|
[1]
|
Wood, A.J.J., Riggs, B.L. and Melton, L.J. (1992) The Prevention and Treatment of Osteoporosis. New England Journal of Medicine, 327, 620-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Foessl, I., Dimai, H.P. and Obermayer-Pietsch, B. (2023) Long-Term and Sequential Treatment for Osteoporosis. Nature Reviews Endocrinology, 19, 520-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Ebeling, P.R., Nguyen, H.H., Aleksova, J., Vincent, A.J., Wong, P. and Milat, F. (2021) Secondary Osteoporosis. Endocrine Reviews, 43, 240-313. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Wan, Y. (2010) Pparγ in Bone Homeostasis. Trends in Endocrinology & Metabolism, 21, 722-728. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
魏娟娟, 李雪雁, 何文芳, 等. miRNA参与骨代谢调节的作用机制研究进展[J]. 中国骨质疏松杂志, 2023, 29(4): 589-593, 605.
|
|
[6]
|
Yang, Y., Yujiao, W., Fang, W., Linhui, Y., Ziqi, G., Zhichen, W., et al. (2020) The Roles of miRNA, lncRNA and circRNA in the Development of Osteoporosis. Biological Research, 53, Article No. 40. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Tanaka, Y., Nakayamada, S. and Okada, Y. (2005) Osteoblasts and Osteoclasts in Bone Remodeling and Inflammation. Current Drug Target-Inflammation & Allergy, 4, 325-328. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chen, X., Wang, Z., Duan, N., Zhu, G., Schwarz, E.M. and Xie, C. (2017) Osteoblast-Osteoclast Interactions. Connective Tissue Research, 59, 99-107. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Xu, R., Shen, X., Si, Y., Fu, Y., Zhu, W., Xiao, T., et al. (2018) MicroRNA-31a-5p from Aging BMSCs Links Bone Formation and Resorption in the Aged Bone Marrow Microenvironment. Aging Cell, 17, e12794. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Zhang, Y., Li, M., Lou, P., Zhang, M., Shou, D. and Tong, P. (2024) miRNA-seq Analysis of High Glucose Induced Osteoblasts Provides Insight into the Mechanism Underlying Diabetic Osteoporosis. Scientific Reports, 14, Article No. 13441. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Chen, H., Zhang, R., Li, G., Yan, K., Wu, Z., Zhang, Y., et al. (2024) Yigu Decoction Regulates Plasma miRNA in Postmenopausal Osteoporosis Patients: A Randomized Controlled Trial. Frontiers in Pharmacology, 15, Article ID: 1460906. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jin, L., Wu, X., Lu, A. and Zhang, G. (2017) Elevated Osteoclastic MIR-214-3p Targets Timp2 to Promote Subchondral Bone Remodeling in Early Osteoarthritis. Osteoarthritis and Cartilage, 25, S290-S291. [Google Scholar] [CrossRef]
|
|
[13]
|
Sun, W., Zhao, C., Li, Y., Wang, L., Nie, G., Peng, J., et al. (2016) Osteoclast-Derived microRNA-Containing Exosomes Selectively Inhibit Osteoblast Activity. Cell Discovery, 2, Article No. 16015. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Aijaz-Ahmad, J., Xie, J., Yang, Y.-S., et al. (2022) AAV-Mediated Delivery of Osteoblast/Osteoclast-Regulating miRNAs for Osteoporosis Therapy. Molecular Therapy Nucleic Acids, 29, 296-311.
|
|
[15]
|
An, H., Chu, C., Zhang, Z., Zhang, Y., Wei, R., Wang, B., et al. (2023) Hyperoside Alleviates Postmenopausal Osteoporosis via Regulating miR‐19a‐5p/IL‐17A Axis. American Journal of Reproductive Immunology, 90, e13709. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Wang, X., Li, P., Guo, S., Yang, Q., Chen, Z., Wang, D., et al. (2019) circRNA_0006393 Promotes Osteogenesis in Glucocorticoid-Induced Osteoporosis by Sponging miR1455p and Upregulating FOXO1. Molecular Medicine Reports, 20, 2851-2858. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, D.F., Liu, J., Guo, B.S., et al. (2016) Osteoclast-Derived Exosomal miR-214-3p Inhibits Osteoblastic Bone Formation. Nature Communications, 7, Article No. 10872.
|
|
[18]
|
Hu, C., Sui, B., Liu, J., Dang, L., Chen, J., Zheng, C., et al. (2021) Sympathetic Neurostress Drives Osteoblastic Exosomal MiR-21 Transfer to Disrupt Bone Homeostasis and Promote Osteopenia. Small Methods, 6, e2100763. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Lan, Y.C., Yu, L.Y., Hu, Z.A., et al. (2024) Research Progress in the Regulatory Role of circRNA-miRNA Network in Bone Remodeling. Journal of Sichuan University. Medical Science Edition, 55, 263-272.
|
|
[20]
|
Lin, Q., Zhao, B., Li, X., Sun, W., Huang, H., Yang, Y., et al. (2025) Plastrum Testudinis Stimulates Bone Formation through Wnt/β-Catenin Signaling Pathway Regulated by miR-214. Chinese Journal of Integrative Medicine, 31, 707-716. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
谢兴文, 闫文, 顾玉彪, 等. microRNA-21调节Wnt/β-catenin信号通路防治骨质疏松症的研究进展[J]. 中国骨质疏松杂志, 2023, 29(7): 1012-1015.
|
|
[22]
|
黄霞, 魏津钿, 苏琦, 等. 干细胞源性细胞外囊泡经RANKL/RANK/OPG通路促进牙槽骨成骨的研究进展[J]. 中国现代医学杂志, 2023, 33(20): 60-64.
|
|
[23]
|
王洪刚, 内科学肾病. BMP2调节SMAD与microRNA介导慢性肾衰竭血管钙化的机制研究[D]: [硕士学位论文]. 济南: 山东大学, 2022.
|
|
[24]
|
Nan, K., Zhang, Y., Zhang, X., Li, D., Zhao, Y., Jing, Z., et al. (2021) Exosomes from miRNA-378-Modified Adipose-Derived Stem Cells Prevent Glucocorticoid-Induced Osteonecrosis of the Femoral Head by Enhancing Angiogenesis and Osteogenesis via Targeting miR-378 Negatively Regulated Suppressor of Fused (Sufu). Stem Cell Research & Therapy, 12, Article No. 331. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
祁彩虹, 李丽, 廖璞. 血清外泌体miRNA-21、miRNA-214联合检测在骨质疏松症诊断中的价值[J]. 检验医学与临床, 2024, 21(9): 1203-1207.
|
|
[26]
|
Han, J., Nie, M., Chen, C., Cheng, X., Guo, T., Huangfu, L., et al. (2022) SDCBP‐AS1 Destabilizes β‐Catenin by Regulating Ubiquitination and SUMOylation of hnRNP K to Suppress Gastric Tumorigenicity and Metastasis. Cancer Communications, 42, 1141-1161. [Google Scholar] [CrossRef] [PubMed]
|