|
[1]
|
Li, H., Wu, X. and Cheng, X. (2016) Advances in Diagnosis and Treatment of Metastatic Cervical Cancer. Journal of Gynecologic Oncology, 27, e43. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Murthy, S.S., Trapani, D., Cao, B., Bray, F., Murthy, S., Kingham, T.P., et al. (2024) Premature Mortality Trends in 183 Countries by Cancer Type, Sex, WHO Region, and World Bank Income Level in 2000-19: A Retrospective, Cross-Sectional, Population-Based Study. The Lancet Oncology, 25, 969-978. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Momenimovahed, Z., Mazidimoradi, A., Maroofi, P., Allahqoli, L., Salehiniya, H. and Alkatout, I. (2023) Global, Regional and National Burden, Incidence, and Mortality of Cervical Cancer. Cancer Reports, 6, e1756. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Siegel, R.L., Miller, K.D., Wagle, N.S. and Jemal, A. (2023) Cancer Statistics, 2023. CA: A Cancer Journal for Clinicians, 73, 17-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Bencina, G., Oliver, E., Meiwald, A., Hughes, R., Morais, E., Weston, G., et al. (2024) Global Burden and Economic Impact of Vaccine-Preventable Cancer Mortality. Journal of Medical Economics, 27, 9-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Arbyn, M., Weiderpass, E., Bruni, L., de Sanjosé, S., Saraiya, M., Ferlay, J., et al. (2020) Estimates of Incidence and Mortality of Cervical Cancer in 2018: A Worldwide Analysis. The Lancet Global Health, 8, e191-e203. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Porras, C., Tsang, S.H., Herrero, R., Guillén, D., Darragh, T.M., Stoler, M.H., et al. (2020) Efficacy of the Bivalent HPV Vaccine against HPV 16/18-Associated Precancer: Long-Term Follow-Up Results from the Costa Rica Vaccine Trial. The Lancet Oncology, 21, 1643-1652. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Singh, D., Vignat, J., Lorenzoni, V., Eslahi, M., Ginsburg, O., Lauby-Secretan, B., et al. (2023) Global Estimates of Incidence and Mortality of Cervical Cancer in 2020: A Baseline Analysis of the WHO Global Cervical Cancer Elimination Initiative. The Lancet Global Health, 11, e197-e206. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hu, C., Liu, T., Han, C., Xuan, Y., Jiang, D., Sun, Y., et al. (2022) HPV E6/E7 Promotes Aerobic Glycolysis in Cervical Cancer by Regulating IGF2BP2 to Stabilize M6a-Myc Expression. International Journal of Biological Sciences, 18, 507-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Peng, S., Ferrall, L., Gaillard, S., Wang, C., Chi, W., Huang, C., et al. (2021) Development of DNA Vaccine Targeting E6 and E7 Proteins of Human Papillomavirus 16 (HPV16) and HPV18 for Immunotherapy in Combination with Recombinant Vaccinia Boost and PD-1 Antibody. mBio, 12, e03224-20. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Singini, M.G., Singh, E., Bradshaw, D., Chen, W.C., Motlhale, M., Kamiza, A.B., et al. (2022) HPV Types 16/18 L1 E6 and E7 Proteins Seropositivity and Cervical Cancer Risk in HIV-Positive and HIV-Negative Black South African Women. Infectious Agents and Cancer, 17, Article No. 14. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mulongo, M. and Chibwesha, C.J. (2022) Prevention of Cervical Cancer in Low-Resource African Settings. Obstetrics and Gynecology Clinics of North America, 49, 771-781. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Zhang, M., Hong, X., Ma, N., Wei, Z., Ci, X. and Zhang, S. (2023) The Promoting Effect and Mechanism of NRF2 on Cell Metastasis in Cervical Cancer. Journal of Translational Medicine, 21, Article No. 433. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Bian, Y., Zhang, Z., Deng, X., Wen, Q. and Li, D. (2024) Case Report: Giant Lymph Node Metastases: A New Opportunity for Cancer Radioimmunotherapy? Frontiers in Immunology, 15, Article ID: 1357601. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Frumovitz, M., Plante, M., Lee, P.S., Sandadi, S., Lilja, J.F., Escobar, P.F., et al. (2018) Near-Infrared Fluorescence for Detection of Sentinel Lymph Nodes in Women with Cervical and Uterine Cancers (FILM): A Randomised, Phase 3, Multicentre, Non-Inferiority Trial. The Lancet Oncology, 19, 1394-1403. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Zhong, S., Guo, Q., Chen, X., Luo, X., Long, Y., Chong, T., et al. (2024) The Inhibition of YTHDF3/m6A/LRP6 Reprograms Fatty Acid Metabolism and Suppresses Lymph Node Metastasis in Cervical Cancer. International Journal of Biological Sciences, 20, 916-936. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Gennigens, C., De Cuypere, M., Hermesse, J., Kridelka, F. and Jerusalem, G. (2021) Optimal Treatment in Locally Advanced Cervical Cancer. Expert Review of Anticancer Therapy, 21, 657-671. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dabi, Y., Favier, A., Razakamanantsoa, L., Suisse, S., Marie, Y., Touboul, C., et al. (2023) Value of Non-Coding RNAs to Assess Lymph Node Status in Cervical Cancer. Frontiers in Oncology, 13, Article ID: 1144672. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hanahan, D. and Weinberg, R.A. (2011) Hallmarks of Cancer: The Next Generation. Cell, 144, 646-674.
|
|
[20]
|
Li, C. and Hua, K. (2022) Dissecting the Single-Cell Transcriptome Network of Immune Environment Underlying Cervical Premalignant Lesion, Cervical Cancer and Metastatic Lymph Nodes. Frontiers in Immunology, 13, Article ID: 897366. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Bhatla, N., Berek, J.S., Cuello Fredes, M., Denny, L.A., Grenman, S., Karunaratne, K., et al. (2019) Revised FIGO Staging for Carcinoma of the Cervix Uteri. International Journal of Gynecology & Obstetrics, 145, 129-135. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Zhao, J., Cai, J., Wang, H., Dong, W., Zhang, Y., Wang, S., et al. (2021) Region-Specific Risk Factors for Pelvic Lymph Node Metastasis in Patients with Stage IB1 Cervical Cancer. Journal of Cancer, 12, 2624-2632. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wenzel, H.H.B., Van Kol, K.G.G., Nijman, H.W., Lemmens, V.E.P.P., Van der Aa, M.A., Ebisch, R.M.F., et al. (2020) Cervical Cancer with ≤5 Mm Depth of Invasion and >7 Mm Horizontal Spread—Is Lymph Node Assessment only Required in Patients with Lvsi? Gynecologic Oncology, 158, 282-286. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Saad, R.S., Ismiil, N., Ghorab, Z., Nofech-Mozes, S., Dubé, V., Covens, A., et al. (2010) Lymphatic Vessel Density as a Prognostic Marker in Clinical Stage I Endocervical Adenocarcinoma. International Journal of Gynecological Pathology, 29, 386-393. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Huang, B. and Fang, F. (2018) Progress in the Study of Lymph Node Metastasis in Early-Stage Cervical Cancer. Current Medical Science, 38, 567-574. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Saleh, M., Virarkar, M., Javadi, S., Elsherif, S.B., de Castro Faria, S. and Bhosale, P. (2020) Cervical Cancer: 2018 Revised International Federation of Gynecology and Obstetrics Staging System and the Role of Imaging. American Journal of Roentgenology, 214, 1182-1195. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Xiao, M., Ma, F., Li, Y., Li, Y., Li, M., Zhang, G., et al. (2020) Multiparametric MRI‐Based Radiomics Nomogram for Predicting Lymph Node Metastasis in Early‐Stage Cervical Cancer. Journal of Magnetic Resonance Imaging, 52, 885-896. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Cibula, D., Abu-Rustum, N.R., Dusek, L., Slama, J., Zikán, M., Zaal, A., et al. (2012) Bilateral Ultrastaging of Sentinel Lymph Node in Cervical Cancer: Lowering the False-Negative Rate and Improving the Detection of Micrometastasis. Gynecologic Oncology, 127, 462-466. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Salvo, G., Ramirez, P.T., Levenback, C.F., Munsell, M.F., Euscher, E.D., Soliman, P.T., et al. (2017) Sensitivity and Negative Predictive Value for Sentinel Lymph Node Biopsy in Women with Early-Stage Cervical Cancer. Gynecologic Oncology, 145, 96-101. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
van Roy, F. and Berx, G. (2008) The Cell-Cell Adhesion Molecule E-Cadherin. Cellular and Molecular Life Sciences, 65, 3756-3788. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Liu, Y., Zhang, J., Qian, W., Dong, Y., Yang, Y., Liu, Z., et al. (2014) Gankyrin Is Frequently Overexpressed in Cervical High Grade Disease and Is Associated with Cervical Carcinogenesis and Metastasis. PLOS ONE, 9, e95043. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tian, R., Li, X., Gao, Y., Li, Y., Yang, P. and Wang, K. (2018) Identification and Validation of the Role of Matrix Metalloproteinase-1 in Cervical Cancer. International Journal of Oncology, 52, 1198-1208. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, J., Qiu, J., Li, F., Jiang, X., Sun, X., Zheng, L., et al. (2020) HN1 Promotes Tumor Associated Lymphangiogenesis and Lymph Node Metastasis via NF-κB Signaling Activation in Cervical Carcinoma. Biochemical and Biophysical Research Communications, 530, 87-94. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dieterich, L.C., Tacconi, C., Ducoli, L. and Detmar, M. (2022) Lymphatic Vessels in Cancer. Physiological Reviews, 102, 1837-1879. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Sleeman, J.P. and Thiele, W. (2009) Tumor Metastasis and the Lymphatic Vasculature. International Journal of Cancer, 125, 2747-2756. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Branco, H., Xavier, C.P.R., Riganti, C. and Vasconcelos, M.H. (2025) Hypoxia as a Critical Player in Extracellular Vesicles-Mediated Intercellular Communication between Tumor Cells and Their Surrounding Microenvironment. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1880, Article 189244. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Chaudary, N., Milosevic, M. and Hill, R.P. (2011) Suppression of Vascular Endothelial Growth Factor Receptor 3 (VEGFR3) and Vascular Endothelial Growth Factor C (VEGFC) Inhibits Hypoxia-Induced Lymph Node Metastases in Cervix Cancer. Gynecologic Oncology, 123, 393-400. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ji, R. (2014) Hypoxia and Lymphangiogenesis in Tumor Microenvironment and Metastasis. Cancer Letters, 346, 6-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Schito, L., Rey, S., Tafani, M., Zhang, H., Wong, C.C., Russo, A., et al. (2012) Hypoxia-Inducible Factor 1-Dependent Expression of Platelet-Derived Growth Factor B Promotes Lymphatic Metastasis of Hypoxic Breast Cancer Cells. Proceedings of the National Academy of Sciences, 109, E2707-16. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Shamseddine, A.A., Burman, B., Lee, N.Y., Zamarin, D. and Riaz, N. (2021) Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discovery, 11, 1896-1912. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Gutiérrez-Hoya, A. and Soto-Cruz, I. (2021) NK Cell Regulation in Cervical Cancer and Strategies for Immunotherapy. Cells, 10, Article 3104. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Scarth, J.A., Patterson, M.R., Morgan, E.L. and Macdonald, A. (2021) The Human Papillomavirus Oncoproteins: A Review of the Host Pathways Targeted on the Road to Transformation. Journal of General Virology, 102, Article 001540. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Zhang, C., Hu, Y. and Shi, C. (2020) Targeting Natural Killer Cells for Tumor Immunotherapy. Frontiers in Immunology, 11, Article ID: 60. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Wang, Y., He, M., Zhang, G., Cao, K., Yang, M., Zhang, H., et al. (2021) The Immune Landscape during the Tumorigenesis of Cervical Cancer. Cancer Medicine, 10, 2380-2395. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Chen, Y., Ma, C., Zhang, W., Chen, Z. and Ma, L. (2014) Down Regulation of miR-143 Is Related with Tumor Size, Lymph Node Metastasis and HPV16 Infection in Cervical Squamous Cancer. Diagnostic Pathology, 9, Article No. 88. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Tornesello, M.L., Faraonio, R., Buonaguro, L., Annunziata, C., Starita, N., Cerasuolo, A., et al. (2020) The Role of Micrornas, Long Non-Coding RNAs, and Circular RNAs in Cervical Cancer. Frontiers in Oncology, 10, Article ID: 150. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Abu-Rustum, N.R., Yashar, C.M., Arend, R., Barber, E., Bradley, K., Brooks, R., et al. (2023) NCCN Guidelines® Insights: Cervical Cancer, Version 1.2024. Journal of the National Comprehensive Cancer Network, 21, 1224-1233. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Ferrall, L., Lin, K.Y., Roden, R.B.S., Hung, C. and Wu, T.-C. (2021) Cervical Cancer Immunotherapy: Facts and Hopes. Clinical Cancer Research, 27, 4953-4973. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Menderes, G., Black, J., Schwab, C.L. and Santin, A.D. (2016) Immunotherapy and Targeted Therapy for Cervical Cancer: An Update. Expert Review of Anticancer Therapy, 16, 83-98. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Alam, A., Blanc, I., Gueguen-Dorbes, G., Duclos, O., Bonnin, J., Barron, P., et al. (2012) SAR131675, a Potent and Selective VEGFR-3-TK Inhibitor with Antilymphangiogenic, Antitumoral, and Antimetastatic Activities. Molecular Cancer Therapeutics, 11, 1637-1649. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Beg, M.S., Brenner, A.J., Sachdev, J., Borad, M., Kang, Y., Stoudemire, J., et al. (2017) Phase I Study of MRX34, a Liposomal miR-34a Mimic, Administered Twice Weekly in Patients with Advanced Solid Tumors. Investigational New Drugs, 35, 180-188. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Rodrigues, M., Vanoni, G., Loap, P., Dubot, C., Timperi, E., Minsat, M., et al. (2023) Nivolumab Plus Chemoradiotherapy in Locally-Advanced Cervical Cancer: The NICOL Phase 1 Trial. Nature Communications, 14, Article 3698. [Google Scholar] [CrossRef] [PubMed]
|