[1]
|
Weintraub, N.L. (2009) Understanding Abdominal Aortic Aneurysm. New England Journal of Medicine, 361, 1114-1116. https://doi.org/10.1056/nejmcibr0905244
|
[2]
|
Cowan Jr, J.A., Dimick, J.B., Henke, P.K., et al. (2006) Epidemiology of Aortic Aneurysm Repair in the United States from 1993 to 2003. Annals of the New York Academy of Sciences, 1085, 1-10. https://doi.org/10.1196/annals.1383.030
|
[3]
|
Wanhainen, A., Mani, K. and Golledge, J. (2016) Surrogate Markers of Abdominal Aortic Aneurysm Progression. Arteriosclerosis, Thrombosis, and Vascular Biology, 36, 236-244. https://doi.org/10.1161/atvbaha.115.306538
|
[4]
|
Sakalihasan, N., Delvenne, P., Nusgens, B.V., Limet, R. and Lapière, C.M. (1996) Activated Forms of MMP2 and MMP9 in Abdominal Aortic Aneurysms. Journal of Vascular Surgery, 24, 127-133. https://doi.org/10.1016/s0741-5214(96)70153-2
|
[5]
|
Pyo, R., Lee, J.K., Shipley, J.M., Curci, J.A., Mao, D., Ziporin, S.J., et al. (2000) Targeted Gene Disruption of Matrix Metalloproteinase-9 (Gelatinase B) Suppresses Development of Experimental Abdominal Aortic Aneurysms. Journal of Clinical Investigation, 105, 1641-1649. https://doi.org/10.1172/jci8931
|
[6]
|
Jones, G.T., Phillips, V.L., Harris, E.L., Rossaak, J.I. and van Rij, A.M. (2003) Functional Matrix Metalloproteinase-9 Polymorphism (C-1562T) Associated with Abdominal Aortic Aneurysm. Journal of Vascular Surgery, 38, 1363-1367. https://doi.org/10.1016/s0741-5214(03)01027-9
|
[7]
|
Chicoine, E., Estève, P.O., Robledo, O., Van Themsche, C., Potworowski, E.F. and St-Pierre, Y. (2002) Evidence for the Role of Promoter Methylation in the Regulation of MMP-9 Gene Expression. Biochemical and Biophysical Research Communications, 297, 765-772. https://doi.org/10.1016/s0006-291x(02)02283-0
|
[8]
|
Newman, K.M., Ogata, Y., Malon, A.M., Irizarry, E., Gandhi, R.H., Nagase, H., et al. (1994) Identification of Matrix Metalloproteinases 3 (Stromelysin-1) and 9 (Gelatinase B) in Abdominal Aortic Aneurysm. Arteriosclerosis and Thrombosis: A Journal of Vascular Biology, 14, 1315-1320. https://doi.org/10.1161/01.atv.14.8.1315
|
[9]
|
Palombo, D., Maione, M., Cifiello, B.I., Udini, M., Maggio, D. and Lupo, M. (1999) Matrix Metalloproteinases. Their Role in Degenerative Chronic Diseases of Abdominal Aorta. The Journal of Cardiovascular Surgery, 40, 257-260.
|
[10]
|
Armstrong, P.J., Johanning, J.M., Calton, W.C., Delatore, J.R., Franklin, D.P., Han, D.C., et al. (2002) Differential Gene Expression in Human Abdominal Aorta: Aneurysmal versus Occlusive Disease. Journal of Vascular Surgery, 35, 346-14. https://doi.org/10.1067/mva.2002.121071
|
[11]
|
McMillan, W.D., Patterson, B.K., Keen, R.R., Shively, V.P., Cipollone, M. and Pearce, W.H. (1995) In Situ Localization and Quantification of mRNA for 92-kD Type IV Collagenase and Its Inhibitor in Aneurysmal, Occlusive, and Normal Aorta. Arteriosclerosis, Thrombosis, and Vascular Biology, 15, 1139-1144. https://doi.org/10.1161/01.atv.15.8.1139
|
[12]
|
Zhang, B., Ye, S., Herrmann, S., Eriksson, P., de Maat, M., Evans, A., et al. (1999) Functional Polymorphism in the Regulatory Region of Gelatinase B Gene in Relation to Severity of Coronary Atherosclerosis. Circulation, 99, 1788-1794. https://doi.org/10.1161/01.cir.99.14.1788
|
[13]
|
Galis, Z.S., Sukhova, G.K., Lark, M.W. and Libby, P. (1994) Increased Expression of Matrix Metalloproteinases and Matrix Degrading Activity in Vulnerable Regions of Human Atherosclerotic Plaques. Journal of Clinical Investigation, 94, 2493-2503. https://doi.org/10.1172/jci117619
|
[14]
|
Hovsepian, D.M., Ziporin, S.J., Sakurai, M.K., Lee, J.K., Curci, J.A. and Thompson, R.W. (2000) Elevated Plasma Levels of Matrix Metalloproteinase-9 in Patients with Abdominal Aortic Aneurysms: A Circulating Marker of Degenerative Aneurysm Disease. Journal of Vascular and Interventional Radiology, 11, 1345-1352. https://doi.org/10.1016/s1051-0443(07)61315-3
|
[15]
|
Thompson, R.W. and Parks, W.C. (1996) Role of Matrix Metalloproteinases in Abdominal Aortic Aneurysmsa. Annals of the New York Academy of Sciences, 800, 157-174. https://doi.org/10.1111/j.1749-6632.1996.tb33307.x
|
[16]
|
Kadoglou, N.P. and Liapis, C.D. (2004) Matrix Metalloproteinases: Contribution to Pathogenesis, Diagnosis, Surveillance and Treatment of Abdominal Aortic Aneurysms. Current Medical Research and Opinion, 20, 419-432. https://doi.org/10.1185/030079904125003143
|
[17]
|
Holliday, R. and Pugh, J.E. (1975) DNA Modification Mechanisms and Gene Activity during Development. Science, 187, 226-232. https://doi.org/10.1126/science.187.4173.226
|
[18]
|
Van den Bossche, J., Neele, A.E., Hoeksema, M.A. and de Winther, M.P.J. (2014) Macrophage Polarization: The Epigenetic Point of View. Current Opinion in Lipidology, 25, 367-373. https://doi.org/10.1097/mol.0000000000000109
|
[19]
|
Lord, J.R., Mashayekhi, F. and Salehi, Z. (2021) How Matrix Metalloproteinase (MMP)-9 (rs3918242) Polymorphism Affects MMP-9 Serum Concentration and Associates with Autism Spectrum Disorders: A Case-Control Study in Iranian Population. Development and Psychopathology, 34, 882-888. https://doi.org/10.1017/s0954579420002102
|
[20]
|
Wang, W., Guo, Z., Xie, D., Lin, Z. and Lin, R. (2022) Relationship between MMP-9 Gene Polymorphism and Intracranial Aneurysm. Cellular and Molecular Biology, 68, 14-19. https://doi.org/10.14715/cmb/2022.68.1.3
|
[21]
|
Smallwood, L., Allcock, R., van Bockxmeer, F., et al. (2008) Polymorphisms of the MMP-9 Gene and Abdominal Aortic Aneurysm. British Journal of Surgery, 95, 1239-1244.
|
[22]
|
Crkvenac Gregorek, A., Gornik, K.C., Polancec, D.S. and Dabelic, S. (2016) Association of 1166A>C AT1R,-1562C>T MMP-9, ACE I/D, and CCR5Δ32 Polymorphisms with Abdominal Aortic Aneurysm in Croatian Patients. Genetic Testing and Molecular Biomarkers, 20, 616-623.
|
[23]
|
Feng, X., Yu, F., Zhou, X., Liu, Z., Liao, D., Huang, Q., et al. (2021) MMP9 rs17576 Is Simultaneously Correlated with Symptomatic Intracranial Atherosclerotic Stenosis and White Matter Hyperintensities in Chinese Population. Cerebrovascular Diseases, 50, 4-11. https://doi.org/10.1159/000511582
|
[24]
|
Li, T., Zhang, X., Sang, L., Li, X., Sun, H., Yang, J., et al. (2019) The Interaction Effects between TLR4 and MMP9 Gene Polymorphisms Contribute to Aortic Aneurysm Risk in a Chinese Han Population. BMC Cardiovascular Disorders, 19, Article No. 72. https://doi.org/10.1186/s12872-019-1049-8
|
[25]
|
Longo, G.M., Xiong, W., Greiner, T.C., Zhao, Y., Fiotti, N. and Baxter, B.T. (2002) Matrix Metalloproteinases 2 and 9 Work in Concert to Produce Aortic Aneurysms. Journal of Clinical Investigation, 110, 625-632. https://doi.org/10.1172/jci0215334
|
[26]
|
Stankovic, M., Kojic, S., Djordjevic, V., Tomovic, A., Nagorni‐Obradovic, L., Petrovic‐Stanojevic, N., et al. (2016) Gene‐environment Interaction between the MMP9 C-1562T Promoter Variant and Cigarette Smoke in the Pathogenesis of Chronic Obstructive Pulmonary Disease. Environmental and Molecular Mutagenesis, 57, 447-454. https://doi.org/10.1002/em.22025
|
[27]
|
许丹丹. MMP-9启动子的DNA甲基化调控小鼠心肌成纤维细胞胶原表达[D]: [硕士学位论文]. 咸宁: 湖北科技学院, 2021.
|
[28]
|
Duraisamy, A.J., Mishra, M. and Kowluru, R.A. (2017) Crosstalk between Histone and DNA Methylation in Regulation of Retinal Matrix Metalloproteinase-9 in Diabetes. Investigative Opthalmology & Visual Science, 58, 6440-6448. https://doi.org/10.1167/iovs.17-22706
|
[29]
|
Falzone, L., Salemi, R., Travali, S., Scalisi, A., McCubrey, J.A., Candido, S., et al. (2016) MMP-9 Overexpression Is Associated with Intragenic Hypermethylation of MMP9 Gene in Melanoma. Aging, 8, 933-944. https://doi.org/10.18632/aging.100951
|
[30]
|
Yang, S. and Kowluru, R.A. (2015) DNA Methylation of Matrix Metalloproteinase-9 Promoter in Diabetic Retinopathy. Investigative Ophthalmology & Visual Science, 56, Article 5200.
|
[31]
|
Lino Cardenas, C.L., Kessinger, C.W., Cheng, Y., MacDonald, C., MacGillivray, T., Ghoshhajra, B., et al. (2018) An HDAC9-MALAT1-BRG1 Complex Mediates Smooth Muscle Dysfunction in Thoracic Aortic Aneurysm. Nature Communications, 9, Article No. 1009. https://doi.org/10.1038/s41467-018-03394-7
|
[32]
|
Kim, K., Shin, Y., Kim, J., Ulmer, T.S. and An, W. (2018) H3K27me1 Is Essential for MMP-9-Dependent H3N-Terminal Tail Proteolysis during Osteoclastogenesis. Epigenetics & Chromatin, 11, Article No. 23. https://doi.org/10.1186/s13072-018-0193-1
|
[33]
|
Vaquero, A., Scher, M., Erdjument-Bromage, H., Tempst, P., Serrano, L. and Reinberg, D. (2007) SIRT1 Regulates the Histone Methyl-Transferase SUV39H1 during Heterochromatin Formation. Nature, 450, 440-444. https://doi.org/10.1038/nature06268
|
[34]
|
Liu, B., Wang, Z., Zhang, L., Ghosh, S., Zheng, H. and Zhou, Z. (2013) Depleting the Methyltransferase Suv39h1 Improves DNA Repair and Extends Lifespan in a Progeria Mouse Model. Nature Communications, 4, Article No. 1868. https://doi.org/10.1038/ncomms2885
|
[35]
|
Abdel-Tawab, M.S., Fouad, H., Khalil, D.M., Shaaban, S., Nafady, S., Moawad, H.H., et al. (2023) The Role of miRNA-29b1, MMP-2, MMP-9 mRNAs, and Proteins in Early Diagnosis of HCC. Egyptian Journal of Medical Human Genetics, 24, Article No. 57. https://doi.org/10.1186/s43042-023-00434-w
|
[36]
|
Maegdefessel, L., Azuma, J., Toh, R., Merk, D.R., Deng, A., Chin, J.T., et al. (2012) Inhibition of MicroRNA-29b Reduces Murine Abdominal Aortic Aneurysm Development. Journal of Clinical Investigation, 122, 497-506. https://doi.org/10.1172/jci61598
|
[37]
|
Maegdefessel, L., Spin, J.M., Raaz, U., Eken, S.M., Toh, R., Azuma, J., et al. (2014) miR-24 Limits Aortic Vascular Inflammation and Murine Abdominal Aneurysm Development. Nature Communications, 5, Article No. 5214. https://doi.org/10.1038/ncomms6214
|
[38]
|
Ma, X., Yao, H., Yang, Y., et al. (2018) miR-195 Suppresses Abdominal Aortic Aneurysm through the TNF-α/NF-κB and VEGF/PI3K/Akt Pathway. International Journal of Molecular Medicine, 41, 2350-2358.
|
[39]
|
Wang, C., Li, H., Zhou, H., Xu, Y., Li, S., Zhu, M., et al. (2024) Intracranial Aneurysm Circulating Exosome-Derived LncRNA ATP1A1-AS1 Promotes Smooth Muscle Cells Phenotype Switching and Apoptosis. Aging, 16, 8320-8335. https://doi.org/10.18632/aging.205821
|
[40]
|
Zhang, Z., Zou, G., Chen, X., et al. (2019) Knockdown of lncRNA PVT1 Inhibits Vascular Smooth Muscle Cell Apoptosis and Extracellular Matrix Disruption in a Murine Abdominal Aortic Aneurysm Model. Molecular Cell, 42, 218-227.
|
[41]
|
Huang, Y., Ren, L., Li, J. and Zou, H. (2021) Long Non-Coding RNA PVT1/MicroRNA miR-3127-5p/NCK-Associated Protein 1-Like Axis Participates in the Pathogenesis of Abdominal Aortic Aneurysm by Regulating Vascular Smooth Muscle Cells. Bioengineered, 12, 12583-12596. https://doi.org/10.1080/21655979.2021.2010384
|
[42]
|
Chen, X., Wang, S., Hou, W., Zhang, Y., Hou, Y., Tong, H., et al. (2024) Decellularized Adipose Matrix Hydrogel-Based in Situ Delivery of Antagomir-150-5p for Rat Abdominal Aortic Aneurysm Therapy. Materials Today Bio, 29, Article 101350. https://doi.org/10.1016/j.mtbio.2024.101350
|
[43]
|
Golombek, S., Doll, I., Kaufmann, L., Lescan, M., Schlensak, C. and Avci-Adali, M. (2024) A Novel Strategy for the Treatment of Aneurysms: Inhibition of MMP-9 Activity through the Delivery of TIMP-1 Encoding Synthetic mRNA into Arteries. International Journal of Molecular Sciences, 25, Article 6599. https://doi.org/10.3390/ijms25126599
|
[44]
|
Chen, J., Hu, L. and Liu, Z. (2024) Medical Treatments for Abdominal Aortic Aneurysm: An Overview of Clinical Trials. Expert Opinion on Investigational Drugs, 33, 979-992. https://doi.org/10.1080/13543784.2024.2377747
|
[45]
|
Henderson, J.M., Farina, F.M. and Santovito, D. (2024) MicroRNAs and Cardiovascular Diseases. In: Epigenetics and Human Health, Springer, 241-283. https://doi.org/10.1007/978-3-031-64788-8_9
|
[46]
|
Klimi, E., Bakker, W.A.M. and Brown, S.D. (2025) Non-Coding RNAs to Treat Vascular Smooth Muscle Cell Dysfunction. British Journal of Pharmacology, 182, 552-569.
|
[47]
|
Gathier, W.A. (2019) Advanced Therapeutic Strategies for Ischemic Heart Failure. Dissertation, Utrecht University.
|
[48]
|
Bronze-da-Rocha, E. and Santos-Silva, A. (2018) Neutrophil Elastase Inhibitors and Chronic Kidney Disease. International Journal of Biological Sciences, 14, 1343-1360. https://doi.org/10.7150/ijbs.26111
|
[49]
|
Sopić, M., Vladimirov, S., Munjas, J., Mitić, T., Hall, I.F., Jusic, A., et al. (2024) Targeting Noncoding RNAs to Treat Atherosclerosis. British Journal of Pharmacology, 182, 220-245. https://doi.org/10.1111/bph.16412
|