原发性中枢神经系统淋巴瘤的诊疗进展
Advances in the Diagnosis and Treatment of Primary Central Nervous System Lymphoma
摘要: 原发性中枢神经系统淋巴瘤(primary CNS lymphoma, PCNSL)是一种主要发病于脑、脊髓、颅神经、软脑膜及眼球的罕见的侵袭性结外非霍奇金淋巴瘤。其发病机制包括多种免疫球蛋白与自体蛋白结合,以及多种信号传导相关基因的改变。原发性中枢神经系统淋巴瘤的临床症状因发病部位不同而展现出不同表现。对于原发性中枢神经系统淋巴瘤,影像学检查、脑脊液检查及病理活检仍是目前主流的诊断手段。其标准治疗中,诱导治疗以高剂量甲氨蝶呤(HD-MTX)为基础,后续根据患者个体情况进行调整的自体造血干细胞移植(HDC-ASCT)。新药如BTK抑制剂和免疫检查点抑制剂等靶向治疗的疗效也正在开展相关研究。
Abstract: Primary central nervous system lymphoma (PCNSL) is a rare and aggressive extranodal non-Hodgkin lymphoma that predominantly arises in the brain, spinal cord, cranial nerves, leptomeninges, and eyes. Its pathogenesis involves the binding of multiple immunoglobulins to autologous proteins, as well as alterations in genes related to cell signal transduction. The clinical manifestations of PCNSL vary depending on the affected anatomical site. Current mainstream diagnostic approaches include neuroimaging, cerebrospinal fluid analysis, and pathological biopsy. Standard treatment involves induction therapy based on high-dose methotrexate (HD-MTX), followed by high-dose chemotherapy consolidated with autologous stem cell transplantation (HDC-ASCT) tailored to patient-specific conditions. Emerging targeted therapies, such as BTK inhibitors and immune checkpoint inhibitors, are being investigated for their therapeutic efficacy.
文章引用:邱浩然, 周慷. 原发性中枢神经系统淋巴瘤的诊疗进展[J]. 临床医学进展, 2025, 15(9): 1034-1043. https://doi.org/10.12677/acm.2025.1592589

1. 引言

原发性中枢神经系统淋巴瘤(primary CNS lymphoma, PCNSL)是一种发生于结外,罕见的高度恶性非霍奇金淋巴瘤,其在世界卫生组织2022年版血液淋巴瘤分类中被定义为“一种免疫豁免部位的大B细胞淋巴瘤”。PCNSL仅发病于大脑、脊髓、颅神经、软脑膜及眼球,无系统受累证据。脑实质是最常见的发病部位。PCNSL相比其他原发或继发于中枢神经系统的淋巴瘤显示出不同的细胞学、生物学和临床表现,在诊断、治疗及预后方面有显著的特点。

2. 流行病学

原发性中枢系统淋巴瘤约占所有淋巴瘤的4%~6%,约占所有中枢神经系统肿瘤的4% [1]。原发性中枢系统淋巴瘤近年的发病率较前逐渐上升,且发病率随着年龄的增长而增加。男性的发病率明显高于女性[2]。艾滋病毒感染者的发病率明显高于普通人群,自20世纪90年代引入联合抗逆转录病毒治疗以来,艾滋病毒携带者中PCNSL的发病率急剧下降。

3. 病理机制与分子特征

PCNSL的主要发病机制可能包括免疫球蛋白与中枢神经系统(CNS)中表达的自身蛋白结合,以及B细胞受体、Toll样受体和NF-κB信号传导相关基因的改变[1]

PCNSL存在多个与免疫球蛋白(如IGHV4-34)相关的体细胞突变[3],这种突变通常在免疫球蛋白可变区正常发生以增加抗原识别能力,但在PCNSL中扩展到了非免疫球蛋白基因,其突变影响其他基因,如BTG2 (转录调节因子)、H1-4 (组蛋白调节)、KLHL14 (影响泛素化过程) [4]以及MYC、PAX5、PIM1、RHOH、SUSD2等涉及细胞增殖、分化、凋亡调控等关键功能的基因[5]

多数PCNSL表现为非生发中心B细胞样(non-GCB)表型[6],与DLBCL的MCD子型(MYD88 ^L265P/CD79B突变型)存在高度重叠。MYD88^L265P突变激活TLR和BCR信号,导致NF-κB通路激活,阻断B细胞分化,解除细胞周期,促进免疫逃逸并防止B细胞凋亡[7]。KLHL14突变促进MY-T-BCR超复合物形成,进一步激活NF-κB [8]。此外,多个路径的共同作用推动NF-κB信号通路的组成性持续性激活[9]。3q12.3区域扩增导致NFKBIZ (IκB-ζ)过表达,SLIT2突变使NFKBIZ失活,并导致NF-κB信号的负调控[10]。编码端粒酶逆转录酶TERT (encodingtelomerase reverse transcriptase)作为NF-κB的靶点和共因子,促进肿瘤细胞增殖[11]。其他如BAFF/APRIL/ghrelin轴过表达,6q21缺失也参与了B细胞末端分化的失控[12]

PCNSL是一个染色体不稳定、基因组高度扰动的肿瘤类型,存在大量染色体的扩增与缺失。常见扩增区域有:18q21.23、19p13.13、1q32.1、11q23.3等。常见缺失区域有:6p21、6q21、6q27、9p21.3等[4]

PCNSL细胞可以逃避免疫系统的识别,特别是通过MHC-I分子的缺失或调控障碍,导致肿瘤抗原无法呈递给CD8+T细胞。同时miRNA (如miR-155、miR-21等)异常表达也可能参与免疫逃逸[13]

在肿瘤微环境中,PCNSL细胞表达的免疫球蛋白与中枢神经系统表达的自身蛋白(如GRINL1A、ADAP2、BAIAP2、SAMD14、neurabin-I)结合,从而驱动持续性BCR信号传导[14]。反应性T细胞浸润(reactive perivascular T cell infiltrate, RPVI)是PCNSL特征性免疫特征,其中CD4+T细胞集中于肿瘤外围,CD8+T细胞位于瘤内,并表达T细胞耗竭标志物TIM-3 [15]。巨噬细胞亚群对肿瘤发展也有双向作用,M2型巨噬细胞表达PD-L1和TIM-3帮助免疫抑制,促进瘤内坏死和免疫逃逸。巨噬细胞也分泌STAT3激活PD-L1/IDO,促进免疫逃逸。星形胶质细胞、趋化因子、白细胞介素等也参与PCNSL的微环境调节[16]。总之,PCNSL是一个高度依赖CNS特异性微环境的肿瘤类型,其微环境调控网络比系统性弥漫大B细胞淋巴瘤更加复杂。

4. 临床表现

对于发生在脑实质的PCNSL患者,最常见的临床症状是局灶性神经功能受损,其表现根据肿瘤所涉及的中枢系统部位而各异。在大部分患者中,非特异性行为或神经认知变化是主要的表现缺陷。可伴有不同程度的头痛、呕吐、甚至意识障碍等颅内压升高表现,以及精神状态改变。脊髓病变通常是离散的髓内结节,主要累及胸椎。淋巴瘤性脊髓病变的症状与其他髓内肿瘤相似,取决于脊髓内的位置。患者可能经常出现不对称的感觉变化,以及四肢乏力和消化道或膀胱功能障碍。而相比其他系统性淋巴瘤,在PCNSL中少见发热、盗汗、消瘦等经典B症状[17]

原发性玻璃体视网膜淋巴瘤(primary vitreoretinal lymphoma, PVRL)是PCNSL的一个独特亚型,主要累及眼内玻璃体和视网膜。其临床表现具有非特异性,主要包括眼内浸润导致的视觉症状和体征,如视力下降、视物模糊、视野缺损等,部分病例可进展为永久性视力损失。但这些症状常与其他眼内炎症性疾病(如葡萄膜炎)类似。淋巴瘤细胞浸润玻璃体和/或视网膜下间隙,表现为玻璃体浑浊和视网膜下乳白色病变[18]。PVRL的眼科表现可先于、同时或晚于中枢神经系统症状出现[19]

5. 检查与诊断

5.1. 影像学检查

为快速诊断神经症状常用的影像学方法主要依靠头颅磁共振成像(magnetic resonance imaging, MRI)和增强及弥散加权技术(diffusion weighted imaging, DWI),可无创地发现颅内病变的位置、大小和形状[20] [21]。在Küker W等人的研究中[22],65%的患者为单发性脑损伤,35%的患者为多发性病变。同时,在Helle TL等人的研究中[23]发现,幕上脑损伤多于幕下,常见与额叶。同样的结果在He Jingmei等人的研究中也有呈现[24],报到了单发病灶14例,多发病灶37例,且多发病灶更容易累及额叶,但占位效应及水肿程度与单发病灶相比无统计学差异。多数PCNSL患者的颅脑MRI显示出TIWI低信号、T2WI高信号、DWI高信号,但并非所有PCNSL都有均匀强化[25]。如Kim C. S.在2024年报道了一例原发性中枢神经系统T细胞淋巴瘤[26],其在对比度增强的T1图像上没有观察到增强,导致在最初误诊为神经白塞病。在Park HY等人的一篇纳入9篇关于评估1040名患者的研究的Meta分析中展示出[27],全身CT和全身FDG PET/CT的合并诊断率分别为2.5%和4.9%,在亚组分析中,全身FDG PET/CT的诊断率明显高于全身CT,全身FDG PET/CT在PCNSL的诊断与鉴别中起着重要作用。在2021年,国际原发性CNS淋巴瘤合作小组(IPCG)的指南声明也对原发性中枢神经系统淋巴瘤MRI和PET成像提出建议,全身FDG-PET成像被正式推荐为系统分期评估的指标。另一方面,影像学新的进展也推动了影像–病理机制的研究,如Wang, M.等人在65例PCNSL患者的MRI影像中,基于多参数MRI的机器学习检测PCNSL中的B细胞淋巴瘤-6 (BCL-6)过表达状态,为疾病预后做出预测[28]。PCNSL的影像学以MRI增强扫描为核心,结合功能成像可提高诊断准确性,但因为MRI对早期复发或残留病变的敏感性不足,PCNSL的影像学表现常与中枢神经系统其他肿瘤重叠[29],FDG-PET/CT较高的检查成本等因素,影像学检查仍不能代替病理活检在疾病诊断上的重要地位。

5.2. 脑脊液检查

PCNSL患者的脑脊液检查有助于诊断和分期。CSF检查包括常规理化性质、细胞学检查和流式细胞术检查。PCNSL患者的CSF常展现出高白细胞计数和高蛋白浓度,葡萄糖浓度相对正常。在Bromberg JE等人对219名患者的1054个样本研究中[30],共60名患者诊断出CSF阳性,其中流式细胞术检测44例(73%)患者的样本呈阳性,细胞形态学检测19例(32%)患者的样本呈阳性,流式细胞术的灵敏度是细胞形态学的两到三倍,流式细胞术也能检测B细胞克隆性,提高诊断敏感性。在Ferreri AJM等人对新诊断和复发PCNSL患者的CSF样本的研究中发现,PCNSL患者CSF中髓样分化原发反应(88) (MYD88) L265P突变(mut-MYD88)和白细胞介素-10 (IL-10)展现出高检出率[31]。同样,在Bravetti C.对54例PCNSL患者的回顾性队列研究中,46 (85%)例病例至少检测出一种淋巴瘤生物标志物[32]。Yamaguchi J.使用一种基于聚合酶链式反应(PCR)的新型快速基因分型系统(GeneSoC),在手术中快速检测MYD88 L2 65P突变[33],在由术后病理诊断为PCNSL的10例患者中,有8例检测出携带MYD88 L265P。这些分子标志物有助于提高诊断的敏感性和特异性,帮助不适用病理活检的PCNSL患者进行诊断。此外,CSF液体活检联合脑脊液蛋白质组学可区分PCNSL与其他脑肿瘤,敏感性和特异性较高[34]。使用脑脊液的体外核磁共振代谢组学方法也可帮助诊断PCNSL [35]。CSF检测微创且可重复,适用于深部肿瘤或无法手术的患者,但脑脊液细胞学阳性率受标本误差等的影响,敏感性波动较大,且需排除其他淋巴瘤颅内转移。

5.3. 手术切除与活检

5.3.1. 手术切除

病理活检仍是诊断脑实质PCNSL的金标准。取得活检标本的方法主要分为:传统活检(如开放活检)、立体定向活检及手术切除。在2022年Ganau M.等人的研究中[36],对过去5年使用内窥镜定位活检的病例进行回性研究,66.6%的病例在脑室内有浅表病变,33.4%的病例涉及到更深的组织。内镜治疗PCNSL是一种安全且微创的选择,除了可获取病理样本外,还可以通过脑室造口术或脑脊液分流术以治疗脑积水。但仍需综合考虑病变位置、替代方案及禁忌证。对于单发、表浅且可切除的PCNSL,手术切除对显著延长总生存期(OS)和无进展生存期(PFS)的效果仍有争议。Gangping Li等人对来自监测、流行病学和最终结果(SEER)数据库的数据进行分析[37],行次全切术患者的校正危险比(HR)为0.77 (95%CI 0.70~0.85, P < 0.001),总生存率(OS)为0.74 (95%CI 0.66~0.83, P < 0.01),癌症特异性生存率(CSS)为0.73 (95%CI 0.65~0.83, P < 001);行全切手术的患者,OS和CSS的调整后HR分别为0.73 (95%CI 0.65~0.80, P < 0.001)和0.73 (95%CI 0.65~0.83, P < 0.001)。Chojak R等人对纳入7项研究的1046例病例进行分析后发现[38],与活检相比,手术切除组患者的OS明显更好(HR 0.63 [95%CI 0.51~0.77]),PFS也显著改善(HR 0.64 [95%CI 0.49~0.85])。在另一项研究中,Chaejin Lee等人对30例手术切除患者和49例仅行活检患者的5年总生存率(OS)和5年无进展生存率(PFS)进行比较,两组的并发症发生率相当,但OS或PFS没有显著差异(切除组5年总生存率(OS)为81.3%,5年无进展生存率(PFS)为53.6%;活检组5年总生存率(OS)为80.1%,5年无进展生存率(PFS)为60.3%) [39]。手术切除可缓解占位效应,降低颅内压,改善症状,并提供更多组织样本,利于全面病理分析和分子检测。Heming M等人对活检样本进行了空间转录组学分析,揭示PCNSL病灶中恶性B细胞的转录异质性和空间异质性,以及PCNSL微环境中T细胞耗竭标志物的高表达[40]。对于PCNSL患者来说,手术切除的获益与风险有待考量,深部组织或功能区病变(如脑干、基底节、胼胝体)手术可能导致神经功能损伤,术后获益可能不明显。

5.3.2. 立体定向活检

立体定向活检具有安全、高效和微创的优点,并发症风险较低,尤其适用于多发病变或身体状况较差的患者。同时,可结合多模态影像(如MRI增强和DWI)或术中荧光技术[41],提高取材准确性。在其他对活检过程报告的病例中,Mazzucchi E团队和Dellaretti M.团队分别使用了荧光素标记术中成像辅助立体定位活检,以减少采样误差,提高标本代表性[42] [43]。在非PCNSL的立体定向活检研究中,双平面活检较单平面活检检出率更高,但在PCNSL领域的效果需进一步验证[44]。Henri Malaizé通过对一家三级中心1784名成年患者回顾性地检查了50例连续的脑干活检,比较了脑干活检患者和大脑/小脑活检患者之间的诊断率和安全性,结果显示脑干病变的立体定向活检诊断率较高,但并发症风险显著高于大脑/小脑活检,需根据个体化评估[45]。尽管如此,立体定向活检的并发症率较低,多数为短暂性症状(如轻微运动障碍)。立体定向活检仍有一定局限性,如类固醇激素的术前使用可能掩盖病理特征,降低活检阳性率。在Tosefsky K等人通过对PCNSL患者进行荟萃分析[46],在1226名患者中,术前皮质类固醇治疗(corticosteroid therapy, CST)降低了立体定向活检的诊断率,非诊断性活检的RR为3.0 (95%CI: 1.2~7.5),且并未发现逐渐减量CST可提高诊断率。

5.4. PVRL眼科检查

玻璃体活检是诊断PVRL的金标准,通过组织病理学确认组织内存在恶性细胞[47]。然而,因样本中淋巴瘤细胞数量少且易碎,使得细胞学检测成功率低,需反复活检或结合其他技术以提高敏感性[48]。玻璃体液或房水中的特定免疫调节因子分析是重要的辅助手段。例如,白介素-10 (IL-10)水平升高是PVRL的标志之一,结合干扰素γ诱导蛋白(IP-10)等因子,可帮助与葡萄膜炎鉴别[49]。免疫组化或流式细胞术检测B细胞标志物可帮助提高诊断准确性[50]。此外,针对璃体液或房水样本中的循环肿瘤DNA (ctDNA)测序也可帮助早期诊断和检测治疗效果[51]

6. 治疗

PCNSL的标准治疗包括以高剂量甲氨蝶呤(HD-MTX)为基础的多药化疗,及后续根据患者年龄进行调整的噻替帕(thiotepa)为条件的自体造血干细胞移植(HDC-ASCT) [52]

大多数方案进行至少4~6次的HD-MTX静脉治疗,MTX剂量应≥3 g/m2,静脉滴注2~3小时,至少注射4~6次,间隔不应超过2~3周。在既往研究中表明,阿糖胞苷(AraC)和HD-MTX联合使用是有益的,并可提高反应率、无进展生存率(Progression-Free Survival, PFS)和总生存率(Overall Survival, OS)。

在诱导治疗达到缓解后,巩固治疗对清除残留病灶、延缓复发至关重要。大剂量化疗联合自体干细胞移植(HDC/ASCT)可用于65~70岁、体能状态良好(ECOG PS评分0~1)、主要器官功能储备充足、对诱导治疗反应良好(达到完全缓解或部分缓解)、采集到足够数量的干细胞的初诊PCNSL患者。含噻替帕的HDC-ASCT方案可显著延长无进展生存期PFS [53] [54]。对于高龄、存在合并症或ASCT耐受性较差的患者,可考虑减量全脑放疗(≤24 Gy)或非清髓性化疗(如替莫唑胺序贯治疗、利妥昔单抗联合阿糖胞苷) [55]。根据2023欧洲神经肿瘤协会原发性中枢神经系统淋巴瘤治疗指南,如果证实脑膜受累,且静脉注射HD-MTX化疗反应不佳,可谨慎考虑鞘内化疗。针对PVRL患者,眼内注射低剂量甲氨蝶呤(MTX)或利妥昔单抗可清除眼内肿瘤细胞,但需长期治疗,且伴随视网膜毒性、白内障等并发症风险[56]。而单纯眼内治疗无法预防中枢神经系统(CNS)进展。对于化疗难治的局限性复发PVRL患者,局部放疗可作为替代方案。

利妥昔单抗在PCNSL中的应用存在争议。HD-MTX联用利妥昔单抗对PCNSL的疗效仍不明确,一项III期临床试验表明,在无事件生存期(Event-Free Survival, EFS)方面没有优势,且无进展生存期PFS的趋势并不显著[57]。相反,另一项研究显示,HD-MTX联用利妥昔单抗与5年OS的显著改善相关[58]

靶向治疗在PCNSL中也显示出潜力,尤其是针对特定突变的患者。例如,布鲁顿酪氨酸激酶抑制剂(Bruton’s Tyrosine Kinase inhibitors, BTKI) (如伊布替尼)和免疫检查点抑制剂(Immune checkpoint inhibitors, ICI)已在研究中显示出疗效。在一项Ib期研究中报告了利妥昔单抗–来那度胺–伊布替尼治疗复发/难治性PCNSL患者的疗效和耐受性[59]。另一项研究中报告了利妥昔单抗–来那度胺–伊布替尼联合治疗的总缓解率(ORR)达74% (23/31),中位PFS为4.5个月,最常见的治疗不良反应包括贫血、感染、血小板减少、房颤(伊布替尼)、高血糖、高胆固醇血症、丙氨酸转氨酶升高和高甘油三酯血症[60]。在一项前瞻性II期临床研究中,HD-MTX联合利妥昔单抗及奥布替尼的客观缓解率(Objective Response Rate, ORR)为90.3% [58]。ICI对PCNSL的疗效评估也在进行,一项II期临床试验评估了PD-1抗体信迪利单抗(Sintilimab)联合HD-MTX、替莫唑胺和利妥昔单抗治疗PCNSL的生存数据,其2年PFS和OS分别为57.2% (40.6%~80.8%)和91.5% (80.7%~100%),表明该方案对于新诊断的PCNSL是非常有效和耐受的[61]

CD19/22 CAR-T细胞疗法也对PCNSL有效,尤其是对复发或难治性病例。一项研究对13例PCNSL患者采用ASCT序贯CD19/22 CAR-T细胞治疗的研究显示,中位无进展生存期PFS为11个月,中位总生存期OS为21个月[60]。但有报告CAR-T细胞治疗PCNSL存在中枢毒性风险[62]

7. 小结与展望

PCNSL的发病率在近年呈上升趋势,得益于日渐发展的检查及治疗手段,患者的生存期得到了显著的改善。病理组织活检仍是诊断PCNSL的金标准,而立体定向活检提供了一种低风险、高准确性的方法,尤其适用于深部及多发病灶。在未来,通过结合代谢组学、基因组学等,辅以MYD88 L265P突变等分子标志物,联合单细胞测序等方法,有望提升早期诊断率。PCNSL治疗以HD-MTX诱导治疗为核心,HDC-ASCT为优选巩固手段,但复发率高且预后差。BTK抑制剂(如伊布替尼)和免疫检查点抑制剂(如纳武利尤单抗)已在研究中显示出疗效,CAR-T细胞治疗等免疫治疗在PCNSL中的效果也在逐渐探索,未来需要多学科协作以缩短诊断延迟,推动精准医疗。

参考文献

[1] Ferreri, A.J.M., Calimeri, T., Cwynarski, K., Dietrich, J., Grommes, C., Hoang-Xuan, K., et al. (2023) Primary Central Nervous System Lymphoma. Nature Reviews Disease Primers, 9, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
[2] Villano, J.L., Koshy, M., Shaikh, H., Dolecek, T.A. and McCarthy, B.J. (2011) Age, Gender, and Racial Differences in Incidence and Survival in Primary CNS Lymphoma. British Journal of Cancer, 105, 1414-1418. [Google Scholar] [CrossRef] [PubMed]
[3] Montesinos-Rongen, M., Küppers, R., Schlüter, D., Spieker, T., Van Roost, D., Schaller, C., et al. (1999) Primary Central Nervous System Lymphomas Are Derived from Germinal-Center B Cells and Show a Preferential Usage of the V4-34 Gene Segment. The American Journal of Pathology, 155, 2077-2086. [Google Scholar] [CrossRef] [PubMed]
[4] Hernández-Verdin, I., Kirasic, E., Wienand, K., Mokhtari, K., Eimer, S., Loiseau, H., et al. (2023) Molecular and Clinical Diversity in Primary Central Nervous System Lymphoma. Annals of Oncology, 34, 186-199. [Google Scholar] [CrossRef] [PubMed]
[5] Fukumura, K., Kawazu, M., Kojima, S., Ueno, T., Sai, E., Soda, M., et al. (2016) Genomic Characterization of Primary Central Nervous System Lymphoma. Acta Neuropathologica, 131, 865-875. [Google Scholar] [CrossRef] [PubMed]
[6] Camilleri-Broët, S., Crinière, E., Broët, P., Delwail, V., Mokhtari, K., Moreau, A., et al. (2005) A Uniform Activated B-Cell-Like Immunophenotype Might Explain the Poor Prognosis of Primary Central Nervous System Lymphomas: Analysis of 83 Cases. Blood, 107, 190-196. [Google Scholar] [CrossRef] [PubMed]
[7] Chen, R., Zhou, D., Wang, L., Zhu, L. and Ye, X. (2022) MYD88L265P and CD79B Double Mutations Type (MCD Type) of Diffuse Large B-Cell Lymphoma: Mechanism, Clinical Characteristics, and Targeted Therapy. Therapeutic Advances in Hematology, 13, 1-11. [Google Scholar] [CrossRef] [PubMed]
[8] Choi, J., Phelan, J.D., Wright, G.W., Häupl, B., Huang, D.W., Shaffer, A.L., et al. (2020) Regulation of B Cell Receptor-Dependent NF-κB Signaling by the Tumor Suppressor KLHL14. Proceedings of the National Academy of Sciences of the United States of America, 117, 6092-6102. [Google Scholar] [CrossRef] [PubMed]
[9] Montesinos-Rongen, M., Schmitz, R., Brunn, A., Gesk, S., Richter, J., Hong, K., et al. (2010) Mutations of CARD11 but Not TNFAIP3 May Activate the NF-κB Pathway in Primary CNS Lymphoma. Acta Neuropathologica, 120, 529-535. [Google Scholar] [CrossRef] [PubMed]
[10] Chapuy, B., Roemer, M.G.M., Stewart, C., Tan, Y., Abo, R.P., Zhang, L., et al. (2016) Targetable Genetic Features of Primary Testicular and Primary Central Nervous System Lymphomas. Blood, 127, 869-881. [Google Scholar] [CrossRef] [PubMed]
[11] Bruno, A., Alentorn, A., Daniau, M., Labussière, M., Rahimian, A., Tabouret, E., et al. (2015) TERT Promoter Mutations in Primary Central Nervous System Lymphoma Are Associated with Spatial Distribution in the Splenium. Acta Neuropathologica, 130, 439-440. [Google Scholar] [CrossRef] [PubMed]
[12] Muta, H., Sugita, Y., Furuta, T., Shiimura, Y., Ohshima, K., Nakashima, K., et al. (2020) Expression of the Ghrelin/Growth Hormone Secretagogue Receptor Axis and Its Functional Role in Promoting Tumor Growth in Primary Central Nervous System Lymphomas. Neuropathology, 40, 232-239. [Google Scholar] [CrossRef] [PubMed]
[13] Baraniskin, A., Kuhnhenn, J., Schlegel, U., Chan, A., Deckert, M., Gold, R., et al. (2011) Identification of Micrornas in the Cerebrospinal Fluid as Marker for Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System. Blood, 117, 3140-3146. [Google Scholar] [CrossRef] [PubMed]
[14] Thurner, L., Preuss, K., Bewarder, M., Kemele, M., Fadle, N., Regitz, E., et al. (2018) Hyper-N-Glycosylated SAMD14 and Neurabin-I as Driver Autoantigens of Primary Central Nervous System Lymphoma. Blood, 132, 2744-2753. [Google Scholar] [CrossRef] [PubMed]
[15] Ponzoni, M., Berger, F., Chassagne‐Clement, C., Tinguely, M., Jouvet, A., Ferreri, A.J.M., et al. (2007) Reactive Perivascular T‐Cell Infiltrate Predicts Survival in Primary Central Nervous System B‐Cell Lymphomas. British Journal of Haematology, 138, 316-323. [Google Scholar] [CrossRef] [PubMed]
[16] Sugita, Y., Terasaki, M., Nakashima, S., Ohshima, K., Morioka, M. and Abe, H. (2014) The Perivascular Microenvironment in Primary Central Nervous System Lymphomas: The Role of Chemokines and the Endothelin B Receptor. Brain Tumor Pathology, 32, 41-48. [Google Scholar] [CrossRef] [PubMed]
[17] Grommes, C., Rubenstein, J.L., DeAngelis, L.M., Ferreri, A.J.M. and Batchelor, T.T. (2018) Comprehensive Approach to Diagnosis and Treatment of Newly Diagnosed Primary CNS Lymphoma. Neuro-Oncology, 21, 296-305. [Google Scholar] [CrossRef] [PubMed]
[18] Takase, H., Arai, A., Iwasaki, Y., Imai, A., Nagao, T., Kawagishi, M., et al. (2022) Challenges in the Diagnosis and Management of Vitreoretinal Lymphoma—Clinical and Basic Approaches. Progress in Retinal and Eye Research, 90, Article ID: 101053. [Google Scholar] [CrossRef] [PubMed]
[19] Raval, V., Binkley, E., Aronow, M.E., Valenzuela, J., Peereboom, D.M. and Singh, A.D. (2021) Primary Central Nervous System Lymphoma—Ocular Variant: An Interdisciplinary Review on Management. Survey of Ophthalmology, 66, 1009-1020. [Google Scholar] [CrossRef] [PubMed]
[20] Liu, L., Zhang, H., Zhang, H., Liu, X., Deng, H., Lin, F., et al. (2023) Distinctive Magnetic Resonance Imaging Features in Primary Central Nervous System Lymphoma: A Case Report. World Journal of Radiology, 15, 274-280. [Google Scholar] [CrossRef] [PubMed]
[21] Ambady, P., Hu, L.S., Politi, L.S., Anzalone, N. and Barajas Jr, R.F. (2021) Primary Central Nervous System Lymphoma: Advances in MRI and PET Imaging. Annals of Lymphoma, 5, 27. [Google Scholar] [CrossRef] [PubMed]
[22] Küker, W., Nägele, T., Korfel, A., Heckl, S., Thiel, E., Bamberg, M., et al. (2005) Primary Central Nervous System Lymphomas (PCNSL): MRI Features at Presentation in 100 Patients. Journal of Neuro-Oncology, 72, 169-177. [Google Scholar] [CrossRef] [PubMed]
[23] Helle, T.L., Britt, R.H. and Colby, T.V. (1984) Primary Lymphoma of the Central Nervous System. Journal of Neurosurgery, 60, 94-103. [Google Scholar] [CrossRef] [PubMed]
[24] 何京美, 黄德晖, 吴卫平. 原发性中枢神经系统淋巴瘤的临床特点和影像特征分析[J]. 解放军医学院学报, 2021, 42(3): 291-296.
[25] Capasso, R., Negro, A., Russo, C., Zeccolini, F., Muto, G., Caranci, F., et al. (2023) Conventional and Advanced MRI Techniques in the Evaluation of Primary CNS Lymphoma. Seminars in Ultrasound, CT and MRI, 44, 126-135. [Google Scholar] [CrossRef] [PubMed]
[26] Kim, C., Choi, C., Yi, K.S., Kim, Y., Lee, J., Woo, C.G., et al. (2024) Absence of Enhancement in a Lesion Does Not Preclude Primary Central Nervous System T-Cell Lymphoma: A Case Report. World Journal of Clinical Cases, 12, 374-382. [Google Scholar] [CrossRef] [PubMed]
[27] Park, H.Y., Suh, C.H., Huang, R.Y., Guenette, J.P. and Kim, H.S. (2021) Diagnostic Yield of Body CT and Whole-Body FDG PET/CT for Initial Systemic Staging in Patients with Suspected Primary CNS Lymphoma: A Systematic Review and Meta-Analysis. American Journal of Roentgenology, 216, 1172-1182. [Google Scholar] [CrossRef] [PubMed]
[28] Wang, M., Liu, G., Zhang, N., Li, Y., Sun, S., Tan, Y., et al. (2025) Detecting B-Cell Lymphoma-6 Overexpression Status in Primary Central Nervous System Lymphoma Using Multiparametric MRI-Based Machine Learning. Neuroradiology, 67, 563-573. [Google Scholar] [CrossRef] [PubMed]
[29] Hasner, M.C., van Opijnen, M.P., van der Meulen, M., Verdijk, R.M., Maas, S.L.N., te Boome, L.C.J., et al. (2024) Diagnostics and Treatment Delay in Primary Central Nervous System Lymphoma: What the Neurosurgeon Should Know. Acta Neurochirurgica, 166, Article No. 261. [Google Scholar] [CrossRef] [PubMed]
[30] Bromberg, J.E.C., Breems, D.A., Kraan, J., Bikker, G., van der Holt, B., Smitt, P.S., et al. (2007) CSF Flow Cytometry Greatly Improves Diagnostic Accuracy in CNS Hematologic Malignancies. Neurology, 68, 1674-1679. [Google Scholar] [CrossRef] [PubMed]
[31] Ferreri, A.J.M., Calimeri, T., Lopedote, P., Francaviglia, I., Daverio, R., Iacona, C., et al. (2021) MYD88 L265P Mutation and Interleukin‐10 Detection in Cerebrospinal Fluid Are Highly Specific Discriminating Markers in Patients with Primary Central Nervous System Lymphoma: Results from a Prospective Study. British Journal of Haematology, 193, 497-505. [Google Scholar] [CrossRef] [PubMed]
[32] Bravetti, C., Degaud, M., Armand, M., Sourdeau, E., Mokhtari, K., Maloum, K., et al. (2023) Combining MYD88 L265p Mutation Detection and Clonality Determination on CSF Cellular and Cell‐Free DNA Improves Diagnosis of Primary CNS Lymphoma. British Journal of Haematology, 201, 1088-1096. [Google Scholar] [CrossRef] [PubMed]
[33] Yamaguchi, J., Ohka, F., Kitano, Y., Maeda, S., Motomura, K., Aoki, K., et al. (2023) Rapid Detection of the MYD88 L265p Mutation for Pre‐ and Intra‐Operative Diagnosis of Primary Central Nervous System Lymphoma. Cancer Science, 114, 2544-2551. [Google Scholar] [CrossRef] [PubMed]
[34] Ma, J., Lin, Z., Zhang, Y., Ding, Y., Tang, Q., Qian, Y., et al. (2024) Targeted Multiplex Validation of CSF Proteomic Biomarkers: Implications for Differentiation of PCNSL from Tumor-Free Controls and Other Brain Tumors. Frontiers in Immunology, 15, Article 1343109. [Google Scholar] [CrossRef] [PubMed]
[35] Kim, J.H., An, Y.J., Kim, T.M., Kim, J.E., Park, S. and Choi, S.H. (2022) Ex Vivo NMR Metabolomics Approach Using Cerebrospinal Fluid for the Diagnosis of Primary CNS Lymphoma: Correlation with MR Imaging Characteristics. Cancer Medicine, 12, 4679-4689. [Google Scholar] [CrossRef] [PubMed]
[36] Ganau, M., Zaed, I., Todeschi, J., Prisco, L., Cebula, H., Bruno, C., et al. (2022) Efficacy of Endoscopic Management of Primary Central Nervous System Lymphoma: A Multicentric Study and Literature Review. Journal of Neuro-Oncology, 159, 457-468. [Google Scholar] [CrossRef] [PubMed]
[37] Li, G., Hou, X., Fu, Y., He, D. and Zhang, D. (2025) Association between Surgery and Increased Survival in Primary Central Nervous System Lymphoma: A Retrospective Cohort Study. Scientific Reports, 15, Article No. 3816. [Google Scholar] [CrossRef] [PubMed]
[38] Chojak, R., Koźba-Gosztyła, M., Polańska, K., Rojek, M., Chojko, A., Bogacz, R., et al. (2022) Surgical Resection versus Biopsy in the Treatment of Primary Central Nervous System Lymphoma: A Systematic Review and Meta-Analysis. Journal of Neuro-Oncology, 160, 753-761. [Google Scholar] [CrossRef] [PubMed]
[39] Lee, C., Byeon, Y., Kim, G.J., Jeon, J., Hong, C.K., Kim, J.H., et al. (2025) Assessing the Effect of Cytoreduction on Solitary, Resectable Lesions in Primary Central Nervous System Lymphoma. Cancers, 17, Article 917. [Google Scholar] [CrossRef] [PubMed]
[40] Heming, M., Haessner, S., Wolbert, J., Lu, I., Li, X., Brokinkel, B., et al. (2022) Intratumor Heterogeneity and T Cell Exhaustion in Primary CNS Lymphoma. Genome Medicine, 14, Article No. 109. [Google Scholar] [CrossRef] [PubMed]
[41] Tang, Y., Shi, Y., Wang, L., Qian, Z., Fan, Y., Wu, H., et al. (2022) Preliminary Clinical Application of Multimodal Imaging Combined with Frameless Robotic Stereotactic Biopsy in the Diagnosis of Primary Central Nervous System Lymphoma. Heliyon, 8, e12162. [Google Scholar] [CrossRef] [PubMed]
[42] Dellaretti, M., de Lima, F.B.F., de Sena, P.H.V.P., Figueiredo, H.P.G., Albuquerque, J.P.S., Gomes, F.C., et al. (2024) Efficacy, Safety, and Impact of Fluorescein in Frameless Stereotactic Needle Biopsies—A Case Series. Neurosurgical Review, 47, Article No. 523. [Google Scholar] [CrossRef] [PubMed]
[43] Mazzucchi, E., Galieri, G., Pignotti, F., Rinaldi, P., Sabatino, G. and La Rocca, G. (2024) Combination of Tractography, Intraoperative Computed Tomography and 5-Aminolevulinic Acid Fluorescence in Stereotactic Brain Biopsies: A Case Series. Journal of Personalized Medicine, 14, Article 357. [Google Scholar] [CrossRef] [PubMed]
[44] Zhou, Z., Li, T., Zhang, Y., Zhou, X., Wang, X., Cui, D., et al. (2025) Biplanar or Monoplanar Prostate Biopsy: Should Transrectal and Transperineal Approaches Be Combined for Prostate Cancer Detection? International Brazilian Journal of Urology, 51, e20240630. [Google Scholar] [CrossRef] [PubMed]
[45] Malaizé, H., Laigle-Donadey, F., Riche, M., Marijon, P., Mokhtari, K., Bielle, F., et al. (2022) Roles and Outcomes of Stereotactic Biopsy for Adult Patients with Brainstem Lesion. Journal of Neuro-Oncology, 160, 159-170. [Google Scholar] [CrossRef] [PubMed]
[46] Tosefsky, K., Rebchuk, A.D., Martin, K.C., Chen, D.W., Yip, S. and Makarenko, S. (2024) Preoperative Corticosteroids Reduce Diagnostic Accuracy of Stereotactic Biopsies in Primary Central Nervous System Lymphoma: A Systematic Review and Meta-Analysis. Neurosurgery, 95, 740-750. [Google Scholar] [CrossRef] [PubMed]
[47] Chen, T., Liu, Y., Wang, Y., Chang, Q., Wu, J., Wang, Z., et al. (2022) Evidence-Based Expert Consensus on the Management of Primary Central Nervous System Lymphoma in China. Journal of Hematology & Oncology, 15, Article No. 136. [Google Scholar] [CrossRef] [PubMed]
[48] Soussain, C., Malaise, D. and Cassoux, N. (2021) Primary Vitreoretinal Lymphoma: A Diagnostic and Management Challenge. Blood, 138, 1519-1534. [Google Scholar] [CrossRef] [PubMed]
[49] Nezu, N., Usui, Y., Saito, A., Shimizu, H., Asakage, M., Yamakawa, N., et al. (2021) Machine Learning Approach for Intraocular Disease Prediction Based on Aqueous Humor Immune Mediator Profiles. Ophthalmology, 128, 1197-1208. [Google Scholar] [CrossRef] [PubMed]
[50] Tan, W.J., Wang, M.M., Castagnoli, P.R., Tang, T., Chan, A.S.Y. and Lim, T.S. (2021) Single B-Cell Genomic Analyses Differentiate Vitreoretinal Lymphoma from Chronic Inflammation. Ophthalmology, 128, 1079-1090. [Google Scholar] [CrossRef] [PubMed]
[51] Wang, X., Su, W., Gao, Y., Feng, Y., Wang, X., Chen, X., et al. (2022) A Pilot Study of the Use of Dynamic Analysis of Cell-Free DNA from Aqueous Humor and Vitreous Fluid for the Diagnosis and Treatment Monitoring of Vitreoretinal Lymphomas. Haematologica, 107, 2154-2162. [Google Scholar] [CrossRef] [PubMed]
[52] de Koning, M.E., Hof, J.J., Jansen, C., Doorduijn, J.K., Bromberg, J.E.C. and van der Meulen, M. (2023) Primary Central Nervous System Lymphoma. Journal of Neurology, 271, 2906-2913. [Google Scholar] [CrossRef] [PubMed]
[53] Scordo, M., Wang, T.P., Ahn, K.W., Chen, Y., Ahmed, S., Awan, F.T., et al. (2021) Outcomes Associated with Thiotepa-Based Conditioning in Patients with Primary Central Nervous System Lymphoma after Autologous Hematopoietic Cell Transplant. JAMA Oncology, 7, 993-1003. [Google Scholar] [CrossRef] [PubMed]
[54] Arshad, S., Fang, X., Ahn, K.W., Kaur, M., Scordo, M., Sauter, C.S., et al. (2023) Impact of Thiotepa Dose-Intensity in Primary Diffuse Large B-Cell Lymphoma of the Central Nervous System Undergoing Autologous Hematopoietic Cell Transplant with Thiotepa/Carmustine Conditioning. Bone Marrow Transplantation, 58, 1203-1208. [Google Scholar] [CrossRef] [PubMed]
[55] Aquilanti, E., Herrity, E. and Nayak, L. (2024) Novel Therapies for Primary Central Nervous System Lymphomas. Current Neurology and Neuroscience Reports, 24, 621-629. [Google Scholar] [CrossRef] [PubMed]
[56] Habot‐Wilner, Z., Frenkel, S. and Pe’er, J. (2021) Efficacy and Safety of Intravitreal Methotrexate for Vitreo‐Retinal Lymphoma—20 Years of Experience. British Journal of Haematology, 194, 92-100. [Google Scholar] [CrossRef] [PubMed]
[57] Bromberg, J.E.C., Issa, S., van der Holt, B., van der Meulen, M., Dirven, L., Minnema, M.C., et al. (2023) Survival, Neurocognitive Function, and Health-Related Quality of Life Outcomes after Rituximab—Methotrexate, BCNU, Teniposide, and Prednisolone for Primary CNS Lymphoma: Final Results of the HOVON 105/ALLG NHL 24 Study. Neuro-Oncology, 26, 724-734. [Google Scholar] [CrossRef] [PubMed]
[58] Sheng, L., Liu, H., Zhang, X., Ding, K., Ma, J., Peng, H., et al. (2025) Prospective Phase II Trial of First-Line Rituximab, Methotrexate, and Orelabrutinib (R-MO) in Primary Central Nervous System Lymphoma. Blood Cancer Journal, 15, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
[59] Schaff, L.R., Piotrowski, A.F., Pentsova, E., Gavrilovic, I.T., Lin, A., Kaley, T.J., et al. (2025) Phase Ib Study with Expansion of Ibrutinib, Lenalidomide, and Rituximab in Patients with Relapsed/Refractory Central Nervous System Lymphoma. Neuro-Oncology. [Google Scholar] [CrossRef] [PubMed]
[60] Grommes, C., Nandakumar, S., Schaff, L.R., Gavrilovic, I., Kaley, T.J., Nolan, C.P., et al. (2024) A Phase II Study Assessing Long-Term Response to Ibrutinib Monotherapy in Recurrent or Refractory CNS Lymphoma. Clinical Cancer Research, 30, 4005-4015. [Google Scholar] [CrossRef] [PubMed]
[61] Zeng, Z., Yang, A., Yang, J., Zhang, S., Xing, Z., Wang, X., et al. (2024) Sintilimab (Anti-Pd-1 Antibody) Combined with High-Dose Methotrexate, Temozolomide, and Rituximab (Anti-CD20 Antibody) in Primary Central Nervous System Lymphoma: A Phase 2 Study. Signal Transduction and Targeted Therapy, 9, Article No. 229. [Google Scholar] [CrossRef] [PubMed]
[62] Cook, M.R., Dorris, C.S., Makambi, K.H., Luo, Y., Munshi, P.N., Donato, M., et al. (2023) Toxicity and Efficacy of CAR T-Cell Therapy in Primary and Secondary CNS Lymphoma: A Meta-Analysis of 128 Patients. Blood Advances, 7, 32-39. [Google Scholar] [CrossRef] [PubMed]