌更早发生,因此易导致喉部狭窄,特别是在浅麻醉状态下[9]。哮喘患者使用后出现的支气管痉挛通常较为严重,常伴有低血压、潮红、红斑等过敏症状。血清类胰蛋白酶和皮肤试验的阳性结果提示,这些反应可能由IgE介导的过敏机制引起[10]

3. 对心血管系统的影响

舒更葡糖钠对循环系统的影响相对较小,可能会引发轻微的心率和血压波动,但这种变化通常是短暂的,且不会对患者造成影响。但快速给药造成的肌肉突然恢复活动从而带来的血压升高或心率加快等现象仍需要警惕,因此在给药时应控制给药速度,以确保苏醒过程更加平稳和安全。舒更葡糖钠用于先天性心脏病患者逆转神经肌肉阻滞时表现出良好的心血管安全性,不仅显著缩短了气管导管的拔管时间,还维持了给药后稳定的血流动力学,且未增加术后不良反应的发生率。在临床使用过程中耐受性良好,并没有引起QT间期延长等心电图不良反应[12],同时使术后24小时的C反应蛋白(CRP)和降钙素原(PCT)释放减少,进一步表明其在减轻术后炎症反应方面的优势。此外,不同剂量的舒更葡糖钠可以改善老年患者腹腔镜结直肠癌切除术后7天内心肌损伤的发生率,提高患者术后恢复情况[13]

然而,舒更葡糖钠并非完全没有风险,尤其是在中老年患者中。一名57岁男性患者因持续性心房颤动和心房扑动接受心脏射频导管消融术,术后给予舒更葡糖钠2分钟后出现心电图下壁导联ST段抬高,随后患者发生心脏骤停[14]。一名80岁男性患者在给药后1分钟内出现严重心动过缓和低血压,随后发展为心脏骤停[15]。推测舒更葡糖钠可能会引发冠状动脉痉挛并导致心脏骤停,因此建议在使用时应密切监测心电图和血流动力学变化,加强药物不良反应检测。但是在高血压人群中舒更葡糖钠并没有增加术后相关窦性心动过缓的风险[16]

4. 对泌尿系统的影响

舒更葡糖钠主要通过肾脏以原形排出,因此其排泄速度与肾功能密切相关。舒更葡糖钠的半衰期较短,在肾功能正常的患者中,97%的药物通常在24小时内通过尿液排出体外[17]。目前尚无明确证据表明舒更葡糖钠会显著改变尿液成分或引起尿液异常,因此其代谢和排泄过程对肾功能正常患者来说是安全的。此外,选择舒更葡糖钠作为神经肌肉阻断剂的拮抗剂有助于减少术后尿潴留的发生[18]

因为舒更葡糖钠主要通过肾脏排泄,其在肾功能不全或肾移植患者中的使用则需要更加谨慎。在严重肾功能衰竭的患者中,舒更葡糖钠的清除率降至正常水平的1/1,消除半衰期增加了15倍,因此未被批准用于严重肾功能衰竭患者。但一项对2017年1月至2022年3月期间接受舒更葡糖钠治疗的IV期和V期慢性肾病儿科患者的回顾性分析显示,在严重肾功能损害的儿科患者中,未检测到直接归因于舒更葡糖钠的不良反应[19]。Bardet-Biedl综合征(BBS)是一种罕见的常染色体隐性遗传疾病,主要临床表现为多系统受累,包括肥胖、智力障碍、视网膜色素变性和肾脏异常等。一名13岁的BBS患者,同时伴有慢性肾功能衰竭、甲状腺功能减退及其他合并症,在全身麻醉下成功进行了肾移植手术,术中联合使用罗库溴铵和舒更葡糖钠,术后患者顺利拔管,未出现明显不良反应。由此推测,在严重肾功能不全患者中使用舒更葡糖钠时,通过调整剂量或延长给药间隔可避免药物蓄积带来的肾损伤风险。

5. 对消化系统的影响

舒更葡糖钠主要通过选择性包裹神经肌肉阻滞剂发挥作用,不影响胆碱能神经,是术后恶心呕吐(Postoperative Nausea and Vomiting, PONV)的独立保护因素,能够提高患者的舒适度。与新斯的明相比,舒更葡糖钠可使全麻术后早期(0~2小时)的PONV发生率显著降低[20]。因此使用舒更葡糖钠逆转神经肌肉阻滞的患者在门诊护理设施中的停留时间显著缩短,在65岁以上、ASA分级 < Ⅱ级且手术时间较短的患者中更为显著[21]。肥胖人群使用舒更葡糖钠术后48小时内PONV的发生率和严重程度显著降低,且术后饮水量增加。多变量分析表明,新斯的明、术后阿片类药物的使用会影响术后消化功能,而舒更葡糖钠则在这方面具有优势。孕酮和雌二醇等类固醇激素对胃肠道具有抑制作用,舒更葡糖钠通过结合这些激素加速了胃排空,使得术后首次排气时间显著缩短,表明舒更葡糖钠对术后胃肠道动力的恢复有积极影响[22] [23];结直肠癌术后使用舒更葡糖钠使得术后耐受固体饮食和首次排便的时间显著缩短,因为经历较少的术后残余CO2和肠道缺血,极大地促进了患者术后康复[22] [24]

6. 对神经运动系统的影响

RNMB是指手术结束后,由于肌松药或其代谢产物在体内残留,导致患者在麻醉苏醒期肌力未完全恢复的现象。舒更葡糖钠通过环糊精结构选择性包裹神经肌肉阻滞剂形成无活性的复合物,从而迅速降低血浆中游离的肌肉松弛药浓度,这一机制使得神经肌肉接头处的乙酰胆碱得以正常发挥作用,能够有效减少RNMB的发生率,迅速恢复肌肉力量,使患者在术后更快地进行自主呼吸和活动,从而减少术后疲劳和不适感。通过超声检查评估全麻患者术后早期颏舌肌、胸骨旁肋间肌、膈肌、腹壁肌和握力恢复情况,发现舒更葡糖钠在全身各肌群中均起到了促进作用[25]。在重症肌无力患者中,舒更葡糖钠的使用与术后肌无力危象的减少相关。杜氏肌营养不良症(duchennemuscular dystrophy, DMD)主要表现为进行性肌无力和运动障碍。首次有病例报道了瑞马唑仑(remimazolam)联合舒更葡糖钠用于一名4岁DMD患儿的全身麻醉管理,表明舒更葡糖钠为DMD患者的麻醉管理提供了一种可靠的逆转神经肌肉阻滞的方法,减少了术后呼吸和心脏功能受损的风险[27]。不过目前在其他神经肌肉疾病患者中并没有相关的临床使用证据。

此外,接受根治性前列腺切除术的25名男性患者在手术结束时使用2 mg/kg的舒更葡糖钠逆转神经肌肉阻滞后,额叶脑电活动增加,表现为脑电双频指数(bispectral index, BIS)、β波活动和95%谱边缘频率(SEF95)的增加,推测舒更葡糖钠可能通过增加肌肉受体信号传入大脑,进而影响EMG和EEG的变化,患者并未出现苏醒的临床体征[28]。但另有研究表明在术中麻醉药物(丙泊酚和瑞芬太尼)的输注保持不变的情况下,随着患者BIS值增加出现了临床觉醒迹象[29]。更有研究指出,2岁以下儿童使用舒更葡糖钠后出现再麻痹的风险较高,且年龄和体重是影响再次给药的重要因素[30]。因此在完全恢复肌肉功能之前应持续维持麻醉,以避免潜在的术中知晓风险;同时加强对神经肌肉阻滞深度的细致监测,在麻醉恢复室(Postanesthesia Care Unit, PACU)应至少监测30分钟。即使有逆转记录,也应警惕再麻痹的可能性,同时密切关注药物副作用,以确保患者的安全[31] [32]

7. 对内分泌系统的影响

舒更葡糖钠作为一种类固醇结合剂,理论上可能与孕酮等血清类固醇发生交叉反应,从而降低其血浆浓度,减少暴露量。对于接受全身麻醉术后肌松拮抗剂并使用口服避孕药的育龄女性,这种潜在的相互作用可能增加意外怀孕的风险[33]。然而,Devoy等人的研究表明,舒更葡糖钠对激素水平并无显著影响,提示其可能不会威胁激素避孕的有效性[34]。尽管如此,考虑到个体差异,临床应用中仍需保持警惕。

甲强龙作为一种合成的类固醇药物,广泛用于抗炎、免疫抑制及预防术中PONV的发生。研究发现,使用1 mg/kg的甲强龙会显著延长舒更葡糖钠的逆转时间,提示两者可能存在相互作用,进而影响舒更葡糖钠的逆转效果[35]。因此,对于使用类固醇药物的患者,麻醉医生在应用舒更葡糖钠时需充分考虑这一潜在影响,以确保肌松逆转的安全性和有效性。

此外,维生素D通过核维生素D受体(VDR)调节血清钙水平,直接影响肌肉组织功能并改善神经肌肉协调性。研究表明维生素D缺乏主要影响Ⅱ型肌纤维,导致神经肌肉功能受损。在维生素D水平低于30 ng/mL的患者中,舒更葡糖钠的逆转时间(尤其是TOF达到50%的时间及拔管时间)显著延长[36]。这一发现对麻醉医生在术后肌肉功能恢复评估及拔管时间管理中具有重要意义,提示在维生素D缺乏的患者中可能需要调整舒更葡糖钠的使用策略。

8. 对血液系统的影响

通过血栓弹力图(TEG)参数和实验室凝血分析评估常规剂量(2 mg/kg和4 mg/kg)的舒更葡糖钠对凝血功能的影响,研究发现两种剂量均显著延长了凝血酶原时间(PT),且4 mg/kg剂量还显著延长了TEG中的凝血开始时间。然而这些延长的数值仍在正常范围内,提示舒更葡糖钠对凝血功能的影响虽然存在,但较为轻微[37]。尽管如此,对于高出血风险患者,使用较高剂量的舒更葡糖钠时仍需谨慎。进一步通过TEG分析舒更葡糖钠对手术患者凝血功能的影响,结果显示,舒更葡糖钠在给药十分钟后凝血时间显著延长,说明舒更葡糖钠可能在一定程度上增强低凝状态,尤其是在术后出血高风险的情况下[38]。目前,舒更葡糖钠的抗凝机制尚不明确。Dirkmann [39]等进行的体外研究指出,舒更葡糖钠在体外凝血检测中表现出的“抗凝效应”(如延长APTT和PT)并非真正的药理作用,而是一种由其对磷脂的结合作用所引起的体外实验假象。舒更葡糖钠的环糊精分子结构会结合凝血检测试剂中的磷脂成分,从而干扰磷脂依赖性的凝血反应,导致凝血时间人为延长;在高磷脂浓度的检测中,此效应会被显著减弱。研究证实该药物并不影响真实的凝血因子活性、血小板功能或纤维蛋白形成,临床上使用不会增加出血风险,其凝血检测结果的异常被解读为实验干扰。总体而言,舒更葡糖钠在大多数情况下可以安全使用,但在高出血风险患者或术后凝血功能异常的情况下,应谨慎评估其使用剂量,并密切监测患者的凝血功能状态。

9. 结语

舒更葡糖钠作为一种新型神经肌肉阻滞拮抗剂,能够快速逆转罗库溴铵等非去极化肌松药的作用,显著减少RNMB并促进早期肌肉功能恢复,在各系统中均表现出良好的临床效果和安全性。尽管在泌尿系统和血液系统中存在潜在影响,但通过剂量调整和密切监测,舒更葡糖钠在大多数情况下仍安全有效。未来研究应进一步探索其在特殊人群中的应用,以优化围术期管理,提升患者术后恢复质量。例如建议针对肾功能严重不全、老年或肥胖患者等特殊人群建立药代动力学–药效学(PK-PD)模型,制定个体化给药方案;开展多中心随机对照试验,明确舒更葡糖钠在神经肌肉疾病患者中的安全性与有效性,为这类特殊人群提供高级别临床证据;建立国际前瞻性过敏反应登记系统,系统收集过敏案例的临床表现、血清类胰蛋白酶、皮肤试验及IgE检测结果,并结合体外基础研究(如嗜碱性粒细胞活化试验),明确其过敏机制是否为IgE介导或非免疫性肥大细胞激活,为预防和早期诊断提供依据。

NOTES

*通讯作者。

参考文献

[1] Anderson, A., García-Fandiño, R., Piñeiro, Á. and O’Connor, M.S. (2024) Unraveling the Molecular Dynamics of Sugammadex-Rocuronium Complexation: A Blueprint for Cyclodextrin Drug Design. Carbohydrate Polymers, 334, Article ID: 122018.
https://doi.org/10.1016/j.carbpol.2024.122018
[2] Yu, Y., Wang, H., Bao, Q., Zhang, T., Chen, B. and Ding, J. (2022) Sugammadex versus Neostigmine for Neuromuscular Block Reversal and Postoperative Pulmonary Complications in Patients Undergoing Resection of Lung Cancer. Journal of Cardiothoracic and Vascular Anesthesia, 36, 3626-3633.
https://doi.org/10.1053/j.jvca.2022.03.033
[3] Wang, X., Li, Y., Huang, C., Xiong, W., Zhou, Q., Niu, L., et al. (2021) Recovery of Early Postoperative Muscle Strength after Deep Neuromuscular Block by Means of Ultrasonography with Comparison of Neostigmine versus Sugammadex as Reversal Drugs: Study Protocol for a Randomised Controlled Trial. BMJ Open, 11, e043935.
https://doi.org/10.1136/bmjopen-2020-043935
[4] Kheterpal, S., Vaughn, M.T., Dubovoy, T.Z., Shah, N.J., Bash, L.D., Colquhoun, D.A., et al. (2020) Sugammadex versus Neostigmine for Reversal of Neuromuscular Blockade and Postoperative Pulmonary Complications (Stronger). Anesthesiology, 132, 1371-1381.
https://doi.org/10.1097/aln.0000000000003256
[5] Jiang, Y., Bash, L.D. and Saager, L. (2021) A Clinical and Budgetary Impact Analysis of Introducing Sugammadex for Routine Reversal of Neuromuscular Blockade in a Hypothetical Cohort in the US. Advances in Therapy, 38, 2689-2708.
https://doi.org/10.1007/s12325-021-01701-1
[6] Huang, C., Wang, X., Gao, S., Luo, W., Zhao, X., Zhou, Q., et al. (2022) Sugammadex versus Neostigmine for Recovery of Respiratory Muscle Strength Measured by Ultrasonography in the Postextubation Period: A Randomized Controlled Trial. Anesthesia & Analgesia, 136, 559-568.
https://doi.org/10.1213/ane.0000000000006219
[7] Krause, M., McWilliams, S.K., Bullard, K.J., Mayes, L.M., Jameson, L.C., Mikulich-Gilbertson, S.K., et al. (2019) Neostigmine versus Sugammadex for Reversal of Neuromuscular Blockade and Effects on Reintubation for Respiratory Failure or Newly Initiated Noninvasive Ventilation: An Interrupted Time Series Design. Anesthesia & Analgesia, 131, 141-151.
https://doi.org/10.1213/ane.0000000000004505
[8] Ajetunmobi, O., Wong, D., Perlas, A., Rajaleelan, W., Wang, S., Huszti, E., et al. (2024) Impact of Sugammadex versus Neostigmine Reversal on Postoperative Recovery Time in Patients with Obstructive Sleep Apnea Undergoing Bariatric Surgery: A Double-Blind, Randomized Controlled Trial. Anesthesia & Analgesia, 140, 568-576.
https://doi.org/10.1213/ane.0000000000007013
[9] Ishibashi, K., Kitamura, Y., Kato, S., Sugano, M., Sakaguchi, Y., Sato, Y., et al. (2020) Changes in Laryngeal Airway Patency in Response to Complete Reversal of Rocuronium-Induced Paralysis with Sugammadex in Small Children with a Supraglottic Airway: Protective Effect of Fentanyl? British Journal of Anaesthesia, 125, e158-e160.
https://doi.org/10.1016/j.bja.2019.09.006
[10] Crimmins, D., Crilly, H., van Nieuwenhuysen, C., Ziser, K., Zahir, S., Todd, G., et al. (2025) Sugammadex Hypersensitivity: A Multicentre Retrospective Analysis of a Large Australian Cohort. British Journal of Anaesthesia, 134, 72-79.
https://doi.org/10.1016/j.bja.2024.07.042
[11] Li, X.B., Jiang, Y., Zhang, W.P., Zhang, R.F., Li, J. and Wei, R. (2020) Effects of Sugammadex on Postoperative Respiratory Management in Children with Congenital Heart Disease: A Randomized Controlled Study. Biomedicine & Pharmacotherapy, 127, Article ID: 110180.
https://doi.org/10.1016/j.biopha.2020.110180
[12] Jiang, Y.Y., Zhang, Y.J., Zhu, Z.Q., Huang, Y.D., Zhou, D.C., Liu, J.C., et al. (2022) Adamgammadex in Patients to Reverse a Moderate Rocuronium‐induced Neuromuscular Block. British Journal of Clinical Pharmacology, 88, 3760-3770.
https://doi.org/10.1111/bcp.15320
[13] An, Y., Wang, T., Li, L., Li, Z., Liang, C., Wang, P., et al. (2024) Impact of Neuromuscular Block on Myocardial Injury after Non-Cardiac Surgery (MINS) Incidence in the Early Postoperative Stage of Older Patients Undergoing Laparoscopic Colorectal Cancer Resection: A Randomized Controlled Study. BMC Geriatrics, 24, Article No. 509.
https://doi.org/10.1186/s12877-024-05125-8
[14] Boo, K.Y., Park, S.H., Park, S.K., Na, C. and Kim, H.J. (2023) Cardiac Arrest Due to Coronary Vasospasm after Sugammadex Administration: A Case Report. Korean Journal of Anesthesiology, 76, 72-76.
https://doi.org/10.4097/kja.22335
[15] Fierro, C., Medoro, A., Mignogna, D., Porcile, C., Ciampi, S., Foderà, E., et al. (2021) Severe Hypotension, Bradycardia and Asystole after Sugammadex Administration in an Elderly Patient. Medicina, 57, Article 79.
https://doi.org/10.3390/medicina57010079
[16] Herring, W.J., Mukai, Y., Wang, A., Lutkiewicz, J., Lombard, J.F., Lin, L., et al. (2021) A Randomized Trial Evaluating the Safety Profile of Sugammadex in High Surgical Risk ASA Physical Class 3 or 4 Participants. BMC Anesthesiology, 21, Article No. 259.
https://doi.org/10.1186/s12871-021-01477-5
[17] Yaman, F. and Çekmen, N. (2020) Anesthetic Management of a Patient with Bardet-Biedl Syndrome Undergoing Renal Transplantation. Medicine, 99, e22300.
https://doi.org/10.1097/md.0000000000022300
[18] Bash, L.D., Turzhitsky, V., Mark, R.J., Hofer, I.S. and Weingarten, T.N. (2024) Post-Operative Urinary Retention Is Impacted by Neuromuscular Block Reversal Agent Choice: A Retrospective Cohort Study in US Hospital Setting. Journal of Clinical Anesthesia, 93, Article ID: 111344.
https://doi.org/10.1016/j.jclinane.2023.111344
[19] Samba, S.N., Daklallah, Y., Brown, S.E.S., Colquhoun, D.A., Modi, Z.J. and Nause-Osthoff, R. (2024) Sugammadex Use in Pediatric Patients with Stage IV-V Chronic Kidney Disease in a Quaternary Referral Hospital: A Case Series. BMC Anesthesiology, 24, Article No. 206.
https://doi.org/10.1186/s12871-024-02584-9
[20] Ju, J., Hwang, I.E., Cho, H., Yang, S.M., Kim, W.H. and Lee, H. (2023) Effects of Sugammadex versus Neostigmine on Postoperative Nausea and Vomiting after General Anesthesia in Adult Patients: A Single-Center Retrospective Study. Scientific Reports, 13, Article No. 5422.
https://doi.org/10.1038/s41598-023-32730-1
[21] Azimaraghi, O., Ahrens, E., Wongtangman, K., Witt, A.S., Rupp, S., Suleiman, A., et al. (2023) Association of Sugammadex Reversal of Neuromuscular Block and Postoperative Length of Stay in the Ambulatory Care Facility: A Multicentre Hospital Registry Study. British Journal of Anaesthesia, 130, 296-304.
https://doi.org/10.1016/j.bja.2022.10.044
[22] Ding, X., Zhu, X., Zhao, C., Chen, D., Wang, Y., Liang, H., et al. (2023) Use of Sugammadex Is Associated with Reduced Incidence and Severity of Postoperative Nausea and Vomiting in Adult Patients with Obesity Undergoing Laparoscopic Bariatric Surgery: A Post-Hoc Analysis. BMC Anesthesiology, 23, Article No. 163.
https://doi.org/10.1186/s12871-023-02123-y
[23] An, J., Noh, H., Kim, E., Lee, J., Woo, K. and Kim, H. (2020) Neuromuscular Blockade Reversal with Sugammadex versus Pyridostigmine/Glycopyrrolate in Laparoscopic Cholecystectomy: A Randomized Trial of Effects on Postoperative Gastrointestinal Motility. Korean Journal of Anesthesiology, 73, 137-144.
https://doi.org/10.4097/kja.19360
[24] Traeger, L., Hall, T.D., Bedrikovetski, S., Kroon, H.M., Dudi-Venkata, N.N., Moore, J.W., et al. (2022) Effect of Neuromuscular Reversal with Neostigmine/Glycopyrrolate versus Sugammadex on Postoperative Ileus Following Colorectal Surgery. Techniques in Coloproctology, 27, 217-226.
https://doi.org/10.1007/s10151-022-02695-w
[25] Wang, X., Li, Y., Huang, C., Xiong, W., Zhou, Q., Niu, L., et al. (2021) Recovery of Early Postoperative Muscle Strength after Deep Neuromuscular Block by Means of Ultrasonography with Comparison of Neostigmine versus Sugammadex as Reversal Drugs: Study Protocol for a Randomised Controlled Trial. BMJ Open, 11, e043935.
https://doi.org/10.1136/bmjopen-2020-043935
[26] van den Bersselaar, L.R., Gubbels, M., Riazi, S., Heytens, L., Jungbluth, H., Voermans, N.C., et al. (2022) Mapping the Current Evidence on the Anesthetic Management of Adult Patients with Neuromuscular Disorders—A Scoping Review. Canadian Journal of Anesthesia/Journal canadien danesthésie, 69, 756-773.
https://doi.org/10.1007/s12630-022-02230-3
[27] Horikoshi, Y., Kuratani, N., Tateno, K., Hoshijima, H., Nakamura, T., Mieda, T., et al. (2021) Anesthetic Management with Remimazolam for a Pediatric Patient with Duchenne Muscular Dystrophy. Medicine, 100, e28209.
https://doi.org/10.1097/md.0000000000028209
[28] Rubio-Baines, I., Honorato-Cia, C., Valencia, M., Panadero, A., Cacho-Asenjo, E., Manzanilla, O., et al. (2023) Effect of Sugammadex on Processed EEG Parameters in Patients Undergoing Robot-Assisted Radical Prostatectomy. British Journal of Anaesthesia, 131, 523-530.
https://doi.org/10.1016/j.bja.2023.06.001
[29] Le Guen, M., Roussel, C., Chazot, T., Dumont, G.A., Liu, N. and Fischler, M. (2019) Reversal of Neuromuscular Blockade with Sugammadex during Continuous Administration of Anaesthetic Agents: A Double‐Blind Randomised Crossover Study Using the Bispectral Index. Anaesthesia, 75, 583-590.
https://doi.org/10.1111/anae.14897
[30] Cates, A.C., Freundlich, R.E., Clifton, J.C. and Lorinc, A.N. (2023) Analysis of the Factors Contributing to Residual Weakness after Sugammadex Administration in Pediatric Patients under 2 Years of Age. Pediatric Anesthesia, 34, 28-34.
https://doi.org/10.1111/pan.14773
[31] Brown, S.E.S., Spellman, K., Cassidy, R., Nause-Osthoff, R., Bailey, M., Mentz, G., et al. (2023) A Retrospective Observational Cross-Sectional Study of Intraoperative Neuromuscular Blocking Agent Choice and Dosing in a US Paediatric Referral Hospital before and after Introduction of Sugammadex. British Journal of Anaesthesia, 131, e117-e120.
https://doi.org/10.1016/j.bja.2023.07.013
[32] Salaün, J., Décary, E. and Veyckemans, F. (2024) Recurarisation after Sugammadex in Children: Review of Case Reports and Recommendations. British Journal of Anaesthesia, 132, 410-414.
https://doi.org/10.1016/j.bja.2023.09.028
[33] Hodge, C., Myers, A., Ceneviva, G.D., Zhao, R., Zhou, S., Thomas, N.J., et al. (2023) Retrospective Analysis of Sugammadex Use in Adolescent Females on Progestin-Containing Contraceptives. Journal of Pediatric and Adolescent Gynecology, 36, 459-464.
https://doi.org/10.1016/j.jpag.2023.06.003
[34] Devoy, T., Hunter, M. and Smith, N.A. (2022) A Prospective Observational Study of the Effects of Sugammadex on Peri‐Operative Oestrogen and Progesterone Levels in Women Who Take Hormonal Contraception. Anaesthesia, 78, 180-187.
https://doi.org/10.1111/anae.15902
[35] Kocaoğlu, M.H., Meço, B.C., Özçelik, M. and Batislam, Y. (2020) Influence of Methylprednisolone on the Reversal Time of Sugammadex: A Randomized Clinical Trial. Brazilian Journal of Anesthesiology (English Edition), 70, 111-117.
https://doi.org/10.1016/j.bjane.2020.04.004
[36] Yorulmaz, İ.S., Demiraran, Y., Özlü, O. and Dost, B. (2020) The Effect of Vitamin D Status on Different Neuromuscular Blocker Agents Reverse Time. Turkish Journal of Medical Sciences, 50, 749-755.
https://doi.org/10.3906/sag-1901-115
[37] Kang, W., Lim, H., Kim, B., Lee, Y., Hahm, K. and Kim, S. (2020) Assessment of the Effects of Sugammadex on Coagulation Profiles Using Thromboelastographic Parameters. Scientific Reports, 10, Article No. 11179.
https://doi.org/10.1038/s41598-020-68164-2
[38] Chang, H.W., Lee, I.O., Kang, H., Won, Y.J. and Lim, Y. (2021) Coagulation Effect of Sugammadex as Determined by Thromboelastography in a Randomized Controlled Study of Surgical Patients. International Journal of Medical Sciences, 18, 1318-1324.
https://doi.org/10.7150/ijms.42563
[39] Dirkmann, D., Britten, M.W., Pauling, H., Weidle, J., Volbracht, L., Görlinger, K., et al. (2016) Anticoagulant Effect of Sugammadex: Just an in Vitro Artifact. Anesthesiology, 124, 1277-1285.
https://doi.org/10.1097/aln.0000000000001076