|
[1]
|
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Han, B., Zheng, R., Zeng, H., Wang, S., Sun, K., Chen, R., et al. (2024) Cancer Incidence and Mortality in China, 2022. Journal of the National Cancer Center, 4, 47-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Luu, X.Q., Lee, K., Jun, J.K., Suh, M., Jung, K. and Choi, K.S. (2022) Effect of Gastric Cancer Screening on Long-Term Survival of Gastric Cancer Patients: Results of Korean National Cancer Screening Program. Journal of Gastroenterology, 57, 464-475. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Bushati, N. and Cohen, S.M. (2007) MicroRNA Functions. Annual Review of Cell and Developmental Biology, 23, 175-205. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
O’Brien, J., Hayder, H., Zayed, Y. and Peng, C. (2018) Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Frontiers in Endocrinology, 9, Article 402. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhang, B., Pan, X., Cobb, G.P. and Anderson, T.A. (2007) MicroRNAs as Oncogenes and Tumor Suppressors. Developmental Biology, 302, 1-12. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Calin, G.A. and Croce, C.M. (2006) MicroRNA Signatures in Human Cancers. Nature Reviews Cancer, 6, 857-866. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Conti, I., Varano, G., Simioni, C., Laface, I., Milani, D., Rimondi, E., et al. (2020) MiRNAs as Influencers of Cell-Cell Communication in Tumor Microenvironment. Cells, 9, Article 220. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Mei, S., Xin, J., Liu, Y., Zhang, Y., Liang, X., Su, X., et al. (2015) MicroRNA-200c Promotes Suppressive Potential of Myeloid-Derived Suppressor Cells by Modulating PTEN and FOG2 Expression. PLOS ONE, 10, e0135867. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Qiao, K., Ning, S., Wan, L., Wu, H., Wang, Q., Zhang, X., et al. (2019) LINC00673 Is Activated by YY1 and Promotes the Proliferation of Breast Cancer Cells via the miR-515-5p/MARK4/Hippo Signaling Pathway. Journal of Experimental & Clinical Cancer Research, 38, Article No. 418. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Xiao, Z., Chen, S., Feng, S., Li, Y., Zou, J., Ling, H., et al. (2020) Function and Mechanisms of MicroRNA-20a in Colorectal Cancer (Review). Experimental and Therapeutic Medicine, 19, 1605-1616. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ghafouri-Fard, S., Honarmand Tamizkar, K., Hussen, B.M. and Taheri, M. (2021) MicroRNA Signature in Liver Cancer. Pathology—Research and Practice, 219, Article ID: 153369. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Akbari Dilmaghani, N., Hussen, B.M., Nateghinia, S., Taheri, M. and Ghafouri-Fard, S. (2021) Emerging Role of MicroRNAs in the Pathogenesis of Amyotrophic Lateral Sclerosis. Metabolic Brain Disease, 36, 737-749. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Tian, W., Pang, X. and Luan, F. (2022) Diagnosis Value of miR‐181, miR‐652, and CA72‐4 for Gastric Cancer. Journal of Clinical Laboratory Analysis, 36, e24411. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Longhai He, and Yue Zhou, (2022) Evaluation of Increased MicroRNA-21 in the Serum of Patients with Cardia Cancer. Cellular and Molecular Biology, 68, 60-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Murano, T., Chung, K.Y., Tang, Y.C., Kano, Y., Takeuchi, K., Sakamoto, N., et al. (2025) Novel and Effective Blood‐based miRNA Diagnostic Panel for Gastric Cancer: A Pilot Study in a Japanese Population. Cancer Medicine, 14, e70790. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Rinn, J.L. and Chang, H.Y. (2012) Genome Regulation by Long Noncoding RNAs. Annual Review of Biochemistry, 81, 145-166. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Kopp, F. and Mendell, J.T. (2018) Functional Classification and Experimental Dissection of Long Noncoding RNAs. Cell, 172, 393-407. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Tan, Y., Lin, J., Li, T., Li, J., Xu, R. and Ju, H. (2020) LncRNA‐Mediated Posttranslational Modifications and Reprogramming of Energy Metabolism in Cancer. Cancer Communications, 41, 109-120. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Peng, W., Koirala, P. and Mo, Y. (2017) LncRNA-Mediated Regulation of Cell Signaling in Cancer. Oncogene, 36, 5661-5667. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chandra Gupta, S. and Nandan Tripathi, Y. (2016) Potential of Long Non‐Coding RNAs in Cancer Patients: From Biomarkers to Therapeutic Targets. International Journal of Cancer, 140, 1955-1967. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Qi, P., Zhou, X. and Du, X. (2016) Circulating Long Non-Coding RNAs in Cancer: Current Status and Future Perspectives. Molecular Cancer, 15, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Sole, C., Arnaiz, E., Manterola, L., Otaegui, D. and Lawrie, C.H. (2019) The Circulating Transcriptome as a Source of Cancer Liquid Biopsy Biomarkers. Seminars in Cancer Biology, 58, 100-108. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Heitzer, E., Haque, I.S., Roberts, C.E.S. and Speicher, M.R. (2018) Current and Future Perspectives of Liquid Biopsies in Genomics-Driven Oncology. Nature Reviews Genetics, 20, 71-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liang, H., Li, H., Xia, N., Chen, J., Gao, L., Liu, H., et al. (2024) Circulating Long Noncoding RNA, Zfpm2-As1, and XIST Based on Medical Data Analysis Are Potential Plasma Biomarkers for Gastric Cancer Diagnosis. Technology and Health Care, 32, 4919-4928. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Jeck, W.R., Sorrentino, J.A., Wang, K., Slevin, M.K., Burd, C.E., Liu, J., et al. (2012) Circular RNAs Are Abundant, Conserved, and Associated with ALU Repeats. RNA, 19, 141-157. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Memczak, S., Papavasileiou, P., Peters, O. and Rajewsky, N. (2015) Identification and Characterization of Circular RNAs as a New Class of Putative Biomarkers in Human Blood. PLOS ONE, 10, e0141214. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Lin, X., Lo, H., Wong, D.T.W. and Xiao, X. (2015) Noncoding RNAs in Human Saliva as Potential Disease Biomarkers. Frontiers in Genetics, 6, Article 175. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Zhao, Y., Alexandrov, P., Jaber, V. and Lukiw, W. (2016) Deficiency in the Ubiquitin Conjugating Enzyme UBE2A in Alzheimer’s Disease (AD) Is Linked to Deficits in a Natural Circular mirNA-7 Sponge (circRNA; ciRS-7). Genes, 7, Article 116. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Xu, H., Guo, S., Li, W. and Yu, P. (2015) The Circular RNA Cdr1as, via miR-7 and Its Targets, Regulates Insulin Transcription and Secretion in Islet Cells. Scientific Reports, 5, Article No. 12453. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Guarnerio, J., Bezzi, M., Jeong, J.C., Paffenholz, S.V., Berry, K., Naldini, M.M., et al. (2016) Oncogenic Role of Fusion-circRNAs Derived from Cancer-Associated Chromosomal Translocations. Cell, 165, 289-302. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sui, W., Shi, Z., Xue, W., Ou, M., Zhu, Y., Chen, J., et al. (2017) Circular RNA and Gene Expression Profiles in Gastric Cancer Based on Microarray Chip Technology. Oncology Reports, 37, 1804-1814. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Huang, Y., Jie, N., Zou, K. and Weng, Y. (2017) Expression Profile of Circular RNAs in Human Gastric Cancer Tissues. Molecular Medicine Reports, 16, 2469-2476. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Fang, Y., Ma, M., Wang, J., Liu, X. and Wang, Y. (2017) Circular RNAs Play an Important Role in Late-Stage Gastric Cancer: Circular RNA Expression Profiles and Bioinformatics Analyses. Tumor Biology, 39. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Yuan, W., Fang, R., Mao, C., Chen, H., Tai, B. and Cong, H. (2023) Serum Circular RNA Hsa_circ_0000702 as a Novel Biomarker for Diagnosis of Gastric Cancer. Journal of Clinical Laboratory Analysis, 37, e24842. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Kim, H.K., Fuchs, G., Wang, S., Wei, W., Zhang, Y., Park, H., et al. (2017) A Transfer-RNA-Derived Small RNA Regulates Ribosome Biogenesis. Nature, 552, 57-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Kumar, P., Kuscu, C. and Dutta, A. (2016) Biogenesis and Function of Transfer RNA-Related Fragments (tRFs). Trends in Biochemical Sciences, 41, 679-689. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Schimmel, P. (2017) The Emerging Complexity of the tRNA World: Mammalian tRNAs Beyond Protein Synthesis. Nature Reviews Molecular Cell Biology, 19, 45-58. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Ren, D., Mo, Y., Yang, M., Wang, D., Wang, Y., Yan, Q., et al. (2023) Emerging Roles of tRNA in Cancer. Cancer Letters, 563, Article ID: 216170. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Li, J., Zhu, L., Cheng, J. and Peng, Y. (2021) Transfer RNA-Derived Small RNA: A Rising Star in Oncology. Seminars in Cancer Biology, 75, 29-37. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gu, W., Shi, J., Liu, H., Zhang, X., Zhou, J.J., Li, M., et al. (2020) Peripheral Blood Non-Canonical Small Non-Coding RNAs as Novel Biomarkers in Lung Cancer. Molecular Cancer, 19, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Li, K., Lin, Y., Luo, Y., Xiong, X., Wang, L., Durante, K., et al. (2022) A Signature of Saliva-Derived Exosomal Small RNAs as Predicting Biomarker for Esophageal Carcinoma: A Multicenter Prospective Study. Molecular Cancer, 21, Article No. 21. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Yu, X., Song, X., Xie, Y., Zhang, S. and Guo, J. (2022) Establishment of an Absolute Quantitative Method to Detect a Plasma tRNA-Derived Fragment and Its Application in the Non-Invasive Diagnosis of Gastric Cancer. International Journal of Molecular Sciences, 24, Article 322. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, Y., Gu, X., Qin, X., Huang, Y. and Ju, S. (2022) Evaluation of Serum tRF-23-Q99P9P9NDD as a Potential Biomarker for the Clinical Diagnosis of Gastric Cancer. Molecular Medicine, 28, Article No. 63. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Gu, X., Zhang, Y., Huang, Y. and Ju, S. (2022) Comprehensive Evaluation of Serum tRF-17-WS7K092 as a Promising Biomarker for the Diagnosis of Gastric Cancer. Journal of Oncology, 2022, Article ID: 8438726. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Martincorena, I. and Campbell, P.J. (2015) Somatic Mutation in Cancer and Normal Cells. Science, 349, 1483-1489. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Bhawal, R., Oberg, A.L., Zhang, S. and Kohli, M. (2020) Challenges and Opportunities in Clinical Applications of Blood-Based Proteomics in Cancer. Cancers, 12, Article 2428. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Loei, H., Tan, H.T., Lim, T.K., Lim, K.H., So, J.B., Yeoh, K.G., et al. (2012) Mining the Gastric Cancer Secretome: Identification of GRN as a Potential Diagnostic Marker for Early Gastric Cancer. Journal of Proteome Research, 11, 1759-1772. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Tseng, C., Yang, J., Chen, C., Huang, H., Chuang, K., Lin, C., et al. (2011) Identification of 14‐3‐3β in Human Gastric Cancer Cells and Its Potency as a Diagnostic and Prognostic Biomarker. Proteomics, 11, 2423-2439. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Shen, Q., Polom, K., Williams, C., de Oliveira, F.M.S., Guergova-Kuras, M., Lisacek, F., et al. (2019) A Targeted Proteomics Approach Reveals a Serum Protein Signature as Diagnostic Biomarker for Resectable Gastric Cancer. eBioMedicine, 44, 322-333. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Guo, D., Zhang, B., Wu, D., Hu, X. and Tu, H. (2023) Identification of PRTN3 as a Novel Biomarker for the Diagnosis of Early Gastric Cance. Journal of Proteomics, 277, Article ID: 104852. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Chen, W., Ye, Q., Zhang, B., Ma, Z. and Tu, H. (2024) Identification of FGG as a Biomarker in Early Gastric Cancer via Tissue Proteomics and Clinical Verification. Journal of Proteome Research, 23, 5122-5130. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
王杨阳, 张逸寅, 顾康生. 炎性细胞因子与胃癌关系的研究进展[J]. 临床肿瘤学杂志, 2020, 25(5): 466-471.
|
|
[55]
|
Ozga, A.J., Chow, M.T. and Luster, A.D. (2021) Chemokines and the Immune Response to Cancer. Immunity, 54, 859-874. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Palmieri, B., Vadala’, M. and Palmieri, L. (2021) Immune Memory: An Evolutionary Perspective. Human Vaccines & Immunotherapeutics, 17, 1604-1606. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Pawluczuk, E., Łukaszewicz-Zając, M. and Mroczko, B. (2020) The Role of Chemokines in the Development of Gastric Cancer—Diagnostic and Therapeutic Implications. International Journal of Molecular Sciences, 21, Article 8456. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Liu, C., Wu, F., Zhuang, Y., Huang, X., Li, X., Qu, Q., et al. (2023) The Diagnostic Value of Serum Insulin-Like Growth Factor Binding Protein 7 in Gastric Cancer. PeerJ, 11, e15419. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Bademler, S., Kılıç, B., Üçüncü, M., Zirtiloglu, A. and İlhan, B. (2024) The Role of Biomarkers in the Early Diagnosis of Gastric Cancer: A Study on CCR5, CCL5, PDGF, and EPHA7. Current Issues in Molecular Biology, 46, 10651-10661. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Welsh, J.A., Goberdhan, D.C.I., O’Driscoll, L., Buzas, E.I., Blenkiron, C., Bussolati, B., et al. (2024) Minimal Information for Studies of Extracellular Vesicles (MISEV2023): From Basic to Advanced Approaches. Journal of Extracellular Vesicles, 13, e12404. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Xu, R., Rai, A., Chen, M., Suwakulsiri, W., Greening, D.W. and Simpson, R.J. (2018) Extracellular Vesicles in Cancer—Implications for Future Improvements in Cancer Care. Nature Reviews Clinical Oncology, 15, 617-638. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367, eaau6977. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Kinoshita, T., Yip, K.W., Spence, T. and Liu, F. (2016) MicroRNAs in Extracellular Vesicles: Potential Cancer Biomarkers. Journal of Human Genetics, 62, 67-74. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Qian, Z., Shen, Q., Yang, X., Qiu, Y. and Zhang, W. (2015) The Role of Extracellular Vesicles: An Epigenetic View of the Cancer Microenvironment. BioMed Research International, 2015, Article ID: 649161. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Xu, Y., Pu, S., Li, X., Yu, Z., Zhang, Y., Tong, X., et al. (2022) Exosomal ncRNAs: Novel Therapeutic Target and Biomarker for Diabetic Complications. Pharmacological Research, 178, Article ID: 106135. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Gu, X., Fan, Z., Lu, L., Xu, H., He, L., Shen, H., et al. (2025) Machine Learning-Assisted Washing-Free Detection of Extracellular Vesicles by Target Recycling Amplification Based Fluorescent Aptasensor for Accurate Diagnosis of Gastric Cancer. Talanta, 287, Article ID: 127506. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Yu, D., Zhang, J., Wang, M., Ji, R., Qian, H., Xu, W., et al. (2024) Exosomal miRNAs from Neutrophils Act as Accurate Biomarkers for Gastric Cancer Diagnosis. Clinica Chimica Acta, 554, Article ID: 117773. [Google Scholar] [CrossRef] [PubMed]
|