MMP‑9在腹主动脉瘤发生发展中的遗传与表观遗传机制
Genetic and Epigenetic Roles of MMP-9 in the Pathogenesis and Progression of Abdominal Aortic Aneurysm
摘要: 腹主动脉瘤(AAA)是一种以腹主动脉局部扩张为特征的疾病,常伴随炎症细胞浸润和不良的细胞外基质降解。MMP-9作为重要的降解酶,过度表达可以加剧动脉壁基质的降解,进而促进AAA的形成和扩展。因此,必须严格调节其表达,以避免过度的酶活性。遗传和表观遗传机制在调节MMP-9基因的表达中起着关键作用。本文将系统地讨论MMP-9在腹主动脉瘤发生和发展的遗传与表观遗传机制,全面分析这些调控机制的作用,并探讨与AAA发病机制之间的联系。此外,本文还对当前的研究进展和基于表观遗传学的治疗前景进行了深入讨论,为未来的临床干预提供了宝贵的见解。
Abstract: Abdominal Aortic Aneurysm (AAA) is a disease characterized by localized dilation of the abdominal aorta, often accompanied by inflammatory cell infiltration and the degradation of extracellular matrix (ECM). MMP-9, as an important degrading enzyme, when it over expressed, can exacerbate the degradation of the arterial wall matrix, thereby promoting the formation and expansion of AAA. Therefore, it is crucial to tightly regulate its expression to avoid excessive enzymatic activity. Genetic and epigenetic mechanisms play a key role in regulating the expression of the MMP-9 gene. This article will systematically discuss the genetic and epigenetic mechanisms of MMP-9 in the occurrence and development of AAA, providing a comprehensive analysis of these regulatory mechanisms and exploring their connection to the pathogenesis of AAA. In addition, the article will have further discussion into current research progress and the therapeutic potential based on epigenetics, offering valuable insights for future clinical interventions.
文章引用:胡艺馨, 林虹杉, 申国庆, 于洪友. MMP‑9在腹主动脉瘤发生发展中的遗传与表观遗传机制[J]. 临床医学进展, 2025, 15(9): 1071-1079. https://doi.org/10.12677/acm.2025.1592594

1. 引言

腹主动脉瘤(AAA)是以腹主动脉直径 ≥ 3 cm或较正常增加50%为诊断标准的疾病,形成是由于中层变薄和弹性膜退化导致动脉壁的抗张强度减弱,通常与血脂异常、男性、老年、吸烟、高血压有关[1] [2]。AAA的扩张,以造血细胞浸润以及细胞外基质和血管结构的降解为其主要特征,炎症细胞与弹性膜断裂和活性氧的存在密切相关的现象充分表明AAA是一个惰性过程,最终可能导致血管壁局部膨出,且存在高破裂风险[1] [3]。而其中弹性蛋白的分解通常归因于MMP。

MMP广泛参与动脉粥样硬化[4] [5]和AAA [6]-[8]的发病机制。特别的是,MMP-9似乎在主动脉瘤疾病[9]-[11]中明显上调。MMP-9由巨噬细胞、平滑肌细胞与中性粒细胞释放[12]。其通过切割细胞间粘附分子(如纤连蛋白和玻连蛋白)促进炎症细胞浸润到血管组织中,从而介导腹主动脉瘤发病机制及其破裂。在AAA模型中,MMP‑9敲除小鼠显示动脉瘤形成明显减少,可推断两者之间存在因果关联[13]

尽管目前已有部分研究聚焦于关于MMP‑9表达水平,但其具体对于转录及翻译层面上的调控机制的系统总结尚不够充分[14] [15]。为此,本综述将重点探讨:启动子及编码区SNP;miRNA结合位点SNP (miRSNPs);DNA甲基化和组蛋白修饰对MMP-9调控的影响,以及临床表型关联的研究进展与挑战。旨在为AAA发病机制提供新的思考角度,并提出未来研究的方向与临床转化路径。

2. MMP‑9基因结构与转录调控简介

MMP-9基因位于人类染色体17号上,是编码707个氨基酸的前体蛋白。其基因结构包括信号结构域、前结构域、铰链区、血红素结合蛋白结构域和催化位点[16]。前体蛋白(proMMP-9)在其前肽区域包含PRCGVPD序列,这一序列在酶的非活性状态下封闭催化位点,而当受到特定的激活信号时,前肽会被切除,从而转化为具有活性的MMP-9酶形态。据现有文献可知,MMP-9基因的表达受多种遗传和转录调控机制的影响,包括启动子区域的单核苷酸多态性(SNP)、微小RNA (miRNA)、DNA甲基化和组蛋白修饰。且启动子区域含有多个顺式作用元件,这些元件调控转录因子与启动子区域的结合,从而影响基因的表达活性。

miRNA是通过与MMP-9的3'非翻译区(3'UTR)结合,调节其mRNA的稳定性和翻译效率,进而影响MMP-9的表达水平。至于DNA甲基化与组蛋白修饰,二者紧密关联。DNA甲基化主要与转录抑制有关,其特征是DNA甲基转移酶(DNMT)将甲基转移到DNA的胞嘧啶环上,形成5-甲基胞嘧啶(5mC) [17]。并通过招募甲基化-CpG结合蛋白(如MeCP2)和组蛋白去乙酰化酶(HDACs),形成转录抑制复合物。而组蛋白修饰由是于组蛋白亚基都有一个N端“尾部”,其中包含从组蛋白八聚体表面突出的赖氨酸(K)残基,形成暴露的表面。在这里,组蛋白修饰酶可以通过添加或去除乙酰基或甲基来调节基因表达[18]。总体而言,MMP-9在腹主动脉瘤的发生过程中至关重要,深入探究其表观遗传机制,可以更精准地预测腹主动脉瘤破裂并制定相应的治疗靶点。

3. MMP‑9基因变异与AAA风险

3.1. 启动子区变异与MMP-9表达及AAA风险

MMP-9基因启动子区和编码区的单核苷酸多态性(SNP)是影响其基因表达和功能的重要因素之一。已有研究表明−1562 C > T变异会影响MMP-9的表达水平[19],发现携带T等位基因的个体血浆中MMP-9的水平较高,而MMP-9的升高又通常伴随着AAA破裂风险的加剧。因此单核苷酸多态性可能通过介导MMP-9的过度表达,进而影响血管壁的稳定性和弹性,促进AAA的形成和扩展。MMP-9基因多态性与其他血管疾病如颅内动脉瘤也存在一定的关联[20]

尽管某些研究发现T等位基因频率与AAA的发病率和扩张速率呈正相关,但在某些群体中,这种关系并未达到统计学显著性。在一项包含678例AAA患者和对照的研究中,T等位基因频率与AAA的发病并未表现出显著的统计学关联[21]。−1562 C > T的MMP-9变异就克罗地亚患者而言与AAA的发生也没有明显相关性[22]。这表明遗传变异可能只对AAA的形成具有潜在风险,而不是直接决定性因素。不同族群和地理背景下,MMP-9的基因多态性可能表现出不同的影响。关于T等位基因频率与AAA发病的相关性尚未得到确定性的结论,具体的发病机制以及关联性需要后续研究进一步探索和证实。

3.2. 编码区和其他调控区变异

除了启动子区的变异,MMP-9的编码区或其他调控区的变异也对AAA的发生有一定影响。MMP9的rs17576位点变异被发现可能与sICAS (小型脑梗死)和WMH (白质高信号)等病理状态的风险相关[23],这表明该位点的变异可能在多种心血管疾病中发挥作用,在AAA中机制值得进一步探寻。除了该基因本身的变异,基因-基因之间的交互作用也与调控MMP-9表达及AAA风险有关。例如TLR4 rs1927914与MMP9 rs17576之间的表型协同效应可能通过炎症通路影响MMP-9的活性,进而参与AAA的形成[24]。巨噬细胞来源的MMP-9和间充质细胞来源的MMP-2在AAA的发生过程中也相互协作,共同促进血管壁的破坏和膨胀[25]。据现有研究还可推测MMP-9基因的C-1562T启动子区变异与吸烟的作用可能会相互影响。比如在慢性阻塞性肺病(COPD)的发病机制中,T等位基因携带者在吸烟暴露下更容易发展为COPD [26]。MMP-9基因变异受多种因素影响,探究AAA的发病相关因素对于AAA的风险预测和治疗具有重要意义。

3.3. DNA甲基化与MMP‑9表达

MMP-9 (基质金属蛋白酶-9)是细胞外基质降解和组织重塑的关键酶,其启动子区域的DNA甲基化状态对其转录活性的调控密切相关。MMP-9基因的启动子区域存在多个CpG位点,其甲基化状态直接影响基因的表达水平[27],去甲基化则会解除这种转录抑制,进而导致基因的过度表达。在一些病理条件如糖尿病模型中,MMP-9启动子区域的去甲基化使MMP-9转录增加,进而增强了表达活性,推动了细胞外基质的降解和疾病的进展[28]。当患者具有AAA等心血管疾病时,动脉组织MMP-9启动子区的整体甲基化水平相较于正常动脉组织有所下降。在黑色素瘤细胞系中,MMP-9的表达与CpG-2热点的高甲基化呈正相关[29],这表明在某些疾病中,甲基化的改变可能会促进MMP-9的过度表达。且糖尿病中的研究表明,糖尿病能够降低MMP-9启动子的甲基化水平,并伴随着Dnmt1和Tet1/2/3等甲基化酶的表达增加,进一步推动MMP-9的转录活性[30]。这一机制不仅在糖尿病中加剧了MMP-9的表达,也可能在AAA中起到类似的作用。

因此MMP-9 DNA去甲基化可能是MMP-9过度表达和AAA进展的重要机制之一。尽管MMP-9启动子区域的甲基化调控在AAA中的研究尚不全面,但我们通过借鉴其他疾病中对于甲基化调控机制的相关研究成果,亦能够为理解其在AAA中的作用提供有力支持。

4. 组蛋白修饰对MMP‑9调控的作用

4.1. H3K27甲基化与MMP-9表达的调控

H3K27是组蛋白H3的第27位赖氨酸残基,作为一个重要的修饰位点,它在细胞生物学中具有关键作用。就糖尿病模型而言,H3K27的三甲基化通过激活Ezh2,进而促进一系列调控MMP-9启动子DNA甲基化的酶的招募,从而激活MMP-9的转录过程[28]。H3K27的三甲基化充当了一种标记,能够引导转录因子和修饰酶在启动子区域的聚集,这些酶通过改变DNA甲基化状态,促使MMP-9的异常表达。该机制不仅在糖尿病中起着重要作用,与动脉粥样硬化等疾病的发生也密切相关。研究表明HDAC9-MALAT1-BRG1复合物显著提升了H3K27ac水平,从而增强MMP-9的表达,加速动脉瘤的形成[31]。这一机制揭示,通过调节组蛋白的乙酰化状态,使染色质更加松散,从而促进MMP-9基因的转录,并影响疾病的进展。此外在MMP-9启动子区域,H3K27单甲基化(H3K27me1)被发现对MMP-9依赖性H3N末端尾部(H3NT)蛋白的水解至关重要。H3K27me1通过G9a甲基转移酶催化,稳定了MMP-9与核小体的相互作用,进一步促进了MMP-9在成骨细胞分化过程中的表达[32]。这一发现表明,H3K27单甲基化不仅在基因的转录调控中发挥作用,还与细胞的分化和多种疾病的进程密切相关。

4.2. SIRT1/SUV39H1轴在MMP-9表达中的调控

SIRT1和SUV39H1是两种重要的去乙酰化酶,在组蛋白修饰和基因表达调控中扮演着关键角色。SIRT1通过去乙酰化作用调节多个转录因子的活性,影响MMP-9的表达。SUV39H1是一种组蛋白甲基转移酶,参与染色质的重塑和基因转录的调控。研究表明SIRT1可能通过去乙酰化SUV39H1,从而调节其对MMP-9基因启动子的抑制作用[33] [34]。SIRT1的激活能够增强SUV39H1的活性,进而影响MMP-9的表达水平。这一调控机制在肿瘤进展、炎症反应等病理过程中可能发挥重要作用。未来的研究需要进一步探索这些组蛋白修饰在动脉粥样硬化等疾病中的具体作用机制,特别是如何通过调控这些修饰来控制MMP-9的表达,从而为治疗提供新的靶点和策略。

5. 非编码RNA调控网络

5.1. miRNA调控MMP-9表达

一些miRNA已被证实在MMP-9的转录和翻译过程中起着重要的调控作用。miRNA-29b1被发现与MMP-2和MMP-9的mRNA和蛋白质表达存在显著的负相关关系[35]。这一发现表明,miRNA-29b1通过调控MMP-2和MMP-9的表达,可能在AAA的病理过程中发挥关键作用。研究进一步发现miR-29b作为一种广泛调控细胞外基质(ECM)代谢的miRNA,在AAA中呈现整体下调,与MMP-2和MMP-9的升高并存[36],这表明miR-29b的下调可能是促使MMP-9过度表达,从而影响AAA进程的一个重要机制。

其它的miRNA也与MMP-9的表达密切相关。作为AAA起始和繁殖的关键调节因子,miR-24通过靶向CHI3L1,限制主动脉血管炎症和小鼠腹动脉瘤的发展[37]。miR-195则通过TNF-α/NF-κB和VEGF/PI3K/Akt信号通路抑制AAA中的炎症反应,进而调节MMP-9的表达[38]。这些研究表明miRNA通过多种信号通路的调节,直接或间接地影响MMP-9的表达,从而在AAA的发生和进展中发挥重要作用。

5.2. lncRNA调控MMP-9表达

长链非编码RNA (lncRNA)也参与MMP-9的调控,主要通过染色质重塑和竞争性结合机制。研究表明ATP1A1-AS1 (lncRNA)过表达能够诱导血管平滑肌细胞的表型转换,促进细胞凋亡并提高MMP-9的表达[39]。在小鼠Ang II引发的AAA模型中,敲低长链非编码RNA PVT1 (lncRNA)能够抑制血管平滑肌细胞的凋亡、细胞外基质的破坏以及促炎性细胞因子水平的升高[40]。另一方面,lncRNA PVT1充当miR-3127-5p/NCKAP1l的海绵,抑制VSMC增殖、诱导细胞凋亡和激活炎症,从而促进AAA进展[41]。这些研究表明lncRNA通过改变细胞的表型和基因的表达,可能在AAA的发生中起重要作用,为了解lncRNA在AAA的发病机制中的作用和潜在治疗方法提供了科学依据。尽管许多lncRNA与相应的miRNA相互作用,但探索lncRNA在AAA中的其他表观遗传调控机制可能会带来新的治疗效果。

6. 表观遗传现状与未来治疗策略

6.1. 表观遗传现状

腹主动脉瘤(AAA)是一种由遗传和表观遗传因素共同作用引起的复杂疾病。近年来AAA的发病机制逐渐被认为是基因变异与表观遗传调控相互作用的结果。遗传变异尤其是在MMP-9等基因的编码区和启动子区域的突变,可能为AAA的发生和发展提供线索。表观遗传机制,如DNA甲基化、组蛋白修饰和miRNA调控,虽然越来越受到关注,但目前的研究仍不充分并存在许多空白。尤其是关于染色质重塑在AAA和心血管疾病中的作用机制仍不明确,现有研究多集中在单一表观遗传因素上,缺乏对miRNA、DNA甲基化位点和组蛋白修饰通路的整合和深入研究。MMP-9基因的表观遗传调控,尤其是miRNA通路,已被提出作为潜在的治疗靶点[42]。虽然已有研究表明,针对MMP-9启动子区的表观遗传药物可能在某些疾病条件下具有抑制作用[43],但是否能通过抑制MMP-9基因激活来实现临床效益仍需进一步探索。

6.2. MMP-9调控小分子药物与核酸药物的研发进展

MMP-9是腹主动脉瘤(AAA)形成与扩张的关键酶,其通过降解胶原和弹性蛋白破坏血管壁的稳定性。传统的MMP抑制剂(如多西环素)在早期研究中显示出抑制MMP-9活性的潜力,但由于副作用和疗效有限,未能广泛应用于临床[44]。近年来,研究重心转向核酸药物,尤其是Antagomirs。这些特异性抑制miRNA功能的反义寡核苷酸能够通过阻断上游调控因子,间接降低MMP-9的表达。例如抑制miR-29已被证明显著减少细胞外基质(ECM)的降解,从而减缓AAA的进展[45]。此外,LNA (锁核酸)技术以及脂质纳米颗粒包裹技术大大提高了这些分子药物的稳定性和组织穿透能力,从而在AAA模型中表现出了比传统药物更优的治疗效果[46]。这一方向正在从基础研究逐步走向临床前验证。

6.3. 药代动力学、递送及安全性挑战

尽管Antagomirs在动物实验中展现出良好的疗效,但将其转化为临床治疗仍面临许多挑战。首先,药代动力学问题显著,裸露的核酸分子在体内的半衰期较短,容易被核酸酶快速降解,从而导致疗效不足[47]。为了克服这一问题,目前的研发重点主要集中在修饰骨架或采用更高效的递送方式,如脂质体、聚合物纳米颗粒以及抗体修饰的靶向载体等。这些方法旨在延长药物在体内的循环时间,同时提高药物在AAA病灶处的特异性富集。其次,安全性问题仍然是关键考虑因素。小分子MMP-9抑制剂在临床中已经显示出诸如关节疼痛、肝功能损害等不良反应[44];尽管核酸药物具有更强的靶向性,但它们仍可能引发免疫反应或非特异性结合,导致脱靶效应[48]。另一个主要瓶颈是递送效率。在血管壁深层的平滑肌细胞中,药物很难达到有效浓度,影响其疗效。因此,如何在保证药物稳定性和生物相容性的前提下,优化精准递送技术,成为未来研究的重要方向。只有突破这些技术瓶颈,才能实现Antagomirs在临床治疗中的成功应用。

6.4. 基于调控机制的新型生物标志物与前景

miRNA作为稳定存在于血液和外泌体中的小分子核酸,能够敏感地反映基因调控和病理状态的动态变化,因而具有成为早期分子标志物的潜力。在腹主动脉瘤(AAA)中,miRNA的异常表达与细胞外基质的降解、炎症反应及血管重塑密切相关,这使得其有望作为非侵入性监测指标。多个临床前研究表明,循环miRNA (如miR-21、miR-29)水平与AAA的扩张速度相关,因此可作为跟踪病情进展的工具[48]。这种“治疗与诊断结合”的理念,即“theranostics”,为个体化医疗提供了新方向。如果患者血清中的miR-29水平升高,除了考虑使用抗miR-29的Antagomir进行治疗外,还可以以miR-29的水平作为疗效的监测指标[45] [49]。miRNA的高稳定性和可检测性使其成为液体活检的理想候选分子,尤其是通过血浆或血清中miRNA的表达谱监测,有望提供AAA的早期无创诊断以及进展风险评估。在治疗层面,miRNA不仅可以反映病理过程,还可以作为干预的靶点。其表达水平可以作为伴随诊断工具,帮助医生制定个体化的用药方案并监测疗效。未来,通过结合多组学数据和AI分析,建立复合生物标志物面板,有望显著提高AAA的早期诊断率,并提升治疗的精准性。

7. 结论

MMP-9在腹主动脉瘤(AAA)的发病机制中具有关键作用,其异常高表达直接导致细胞外基质(ECM)降解和血管结构破坏。近年来的研究揭示,MMP-9的表达受多层次调控,包括启动子和编码区的单核苷酸多态性(SNP)调控其转录活性、DNA甲基化与组蛋白修饰的表观遗传调控、以及非编码RNA,尤其是miRNA和lncRNA通过翻译后机制调控其蛋白水平。尽管这些研究取得了显著进展,但依然面临整合性不足、因果验证缺乏以及转化路径模糊等挑战。通过引入多组学数据,未来有望实现MMP-9调控网络的精确建模,并开发基于其调控机制的个体化预测工具。此外靶向表观遗传和非编码RNA的干预策略也将成为治疗AAA的新方向。本文综述旨在填补MMP-9调控机制在AAA研究中的系统性总结空白,推动基础机制研究向临床诊疗的转化。

基金项目

大连大学大学生创新创业计划训练项目——创新训练项目,项目编号:X202511258041。

NOTES

*通讯作者。

参考文献

[1] Weintraub, N.L. (2009) Understanding Abdominal Aortic Aneurysm. New England Journal of Medicine, 361, 1114-1116.
https://doi.org/10.1056/nejmcibr0905244
[2] Cowan Jr, J.A., Dimick, J.B., Henke, P.K., et al. (2006) Epidemiology of Aortic Aneurysm Repair in the United States from 1993 to 2003. Annals of the New York Academy of Sciences, 1085, 1-10.
https://doi.org/10.1196/annals.1383.030
[3] Wanhainen, A., Mani, K. and Golledge, J. (2016) Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 236-244.
https://doi.org/10.1161/atvbaha.115.306538
[4] Sakalihasan, N., Delvenne, P., Nusgens, B.V., Limet, R. and Lapière, C.M. (1996) Activated Forms of MMP2 and MMP9 in Abdominal Aortic Aneurysms. Journal of Vascular Surgery, 24, 127-133.
https://doi.org/10.1016/s0741-5214(96)70153-2
[5] Pyo, R., Lee, J.K., Shipley, J.M., Curci, J.A., Mao, D., Ziporin, S.J., et al. (2000) Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms. Journal of Clinical Investigation, 105, 1641-1649.
https://doi.org/10.1172/jci8931
[6] Jones, G.T., Phillips, V.L., Harris, E.L., Rossaak, J.I. and van Rij, A.M. (2003) Functional Matrix Metalloproteinase-9 Polymorphism (C-1562T) Associated with Abdominal Aortic Aneurysm. Journal of Vascular Surgery, 38, 1363-1367.
https://doi.org/10.1016/s0741-5214(03)01027-9
[7] Chicoine, E., Estève, P.O., Robledo, O., Van Themsche, C., Potworowski, E.F. and St-Pierre, Y. (2002) Evidence for the Role of Promoter Methylation in the Regulation of MMP-9 Gene Expression. Biochemical and Biophysical Research Communications, 297, 765-772.
https://doi.org/10.1016/s0006-291x(02)02283-0
[8] Newman, K.M., Ogata, Y., Malon, A.M., Irizarry, E., Gandhi, R.H., Nagase, H., et al. (1994) Identification of Matrix Metalloproteinases 3 (Stromelysin-1) and 9 (Gelatinase B) in Abdominal Aortic Aneurysm. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 14, 1315-1320.
https://doi.org/10.1161/01.atv.14.8.1315
[9] Palombo, D., Maione, M., Cifiello, B.I., Udini, M., Maggio, D. and Lupo, M. (1999) Matrix Metalloproteinases. Their Role in Degenerative Chronic Diseases of Abdominal Aorta. The Journal of Cardiovascular Surgery, 40, 257-260.
[10] Armstrong, P.J., Johanning, J.M., Calton, W.C., Delatore, J.R., Franklin, D.P., Han, D.C., et al. (2002) Differential Gene Expression in Human Abdominal Aorta: Aneurysmal versus Occlusive Disease. Journal of Vascular Surgery, 35, 346-14.
https://doi.org/10.1067/mva.2002.121071
[11] McMillan, W.D., Patterson, B.K., Keen, R.R., Shively, V.P., Cipollone, M. and Pearce, W.H. (1995) In Situ Localization and Quantification of mRNA for 92-kD Type IV Collagenase and Its Inhibitor in Aneurysmal, Occlusive, and Normal Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1139-1144.
https://doi.org/10.1161/01.atv.15.8.1139
[12] Zhang, B., Ye, S., Herrmann, S., Eriksson, P., de Maat, M., Evans, A., et al. (1999) Functional Polymorphism in the Regulatory Region of Gelatinase B Gene in Relation to Severity of Coronary Atherosclerosis. Circulation, 99, 1788-1794.
https://doi.org/10.1161/01.cir.99.14.1788
[13] Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994) Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atherosclerotic Plaques. Journal of Clinical Investigation, 94, 2493-2503.
https://doi.org/10.1172/jci117619
[14] Hovsepian, D.M., Ziporin, S.J., Sakurai, M.K., Lee, J.K., Curci, J.A. and Thompson, R.W. (2000) Elevated Plasma Levels of Matrix Metalloproteinase-9 in Patients with Abdominal Aortic Aneurysms: A Circulating Marker of Degenerative Aneurysm Disease. Journal of Vascular and Interventional Radiology, 11, 1345-1352.
https://doi.org/10.1016/s1051-0443(07)61315-3
[15] Thompson, R.W. and Parks, W.C. (1996) Role of Matrix Metalloproteinases in Abdominal Aortic Aneurysmsa. Annals of the New York Academy of Sciences, 800, 157-174.
https://doi.org/10.1111/j.1749-6632.1996.tb33307.x
[16] Kadoglou, N.P. and Liapis, C.D. (2004) Matrix Metalloproteinases: Contribution to Pathogenesis, Diagnosis, Surveillance and Treatment of Abdominal Aortic Aneurysms. Current Medical Research and Opinion, 20, 419-432.
https://doi.org/10.1185/030079904125003143
[17] Holliday, R. and Pugh, J.E. (1975) DNA Modification Mechanisms and Gene Activity during Development. Science, 187, 226-232.
https://doi.org/10.1126/science.187.4173.226
[18] Van den Bossche, J., Neele, A.E., Hoeksema, M.A. and de Winther, M.P.J. (2014) Macrophage Polarization: The Epigenetic Point of View. Current Opinion in Lipidology, 25, 367-373.
https://doi.org/10.1097/mol.0000000000000109
[19] Lord, J.R., Mashayekhi, F. and Salehi, Z. (2021) How Matrix Metalloproteinase (MMP)-9 (rs3918242) Polymorphism Affects MMP-9 Serum Concentration and Associates with Autism Spectrum Disorders: A Case-Control Study in Iranian Population. Development and Psychopathology, 34, 882-888.
https://doi.org/10.1017/s0954579420002102
[20] Wang, W., Guo, Z., Xie, D., Lin, Z. and Lin, R. (2022) Relationship between MMP-9 Gene Polymorphism and Intracranial Aneurysm. Cellular and Molecular Biology, 68, 14-19.
https://doi.org/10.14715/cmb/2022.68.1.3
[21] Smallwood, L., Allcock, R., van Bockxmeer, F., et al. (2008) Polymorphisms of the MMP-9 Gene and Abdominal Aortic Aneurysm. British Journal of Surgery, 95, 1239-1244.
[22] Crkvenac Gregorek, A., Gornik, K.C., Polancec, D.S. and Dabelic, S. (2016) Association of 1166A>C AT1R,-1562C>T MMP-9, ACE I/D, and CCR5Δ32 Polymorphisms with Abdominal Aortic Aneurysm in Croatian Patients. Genetic Testing and Molecular Biomarkers, 20, 616-623.
[23] Feng, X., Yu, F., Zhou, X., Liu, Z., Liao, D., Huang, Q., et al. (2021) MMP9 rs17576 Is Simultaneously Correlated with Symptomatic Intracranial Atherosclerotic Stenosis and White Matter Hyperintensities in Chinese Population. Cerebrovascular Diseases, 50, 4-11.
https://doi.org/10.1159/000511582
[24] Li, T., Zhang, X., Sang, L., Li, X., Sun, H., Yang, J., et al. (2019) The Interaction Effects between TLR4 and MMP9 Gene Polymorphisms Contribute to Aortic Aneurysm Risk in a Chinese Han Population. BMC Cardiovascular Disorders, 19, Article No. 72.
https://doi.org/10.1186/s12872-019-1049-8
[25] Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N. and Baxter, B.T. (2002) Matrix Metalloproteinases 2 and 9 Work in Concert to Produce Aortic Aneurysms. Journal of Clinical Investigation, 110, 625-632.
https://doi.org/10.1172/jci0215334
[26] Stankovic, M., Kojic, S., Djordjevic, V., Tomovic, A., Nagorni‐Obradovic, L., Petrovic‐Stanojevic, N., et al. (2016) Gene‐environment Interaction between the MMP9 C-1562T Promoter Variant and Cigarette Smoke in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Environmental and Molecular Mutagenesis, 57, 447-454.
https://doi.org/10.1002/em.22025
[27] 许丹丹. MMP-9启动子的DNA甲基化调控小鼠心肌成纤维细胞胶原表达[D]: [硕士学位论文]. 咸宁: 湖北科技学院, 2021.
[28] Duraisamy, A.J., Mishra, M. and Kowluru, R.A. (2017) Crosstalk between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes. Investigative Opthalmology & Visual Science, 58, 6440-6448.
https://doi.org/10.1167/iovs.17-22706
[29] Falzone, L., Salemi, R., Travali, S., Scalisi, A., McCubrey, J.A., Candido, S., et al. (2016) MMP-9 Overexpression Is Associated with Intragenic Hypermethylation of MMP9 Gene in Melanoma. Aging, 8, 933-944.
https://doi.org/10.18632/aging.100951
[30] Yang, S. and Kowluru, R.A. (2015) DNA Methylation of Matrix Metalloproteinase-9 Promoter in Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 56, Article 5200.
[31] Lino Cardenas, C.L., Kessinger, C.W., Cheng, Y., MacDonald, C., MacGillivray, T., Ghoshhajra, B., et al. (2018) An HDAC9-MALAT1-BRG1 Complex Mediates Smooth Muscle Dysfunction in Thoracic Aortic Aneurysm. Nature Communications, 9, Article No. 1009.
https://doi.org/10.1038/s41467-018-03394-7
[32] Kim, K., Shin, Y., Kim, J., Ulmer, T.S. and An, W. (2018) H3K27me1 Is Essential for MMP-9-Dependent H3N-Terminal Tail Proteolysis during Osteoclastogenesis. Epigenetics & Chromatin, 11, Article No. 23.
https://doi.org/10.1186/s13072-018-0193-1
[33] Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L. and Reinberg, D. (2007) SIRT1 Regulates the Histone Methyl-Transferase SUV39H1 during Heterochromatin Formation. Nature, 450, 440-444.
https://doi.org/10.1038/nature06268
[34] Liu, B., Wang, Z., Zhang, L., Ghosh, S., Zheng, H. and Zhou, Z. (2013) Depleting the Methyltransferase Suv39h1 Improves DNA Repair and Extends Lifespan in a Progeria Mouse Model. Nature Communications, 4, Article No. 1868.
https://doi.org/10.1038/ncomms2885
[35] Abdel-Tawab, M.S., Fouad, H., Khalil, D.M., Shaaban, S., Nafady, S., Moawad, H.H., et al. (2023) The Role of miRNA-29b1, MMP-2, MMP-9 mRNAs, and Proteins in Early Diagnosis of HCC. Egyptian Journal of Medical Human Genetics, 24, Article No. 57.
https://doi.org/10.1186/s43042-023-00434-w
[36] Maegdefessel, L., Azuma, J., Toh, R., Merk, D.R., Deng, A., Chin, J.T., et al. (2012) Inhibition of MicroRNA-29b Reduces Murine Abdominal Aortic Aneurysm Development. Journal of Clinical Investigation, 122, 497-506.
https://doi.org/10.1172/jci61598
[37] Maegdefessel, L., Spin, J.M., Raaz, U., Eken, S.M., Toh, R., Azuma, J., et al. (2014) miR-24 Limits Aortic Vascular Inflammation and Murine Abdominal Aneurysm Development. Nature Communications, 5, Article No. 5214.
https://doi.org/10.1038/ncomms6214
[38] Ma, X., Yao, H., Yang, Y., et al. (2018) miR-195 Suppresses Abdominal Aortic Aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt Pathway. International Journal of Molecular Medicine, 41, 2350-2358.
[39] Wang, C., Li, H., Zhou, H., Xu, Y., Li, S., Zhu, M., et al. (2024) Intracranial Aneurysm Circulating Exosome-Derived LncRNA ATP1A1-AS1 Promotes Smooth Muscle Cells Phenotype Switching and Apoptosis. Aging, 16, 8320-8335.
https://doi.org/10.18632/aging.205821
[40] Zhang, Z., Zou, G., Chen, X., et al. (2019) Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Molecular Cell, 42, 218-227.
[41] Huang, Y., Ren, L., Li, J. and Zou, H. (2021) Long Non-Coding RNA PVT1/MicroRNA miR-3127-5p/NCK-Associated Protein 1-Like Axis Participates in the Pathogenesis of Abdominal Aortic Aneurysm by Regulating Vascular Smooth Muscle Cells. Bioengineered, 12, 12583-12596.
https://doi.org/10.1080/21655979.2021.2010384
[42] Chen, X., Wang, S., Hou, W., Zhang, Y., Hou, Y., Tong, H., et al. (2024) Decellularized Adipose Matrix Hydrogel-Based in Situ Delivery of Antagomir-150-5p for Rat Abdominal Aortic Aneurysm Therapy. Materials Today Bio, 29, Article 101350.
https://doi.org/10.1016/j.mtbio.2024.101350
[43] Golombek, S., Doll, I., Kaufmann, L., Lescan, M., Schlensak, C. and Avci-Adali, M. (2024) A Novel Strategy for the Treatment of Aneurysms: Inhibition of MMP-9 Activity through the Delivery of TIMP-1 Encoding Synthetic mRNA into Arteries. International Journal of Molecular Sciences, 25, Article 6599.
https://doi.org/10.3390/ijms25126599
[44] Chen, J., Hu, L. and Liu, Z. (2024) Medical Treatments for Abdominal Aortic Aneurysm: An Overview of Clinical Trials. Expert Opinion on Investigational Drugs, 33, 979-992.
https://doi.org/10.1080/13543784.2024.2377747
[45] Henderson, J.M., Farina, F.M. and Santovito, D. (2024) MicroRNAs and Cardiovascular Diseases. In: Epigenetics and Human Health, Springer, 241-283.
https://doi.org/10.1007/978-3-031-64788-8_9
[46] Klimi, E., Bakker, W.A.M. and Brown, S.D. (2025) Non-Coding RNAs to Treat Vascular Smooth Muscle Cell Dysfunction. British Journal of Pharmacology, 182, 552-569.
[47] Gathier, W.A. (2019) Advanced Therapeutic Strategies for Ischemic Heart Failure. Dissertation, Utrecht University.
[48] Bronze-da-Rocha, E. and Santos-Silva, A. (2018) Neutrophil Elastase Inhibitors and Chronic Kidney Disease. International Journal of Biological Sciences, 14, 1343-1360.
https://doi.org/10.7150/ijbs.26111
[49] Sopić, M., Vladimirov, S., Munjas, J., Mitić, T., Hall, I.F., Jusic, A., et al. (2024) Targeting Noncoding RNAs to Treat Atherosclerosis. British Journal of Pharmacology, 182, 220-245.
https://doi.org/10.1111/bph.16412