创伤性颅脑损伤患者预后评估与预测:伤情特征、生物标志物及临床工具的研究进展与挑战
Prognostic Assessment and Prediction in Patients with Traumatic Brain Injury: Research Progress and Challenges in Injury Characteristics, Biomarkers, and Clinical Tools
摘要: 创伤性颅脑损伤(TBI)的预后评估亟需多模态指标协同优化。本文叙述性综述表明:1) 伤情特征中,动态格拉斯哥昏迷评分(GCS)、Rotterdam CT评分(>3分时死亡率增加40%)及弥散张量成像各向异性分数(DTI-FA,胼胝体FA < 0.6预示认知障碍)构成预后分层基础;2) 生物标志物方面,胶质纤维酸性蛋白(GFAP,AUC = 0.82预测颅内病变)与泛素C末端水解酶-L1 (UCH-L1,高值者死亡风险增加2.5倍)主导神经损伤评估,而中性粒细胞/白蛋白比值(NAR)作为新兴炎症标志物,显著提升死亡风险识别效能(NAR > 5.2时死亡风险增加3.1倍,P < 0.01);3) 临床工具中,IMPACT模型整合NAR后曲线下面积(AUC)提升至0.91 (ΔAUC = +0.07)。当前挑战集中于NAR阈值年龄依赖性、低白蛋白血症干扰及多模态临床整合不足,未来需构建“伤情–神经损伤–炎症监测”动态框架,推动NAR指导的靶向干预。
Abstract: The prognosis assessment of traumatic brain injury (TBI) is in urgent need of collaborative optimization of multimodal indicators. This systematic review shows that: 1) Among the injury characteristics, the dynamic Glasgow Coma Scale (GCS), Rotterdam CT score (a score > 3 is associated with a 40% increase in mortality), and fractional anisotropy from diffusion tensor imaging (DTI-FA, with corpus callosum FA < 0.6 predicting cognitive impairment) form the basis for prognostic stratification; 2) In terms of biomarkers, glial fibrillary acidic protein (GFAP, with an AUC of 0.82 for predicting intracranial lesions) and ubiquitin C-terminal hydrolase-L1 (UCH-L1, with high values associated with a 2.5-fold increase in the risk of death) dominate the assessment of neurological injury. Additionally, the neutrophil/albumin ratio (NAR), as an emerging inflammatory marker, significantly enhances the ability to identify death risk (a NAR > 5.2 is associated with a 3.1-fold increase in death risk, P < 0.01); 3) Among clinical tools, the area under the curve (AUC) of the IMPACT model increased to 0.91 (ΔAUC = +0.07) after integrating NAR. Current challenges focus on the age dependence of the NAR threshold, interference from hypoalbuminemia, and insufficient clinical integration of multimodal data. In the future, it is necessary to construct a dynamic framework of “injury condition - neurological injury - inflammation monitoring” to promote NAR-guided targeted interventions.
文章引用:石泊. 创伤性颅脑损伤患者预后评估与预测:伤情特征、生物标志物及临床工具的研究进展与挑战[J]. 临床医学进展, 2025, 15(9): 923-927. https://doi.org/10.12677/acm.2025.1592574

1. 背景

创伤性脑损伤(Traumatic Brain Injury, TBI)是全球范围内致残和致死的主要原因之一,年发病人数估计达6400万~7400万(包含所有病因) [1]。其流行病学特征呈现全球性高负担、病因多样化、人群分布差异显著的特点。给社会和家庭带来显著经济负担,重度损伤患者(如创伤后遗忘 > 90天)的照护成本将更高,然而,目前临床尚缺乏优越的评估预后的方法。

精准预后评估利用多模态数据(如临床、影像学和生物标志物),增强个体化治疗计划的制定。例如,赫尔辛基评分整合放射学数据,优于传统的格拉斯哥昏迷量表(GCS),能更准确地预测TBI结果,从而为急性期患者的危险分层和治疗策略(如手术干预或保守治疗)提供依据[2]。炎症标志物(如中性粒细胞–白蛋白比率(NAR)等)的分析已被证明可提高TBI患者的预后精度。这有助于识别高风险患者,并指导个体化的预防措施,如早期监测出血进展或炎症管理,从而避免无效治疗并优化资源分配[3]

2. 伤情特征

格拉斯哥昏迷评分(GCS)是TBI严重程度的关键临床指标。动态监测(尤其是24小时内最差值)比单一入院值更具预后意义,低分值与颅内损伤严重度和不良结局显著相关,持续低GCS提示原发性脑损伤严重,继发性损伤风险增高[4]。瞳孔不对称或光反射消失是颅内压增高和脑疝的重要体征,需紧急干预(如手术减压)。脑疝征象(如颞叶钩回疝)需结合CT评估(如中线移位、基底池受压) [5]

Rotterdam评分是基于CT表现的量化系统(包含基底池状态、中线移位、血肿类型等),高分值与死亡率及神经功能缺损显著相关,其特征在于可以快速、容易获取,特别适用于脑外伤急性期患者。研究发现,血肿/挫伤体积是预后的独立预测因子。大体积损伤(>25 mL)与高死亡率和植物状态相关[6]

在MRI指标中,DTI各向异性分数(FA)有着重要的价值,其原理是FA值降低反映轴突损伤和髓鞘脱失,是白质结构完整性的敏感标志物,可检测常规MRI遗漏的弥漫性轴索损伤(DAI)。其预测价值表现为:在慢性TBI中,胼胝体、穹隆等关键白质束FA降低与认知障碍(记忆、执行功能)相关;脑干及丘脑区FA异常可预测脑疝后功能缺损[7]

3. 生物标志物

3.1. 经典神经损伤标志物

GFAP (胶质纤维酸性蛋白)和UCH-L1 (泛素C末端水解酶-L1)常常用于颅脑损伤的预后评估,二者区别如下表1。GFAP预测窗口期:主要在损伤后0~24小时(急性期)。其主要功能用于:(1) 与颅内病变严重程度呈正相关,可用于鉴别是否存在创伤性颅内损伤(如CT/MRI可见病变) ;(2) 对6个月功能预后(如扩展格拉斯哥结局量表,GOSE)具有预测价值,高GFAP水平与不良预后相关[9];(3) Clarke等人的研究[8]中表现最佳诊断性能(如CT + 损伤的AUC = 0.78,MRI + 损伤的AUC = 0.82)。UCH-L1预测窗口期:最佳窗口期为损伤后0~12小时(极早期) 。其主要与结局相关作用包括:(1) 对早期死亡率(如院内死亡)有显著预测作用,高UCH-L1水平与死亡风险增加相关;(2) 作为TBI筛查工具,尤其在资源有限环境中辅助快速分诊[10];(3) 与神经炎症及长期神经退行性风险存在潜在关联,但需进一步研究[11]

Table 1. Comparison of the Roles and Limitations between GFAP and UCH-L1

1. GFAP与UCH-L1的作用及局限性对比

标志物

预测窗口期

主要结局关联

局限性

GFAP

0~24 h

颅内病变/6个月GOSE

特异性受外伤干扰

UCH-L1

0~12 h

早期死亡率

半衰期短

3.2. NAR核心分析

TBI病理生理过程中,中性粒细胞作为先天免疫的“第一响应者”,是神经炎症的关键驱动因子。次级损伤发生在原发性损伤后数小时至数天。中性粒细胞快速从外周迁移至中枢神经系统(CNS),引发和放大神经炎症反应。这可能导致血脑屏障(BBB)破坏、组织水肿和神经元损伤[12]。例如,中性粒细胞通过释放促炎细胞因子、活性氧(ROS)和中性粒细胞胞外诱捕网(NETs),加剧脑组织损伤。NETs在TBI患者脑组织中广泛存在,并与不良预后(如颅内压升高和神经功能障碍)相关[13]。此外,中性粒细胞的角色并非单一,而是具有高度异质性和时间依赖性。例如,在TBI小鼠模型中,中性粒细胞在损伤后24小时内持续活化,其亚型(如S100A8/A9富集的中性粒细胞)直接与神经功能恶化相关。抑制这些亚型可改善预后[14]

白蛋白作为系统炎症和营养状态的标志物,在系统炎症状态(如创伤诱导的应激),白蛋白水平下降通常因肝脏合成减少或毛细血管渗漏导致,这种现象称为低白蛋白血症[15]。它反映了氧化应激和炎症加剧,这与TBI次级损伤(如神经炎症和脑水肿)相关,在TBI患者中,系统炎症常伴随BBB破坏,促炎分子渗入脑组织。可能影响白蛋白的分布[12]

NAR可能作为系统性炎症的合成标志物:中性粒细胞百分比代表免疫激活程度,白蛋白水平反映炎症抑制能力。在TBI中,系统炎症通过释放DAMPs (损伤相关分子模式)和趋化因子招募中性粒细胞,导致局部和系统级联反应[16]

3.3. NAR对比其他炎症指标

NAR结合了中性粒细胞(急性炎症的关键效应细胞)和白蛋白(反映全身炎症状态和血脑屏障完整性的指标),能更全面地评估TBI后的炎症反应[17]。其他指标如中性粒细胞/淋巴细胞比值(NLR)或C反应蛋白/白蛋白比值(CAR)虽也常用,但NLR仅反映免疫细胞比例变化,而CAR更依赖肝脏合成的急性期蛋白(CRP),对血脑屏障功能的直接提示作用较弱[18]。研究显示,NAR升高与TBI患者更差的神经功能评分和预后相关[19]。相比之下,其他指标如NLR或PLR (血小板/淋巴细胞比值)在TBI中的预测价值存在争议,部分研究未发现其与长期功能结局的显著关联[20]

NAR仅需常规血常规和生化检测(中性粒细胞计数、血清白蛋白),成本低且易于推广[21]。而其他复合指标(如系统性炎症指数SII或炎症负荷指数IBI)需计算更多参数,临床实用性受限[18]。此外,白蛋白作为营养和炎症的双重标志物,其动态变化可反映TBI患者的整体代谢状态,而单纯中性粒细胞计数无法提供此类信息[22]

4. 挑战与未来改进

NAR的预测阈值(即用于区分高风险和低风险的临界值)在不同年龄组中存在显著差异,这导致NAR的标准化应用面临挑战。争议的核心在于:同一NAR值在不同年龄人群中可能无法准确预测死亡率,需要针对特定年龄组调整阈值。低白蛋白血症(血清白蛋白水平低下)是NAR计算的关键干扰因素,因为它直接降低分母值(白蛋白),人为抬高NAR值,导致假阳性预测(即错误地将非高风险患者归类为高风险)。这在肝病或营养不良患者中尤为突出,引发争议:NAR是否真正反映炎症,还是被白蛋白水平扭曲[23]

5. 结论

多模态协同(伤情特征、神经损伤标志物及全身炎症指标)是提升TBI预后精准度的核心路径,其中NAR (中性粒细胞/白蛋白比值)凭借其独特机制(整合中性粒细胞介导的神经炎症强度与低白蛋白血症提示的血脑屏障破坏)成为关键创新点;通过动态阈值监测、联合LMR矫正干扰、建立年龄分层临界值可优化其应用;未来可通过构建“伤情–神经损伤–炎症监测”三位一体评估体系,可突破临床转化瓶颈,实现预后实时修正与个体化干预。

参考文献

[1] Karamian, A., Lucke-Wold, B. and Seifi, A. (2024) Prevalence of Traumatic Brain Injury in the General Adult Population of the USA: A Meta-Analysis. Neuroepidemiology, 1-10. [Google Scholar] [CrossRef] [PubMed]
[2] Komboz, F., Chehade, H.D., Al Saffar, B., Mielke, D., Rohde, V. and Abboud, T. (2024) Assessing Outcomes in Traumatic Brain Injury: Helsinki Score versus Glasgow Coma Scale. European Journal of Trauma and Emergency Surgery, 50, 2491-2499. [Google Scholar] [CrossRef] [PubMed]
[3] Li, Y., Wang, H., Liu, Z., Deng, Z., Huang, K., Li, G., et al. (2024) Neutrophil-Albumin Ratio Serves as a Superior Prognostic Biomarker for Traumatic Brain Injury. Scientific Reports, 14, Article No. 27563. [Google Scholar] [CrossRef] [PubMed]
[4] Jalali, R., Bałuch, M., Malinowska, J., Zwiernik, J., Kern, A., Bil, J., et al. (2025) GFAP/UCH-L1 as a Biomarker for Rapid Assessment of Mild TBI in Emergency Departments. Medical Science Monitor, 31, e948353. [Google Scholar] [CrossRef] [PubMed]
[5] Kang, X., Grossner, E., Yoon, B.C. and Adamson, M.M. (2025) Relationship between Structural and Functional Network Connectivity Changes for Patients with Traumatic Brain Injury and Chronic Health Symptoms. European Journal of Neuroscience, 61, e16678. [Google Scholar] [CrossRef] [PubMed]
[6] Patil, S., Subtirelu, R., Teichner, E., Kata, R., Gerlach, A., Ayubcha, C., et al. (2025) CT, MRI, and PET Imaging in Patients with Traumatic Brain Injury. PET Clinics, 20, 133-145. [Google Scholar] [CrossRef] [PubMed]
[7] Alivar, A., Saleh, S., Glassen, M., Suviseshamuthu, E.S., Handiru, V.S., Allexandre, D., et al. (2025) Correlations between Morpho-Structural Properties of the Brain and Cognitive and Motor Deficits in Individuals with Traumatic Brain Injury. Neurotrauma Reports, 6, 68-81. [Google Scholar] [CrossRef] [PubMed]
[8] Clarke, G.J.B., Follestad, T., Skandsen, T., Zetterberg, H., Vik, A., Blennow, K., et al. (2024) Chronic Immunosuppression across 12 Months and High Ability of Acute and Subacute CNS-Injury Biomarker Concentrations to Identify Individuals with Complicated mTBI on Acute CT and MRI. Journal of Neuroinflammation, 21, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
[9] Helmrich, I.R.A.R., Czeiter, E., Amrein, K., Büki, A., Lingsma, H.F., Menon, D.K., et al. (2022) Incremental Prognostic Value of Acute Serum Biomarkers for Functional Outcome after Traumatic Brain Injury (CENTER-TBI): An Observational Cohort Study. The Lancet Neurology, 21, 792-802. [Google Scholar] [CrossRef] [PubMed]
[10] Okada, Y., Nakasone, H., Yoshimura, K., Tamaki, M., Kusuda, M., Nakamura, Y., et al. (2023) Plasma Ubiquitin C-Terminal Hydrolase-L1 (UCH-L1) Level as a Blood Biomarker of Neurological Damage after Allogeneic Hematopoietic Cell Transplantation. International Journal of Hematology, 118, 340-346. [Google Scholar] [CrossRef] [PubMed]
[11] Gugger, J.J., Walter, A.E., Parker, D., Sinha, N., Morrison, J., Ware, J., et al. (2023) Longitudinal Abnormalities in White Matter Extracellular Free Water Volume Fraction and Neuropsychological Functioning in Patients with Traumatic Brain Injury. Journal of Neurotrauma, 40, 683-692. [Google Scholar] [CrossRef] [PubMed]
[12] Shi, G., Liu, L., Cao, Y., Ma, G., Zhu, Y., Xu, J., et al. (2023) Inhibition of Neutrophil Extracellular Trap Formation Ameliorates Neuroinflammation and Neuronal Apoptosis via STING-Dependent IRE1α/ASK1/JNK Signaling Pathway in Mice with Traumatic Brain Injury. Journal of Neuroinflammation, 20, Article No. 222. [Google Scholar] [CrossRef] [PubMed]
[13] Cao, Y., Shi, M., Liu, L., Zuo, Y., Jia, H., Min, X., et al. (2023) Inhibition of Neutrophil Extracellular Trap Formation Attenuates NLRP1-Dependent Neuronal Pyroptosis via STING/IRE1α Pathway after Traumatic Brain Injury in Mice. Frontiers in Immunology, 14, Article ID: 1125759. [Google Scholar] [CrossRef] [PubMed]
[14] Shi, G., Cao, Y., Xu, J., Chen, B., Zhang, X., Zhu, Y., et al. (2025) Inhibition of S100A8/A9 Ameliorates Neuroinflammation by Blocking NET Formation Following Traumatic Brain Injury. Redox Biology, 81, Article ID: 103532. [Google Scholar] [CrossRef] [PubMed]
[15] van Erp, I.A.M., Michailidou, I., van Essen, T.A., van der Jagt, M., Moojen, W., Peul, W.C., et al. (2023) Tackling Neuroinflammation after Traumatic Brain Injury: Complement Inhibition as a Therapy for Secondary Injury. Neurotherapeutics, 20, 284-303. [Google Scholar] [CrossRef] [PubMed]
[16] Bergold, P. and Lawless, S. (2022) Better Together? Treating Traumatic Brain Injury with Minocycline plus N-acetylcysteine. Neural Regeneration Research, 17, 2589-2592. [Google Scholar] [CrossRef] [PubMed]
[17] Liu, B., Xu, X., Ge, Q., Yang, M., Zhuang, Y., Zhang, B., et al. (2023) Neutrophil-Derived Interleukin-17a Participates in Neuroinflammation Induced by Traumatic Brain Injury. Neural Regeneration Research, 18, 1046-1051. [Google Scholar] [CrossRef] [PubMed]
[18] Yang, Z., Wang, L., Hong, B., He, Z., Zhang, Q., Shen, T., et al. (2025) Inflammatory Burden Index as a Predictor of In‐hospital Mortality in Patients with Severe Fever with Thrombocytopenia Syndrome. Journal of Medical Virology, 97, e70225. [Google Scholar] [CrossRef] [PubMed]
[19] Tang, Y., Hou, H., Li, L., Yong, L., Zhang, S., Yan, L., et al. (2022) Neutrophil Percentage-to-Albumin Ratio: A Good Parameter for the Evaluation of the Severity of Anti-NMDAR Encephalitis at Admission and Prediction of Short-Term Prognosis. Frontiers in Immunology, 13, Article ID: 847200. [Google Scholar] [CrossRef] [PubMed]
[20] Zhang, D., Zhuang, D., Li, T., Liu, X., Zhang, Z., Zhu, L., et al. (2024) An Analysis of Neutrophil-to-Lymphocyte Ratios and Monocyte-to-Lymphocyte Ratios with Six-Month Prognosis after Cerebral Contusions. Frontiers in Immunology, 15, Article ID: 1336862. [Google Scholar] [CrossRef] [PubMed]
[21] Tanrıkulu, A.B., Kaya, H. and Çatak, Z. (2025) Comparative Analysis of Inflammatory Biomarkers in Methamphetamine-Associated Psychosis and Schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 139, Article ID: 111404. [Google Scholar] [CrossRef] [PubMed]
[22] Xie, H., Wei, L., Ruan, G., Zhang, H., Shi, J., Lin, S., et al. (2024) AWGC2023 Cachexia Consensus as a Valuable Tool for Predicting Prognosis and Burden in Chinese Patients with Cancer. Journal of Cachexia, Sarcopenia and Muscle, 15, 2084-2093. [Google Scholar] [CrossRef] [PubMed]
[23] Yao, J., Xu, X., Gong, K., Tu, H., Xu, Z., Ye, S., et al. (2023) Prognostic Value of Neutrophil Count to Albumin Ratio in Patients with Decompensated Cirrhosis. Scientific Reports, 13, Article No. 20759. [Google Scholar] [CrossRef] [PubMed]