基于NF-κB信号通路探讨中医药干预甲状腺癌的研究进展
Research Progress on Traditional Chinese Medicine Intervention in Thyroid Cancer Based on the NF-κB Signaling Pathway
DOI: 10.12677/acm.2025.1592606, PDF, HTML, XML,   
作者: 蔡宇涵:黑龙江中医药大学研究生院,黑龙江 哈尔滨;杜丽坤*:黑龙江中医药大学附属第一医院内分泌二科,黑龙江 哈尔滨
关键词: 核转录因子-κB信号通路甲状腺癌中医药研究进展Nuclear Factor-Kappa B (NF-κB) Signal Pathway Thyroid Cancer Traditional Chinese Medicine (TCM) Research Progress
摘要: 甲状腺癌(TC)发病率持续攀升,目前手术等常规疗法存在并发症多、部分病理类型预后差等局限,亟需更有效的干预策略。中医药凭借其多靶点、多层次调控及副作用小的独特优势,在增强疗效、减轻不良反应方面展现出重要潜力,已成为TC综合防治体系的关键组成部分。大量研究表明,中医药可靶向调控核转录因子-κB (NF-κB)信号通路。该通路通过驱动甲状腺癌细胞异常增殖、抑制凋亡、促进侵袭转移及诱导免疫微环境失衡,成为TC恶性进展的核心枢纽,而中医药对此通路的干预在治疗中发挥关键作用。本文旨在系统性整合现有研究进展,探讨NF-κB通路在TC中的作用及中医药靶向干预的分子机制,以期为未来TC的临床治疗和药物开发提供理论依据。
Abstract: The incidence of thyroid cancer (TC) continues to rise. Current conventional therapies such as surgery have limitations, including a high rate of complications and poor prognosis for certain pathological types, necessitating more effective intervention strategies. Traditional Chinese Medicine (TCM), with its unique advantages of multi-target, multi-level regulatory characteristics and minimal side effects, has demonstrated significant potential in enhancing therapeutic efficacy and reducing adverse reactions. It has become a key component of the comprehensive management framework for TC. Numerous studies indicate that TCM can specifically target and regulate the nuclear factor-kappa B (NF-κB) signaling pathway. This pathway acts as a central hub driving the malignant progression of TC by promoting abnormal proliferation, inhibiting apoptosis, facilitating invasion and metastasis of thyroid cancer cells, and inducing immune microenvironment imbalance. The intervention of TCM in this pathway plays a crucial role in treatment. This review aims to systematically integrate existing research progress, exploring the role of the NF-κB pathway in TC and the molecular mechanisms underlying TCM’s targeted intervention, in order to provide a theoretical basis for future clinical treatment and drug development for TC.
文章引用:蔡宇涵, 杜丽坤. 基于NF-κB信号通路探讨中医药干预甲状腺癌的研究进展[J]. 临床医学进展, 2025, 15(9): 1161-1170. https://doi.org/10.12677/acm.2025.1592606

1. 引言

甲状腺癌(Thyroid Cancer, TC)作为一种恶性肿瘤,其发病率呈现出持续上升的趋势,已逐渐成为人们广泛关注的高发病率癌症类型之一[1],其分子机制尚未完全明确。甲状腺癌根据病理类型可分为乳头状癌(PTC)、滤泡状腺癌(FTC)、未分化癌(ATC)和髓样癌(MTC),其中PTC最为常见,ATC预后最差,早期明确肿瘤性质与分型并实施规范化治疗,对改善患者预后至关重要[2]。目前,手术仍是TC的首选治疗方案,但可能引发咳嗽、疼痛、咽部不适、声带麻痹及失眠等并发症,严重影响患者预后[3]。核转录因子κB (nuclear factor-kappa B, NF-κB)因其能够调控甲状腺肿瘤细胞的增殖及抗凋亡信号通路,在甲状腺癌中发挥重要作用。大量研究证实中药干预甲状腺癌优势显著,其多靶点、多途径的特点对于肿瘤细胞的异质性和多样性更具有针对性[4]。随着中医药防治肿瘤研究的深入,中药在杀死癌细胞的同时还能改善患者生活质量的效果日益凸显,因此中医药应成为TC防治体系的重要组成部分。

我国古代并无“甲状腺癌”这一病名,但根据其临床症状和体征,中医多将甲状腺疾病归属于“瘿类”病的范畴。《三因极–病证方论》根据瘿病的形态特征,将其分为五类,其中“年数较远,浸大浸长,坚硬不可移者,名曰石瘿”的描述,与现代医学中的甲状腺癌颇为相近。其病因病机多由情志内伤致使气血运行失常,导致血瘀、痰凝、气滞,相互搏结于颈部而成癌,如《诸病源候论》中提到:“瘿者由忧恚气结所生……而当颈下也”,《济生方》有“夫瘿瘤者,多由喜怒不节,忧思过度[5]。”《圣济总录·诸瘿统论》有“又山居多瘿颈,处险而瘿也”,其中也强调了饮食异常与特殊地域也均可诱发疾病[6]。其病机呈现“气滞、痰凝、血瘀、毒结”的渐进演变过程,与NF-κB介导的“炎症–癌变”转化相关。鉴于目前尚缺乏系统梳理中医药通过靶向NF-κB信号通路治疗TC作用机制的综述性研究,本文旨在整合国内外相关文献,探讨NF-κB通路在TC发生发展中的角色,并重点解析中医药干预该通路的关键机制,以期为中医药防治TC的理论构建与临床实践提供新视角,进而助力其在临床防治中的应用拓展。

2. NF-κB通路

2.1. NF-κB通路的正常生理功能

NF-κB是由一系列转录因子构成的蛋白质复合物,其中包括5个成员:NF-κB1 (p50/p105)、NF-κB2 (p52/p100)、RelA (p65)、c-Rel和RelB [7]。NF-κB的活化包括经典途径和非经典途径。在经典途径中,NF-κB二聚体(如p50/RelA)通过与独立的NF-κB抑制蛋白(inhibitor of NF-κB, IκB)分子(通常是IκBα)相互作用,从而在细胞质中维持非活化状态[8]。当细胞受到上游信号的刺激,包括炎性细胞因子如白介素-1 (IL-1)、肿瘤坏死因子-α (TNF-α)等,致使配体与细胞表面相应的受体结合,会招募胞质内的适配蛋白,如肿瘤坏死因子受体相关因子(tumor necrosis factor receptor-associated factor, TRAFs)和受体相互作用蛋白(receptor-interacting protein, RIP),至受体的胞内区域。这些适配蛋白能够将由αβ催化亚基以及两个NF-κB必需调节因子(Nuclear Factor-kappa B Essential Modulator, NEMO)组成的κB抑制因子激酶(Inhibitor of Kappa B Kinase,IKK)复合物直接募集到胞质适配蛋白上[9]。分子在受体处的聚集激活了IKK复合物。随后,IKK磷酸化IκBα上的两个丝氨酸残基,促使其发生K48泛素化并经蛋白酶体降解。NF-κB二聚体得以释放并易位至细胞核,启动靶基因转录[10]。非经典途径主要参与B淋巴细胞和T淋巴细胞器官发育过程中p100/RelB复合物的激活[11]。该通路与典型通路存在差异,仅特定受体信号(如淋巴毒素β、B细胞激活因子、CD40等)可激活此通路[12],且其通过含两个IKKα亚基(而非NEMO)的IKK复合物推进。在非典型通路中,受体结合后会激活NF-κB诱导激酶(NF-κB-inducing kinase, NIK),NIK随后磷酸化并激活IKKα复合物,该复合物进而介导p100磷酸化其后发生泛素化,推动蛋白酶体降解,从而释放出p52/RelB复合物,易位到细胞核充当转录因子,并诱导特定基因转录[13]。非经典途径的激活过程相较于经典途径中迅速激活NF-κB依赖性基因而言,要缓慢且持续得多。

2.2. NF-κB通路在TC中的异常激活及作用

NF-κB是NF-κB/Rel蛋白家族成员之一,正常情况下与P65、P50及抑制因子IκB-α结合形成无活性复合物存在于胞质。细胞受刺激时,IκB-α解离,NF-κB活化入核,促进基因转录,调控细胞增殖与凋亡。然而,其活性过度增强可能促进细胞过度增殖,导致恶性肿瘤发生发展[14]。NF-κB p65蛋白通过其C端结构域的夹心结构形成二聚体,并通过信号转导通路在细胞凋亡调控、炎症介质释放以及肿瘤发生发展等关键生理病理过程中发挥核心作用。在TC中,NF-κB p65表达显著升高,能抑制肿瘤细胞凋亡、促进增殖,并上调促肿瘤基因表达,驱动肿瘤进展和转移[15]。致癌转录因子NF-κB通过抑制肿瘤细胞线粒体凋亡通路、刺激内皮细胞增殖及维持促血管生成微环境促进肿瘤发展,其与MAPK通路的协同活化可诱导增殖、血管生成和转移相关癌基因表达,共同驱动肿瘤形成与进展[16] [17]。死亡相关蛋白激酶2 (DAPK2)是一种肿瘤抑制因子,然而其在TC中的异常高表达,通过诱导自噬介导I-κBα降解,进而激活NF-κB信号通路,驱动肿瘤增殖与凋亡抵抗[18] [19]。一项研究[20]证明mdivi-1以Drp1非依赖方式抑制TC细胞恶性进展,其通过下调p65/IκBα磷酸化,阻断NF-κB活化与核转位,进而上调E-cadherin并下调N-cadherin,逆转上皮细胞向PTC细胞上皮–间充质转化(EMT),并抑制侵袭。

3. NF-κB通路在TC中的作用机制

3.1. NF-κB通路参与TC的免疫炎症与肿瘤微环境

肿瘤微环境(tumor microenvironment, TME)在TC的发生和发展中起着关键作用[21]。在TC中,TME通过劫持免疫细胞分泌炎性因子和趋化因子,将免疫杀伤逆转为促癌引擎,推动肿瘤增殖、转移和去分化,并强化免疫抑制,驱动恶性进展[22]。TC和甲状腺自身免疫经常共存,它们共同刺激炎症并增加NF-κB等转录因子的表达,活化的NF-κB进一步诱导TME中趋化因子、细胞因子和其他分子的分泌[23]。越来越多的研究表明,NF-κB通过多重机制重塑TC免疫微环境,驱动肿瘤进展[24]。在TC (尤其侵袭性ATC及晚期PTC)中,异常激活的NF-κB直接诱导促癌基因NGAL的过表达,其通过上调趋化因子招募中性粒细胞等白细胞浸润肿瘤,同时下调FAS/CD95抑制癌细胞凋亡并增强MMP-9酶活性促进转移,进而协同构建促癌性炎症微环境[25]-[27]。Toll样受体4(TLR4)是天然免疫应答的重要激活因子,也是NF-κB通路的上游刺激信号,在免疫炎症与肿瘤发生发展中起着关键作用[28]。TLR4识别病原信号后,经MyD88依赖途径和TRIF依赖途径协同诱导NF-κB核转位,活化的NF-κB入核后触发TNF-α、IL-6、IL-12及iNOS等促炎介质表达[29]

3.2. NF-κB通路多方面调控TC的凋亡抑制、增殖、周期、侵袭与转移

NF-κB是抑制细胞凋亡的关键调节因子,其通路被激活后,释放κB转录因子进入细胞核,介导许多抗凋亡效应蛋白的转录,包括B淋巴细胞瘤-2基因(Bcl-2)、肿瘤坏死因子受体相关因子家族(TRAFs)、凋亡抑制因子家族(IAPs)等,从而抑制TC细胞的凋亡,且在甲状腺滤泡状癌(FTC)中,PPARγ的失活可通过激活NF-κB来抑制凋亡相关基因的表达[30]。抑制NF-κB可阻滞细胞周期进程,特别是S期向G2/M期转换,显著抑制ATC细胞增殖,同时NF-κB抑制可协同TNFα促进凋亡,此效应与JNK通路持续激活相关[31]。此外,NF-κB的组成性激活选择性上调MMP-9转录水平,该调控在TC细胞侵袭中起关键作用[32]。Micro-RNA (miRNA)参与调控包括癌症在内的多种生物过程,部分miRNA的过表达可通过降低肿瘤抑制基因的表达并促进肿瘤发生,或下调癌基因发挥抑癌作用[33]。研究发现[34] [35],miR-146b在PTC细胞中高表达,并与NF-κB通路相关联,其过表达可促进PTC细胞的迁移、侵袭以及EMT的转变。实验证实[36],特别是miR-146b的亚型miR-146b-3p可通过抑制靶基因NF2促进PTC的侵袭和转移。

4. 中药单体成分

大黄素是从大黄、虎杖等植物根及根茎中提取的天然蒽醌衍生物,具有抗氧化、抗炎、抗菌及抗肿瘤等多种药理活性[37]-[40]。研究表明[41],大黄素可通过抑制NF-κB信号通路发挥抗甲状腺乳头状癌(PTC)作用。其通过下调TLR4表达,进而协同抑制其下游信号MyD88依赖途径与非依赖途径的传导,最终阻断了NF-κB核心组分——包括p65、p50、c-Rel及其磷酸化形式——的激活与核转位。NF-κB通路受抑导致其调控的促增殖因子及抗凋亡蛋白Bcl-2表达下调,同时促凋亡蛋白Bax表达上调,从而协同抑制PTC细胞增殖、诱导细胞凋亡,逆转其恶性表型。

雷公藤为卫矛科雷公藤属雷公藤的干燥根或根的木质部,具有祛风除湿、舒筋活络、消肿止痛等功效。其活性成分雷公藤内酯(TPL)作为二萜类三环氧化物,具有显著抗肿瘤作用[42]。在ATC模型中,TPL通过双阶段抑制NF-κB通路:早期阻断p65亚基与共激活因子p300/CBP的结合,晚期下调p65蛋白表达,直接抑制NF-κB转录活性,从而抑制人ATC细胞系(TA-K)的生长、血管生成和侵袭[43]。另一项研究[44]通过网络药理学分析锁定NF-κB通路为TPL抗TC的关键靶点,并经由分子对接及体外实验证实TPL以抑制p65转录活性为枢纽,下调促炎因子表达阻断癌进展;协同c-JUN介导的MAPK通路抑制及p53依赖性凋亡,多途径抑制癌细胞增殖。TPL增强BIIB021对NF-κB通路的抑制,并与BIIB021协同抑制PI3K/Akt/mTOR通路及下调凋亡抑制蛋白(IAPs)和存活素(survivin),从而在TC中发挥协同抗肿瘤作用。

姜黄素是从姜黄等姜科植物根茎中提取的二酮类化合物,具有显著抗肿瘤活性且对正常细胞无明显毒性[45]。Esposito等[46]研究证实其对TC的治疗潜力。其核心机制是通过调控关键miRNA显著抑制NF-κB活性,该作用诱导未分化癌及滤泡状癌细胞发生凋亡与G2/M期阻滞,并通过逆转NF-κB介导的放化疗耐药性,展现晚期TC治疗前景[47]

安石榴苷是提取自石榴果皮的多酚类物质,具有显著的抑制癌症的作用[48]。在BCPAP细胞中,其通过磷酸化IκBα并促进其降解,解除对p65/p50复合物的抑制;同时诱导p65磷酸化及核转位,激活NF-κB转录活性。该通路正调控SASP因子IL-6和IL-1β表达,介导细胞衰老与G0/G1期阻滞,最终导致癌细胞死亡[49] [50]

黄芪注射液具有扶正固本、补肺益气等功效,在肿瘤的协同治疗中有着确切的作用[51]。其通过剂量依赖性抑制NF-κB p65蛋白表达及转录活性,下调抗凋亡蛋白Bcl-2表达,同时上调促凋亡蛋白Bax与Caspase-3,激活Caspase依赖性凋亡通路,最终显著抑制TC肿瘤增殖与生长[52]

夏枯草味辛、苦,性寒,归肝、胆经,具有清肝明目、消肿散结等功效。其通过下调B-CPAP细胞中异常高表达的miR-146b-3p,解除该miRNA对NF2基因的抑制作用,恢复NF2蛋白表达,NF2通过抑制NF-κB信号通路,阻断Bcl-2等抗凋亡蛋白的上调,从而显著抑制TC细胞的侵袭迁移能力[53] [54]

β-榄香烯是从传统中药莪术中提取的抗肿瘤药物的主要活性成分,其对人PTC细胞系TPC-1具有显著的抑制作用[55]β-榄香烯通过阻断131I诱导的NF-κB通路激活、抑制IκBα/p65磷酸化,下调CyclinD1、Bcl-2及MMP-9等靶蛋白表达,显著增强131I对癌细胞TPC-1增殖迁移的抑制作用及其促凋亡效应,并逆转放疗抵抗[56]

白藜芦醇已被证明具有抗肿瘤活性,为探讨其对TC的影响,XU等[57]建立致癌物质诱导的TC大鼠模型,经研究发现白藜芦醇显著抑制NF-κB/p65活化,阻止IκB-α蛋白降解,进而下调NF-κB靶基因COX-2与IL-6的表达,证实了该机制有效阻断了化学致癌物引发的NF-κB介导的炎症级联反应,抑制慢性炎症微环境驱动的甲状腺恶性转化。

枳实与枳壳作为理气类中药,传统医学用于痰瘀结聚之症瘕,现代药理研究表明其抗炎及抗肿瘤活性显著。ZHAO等[58]在探索枳实和枳壳在炎症性疾病中的应用时发现,枳实通过抑制上游激酶MEKK3/ASK1-p38阻断NF-κB核转位,下调IL-6、IL-1β及TNF-α等促癌因子表达;枳壳则经PPARγ激活抑制AKT/IKK信号,维持IκBα稳定性以阻遏NF-κB活化,二者协同终止炎症级联反应,抑制TC突变进程。

桔梗素D是桔梗中的主要活性物质之一,具有抗炎、抗肿瘤等活性[59]。研究证明,其通过抑制NF-κB通路活化,协同增强G0/G1期细胞周期阻滞并显著激活线粒体凋亡途径,同时下调PD-L1表达以增敏免疫检查点抑制剂的抗肿瘤效应,从而阻遏TC变进程[60]

田蓟苷是香青兰中的主要黄酮类活性成分,最近的研究表明,其在肿瘤治疗中具有治疗潜力[61] [62]。LIU等[63]通过实验证明其抗TC机制是通过阻断TLR4/MD-2复合物形成抑制NF-κB通路活化,显著阻遏TC细胞增殖、侵袭及肿瘤免疫微环境失衡。

苦参醇O是一种苦参提取物,具有显著的抗癌特性。LI等[64]通过多组学法分析发现该成分可能通过靶向抑制GALNT7表达阻断NF-κB轴活化,进而调控肿瘤免疫微环境中M2型巨噬细胞极化与胞葬作用,阻遏PTC的炎症–癌转化进程,抑制肿瘤进展,提示其作为免疫调节剂的治疗前景。

二氢丹参酮I已被证明具有抗肿瘤活性,Allegri等[65]通过建立紫杉醇耐药性ATC细胞模型,并运用基因表达检测法等多种手段,发现二氢丹参酮I可显著降低NF-κB核转位活性,靶向下调NF-κB调控的ABCB1转运体表达,首次证明了二氢丹参酮I逆转ATC细胞多药耐药性并抑制克隆形成的能力。

木香中的有效活性成分菜蓟苦素在甲状腺未分化癌模型中显著降低核内NF-κB表达水平,该机制可能参与其抑制肿瘤增殖的细胞毒性效应,并由此推论菜蓟苦素具有干预TC的潜在作用[66]

泽兰具有活血调经,祛瘀消痈,利水消肿之效。从中分离的泽兰素通过协同抑制NF-κB/COX-2与PI3K/Akt双通路,显著降低B-CPAP甲状腺癌细胞中NF-κB、iNOS、IL-6、TNF-α及COX-2等促炎介质表达),以浓度依赖性方式抑制肿瘤增殖与转移,并诱导线粒体凋亡[67]

5. 中药复方

叶景华教授结合临床经验创制了消瘿散结汤。该方剂由丹参、柴胡、制香附、青皮、陈皮、制半夏、莪术、夏枯草、猫爪草9味中药组成,其中丹参活血化瘀,柴胡疏肝解郁,香附疏肝理气,青皮、陈皮理气健脾,除湿化痰,半夏燥湿化痰,莪术活血化瘀,猫爪草、夏枯草软坚消瘿,化痰散结,共奏活血化瘀、化痰散结之功效。全方配伍经鉴定其中柴胡皂苷A被确立为核心成分,其通过上调PPP2CA表达抑制PI3K/Akt通路,阻止IκB-α失活及NF-κB核蓄积,在ATC细胞模型中呈剂量依赖性抑制NF-κB转录活性,有效阻遏肿瘤恶性进展。

右归丸源自于中医经典《景岳全书》中的补肾名方,由熟地黄、山药、山茱萸、枸杞子、鹿角胶、菟丝子、杜仲、当归、肉桂、制附子组成,组方精妙,合用以温补肾阳,补血填精[68]。肾阳虚证本质为下丘脑–垂体–靶腺轴功能紊乱及神经–内分泌–免疫网络失衡,其中TLR1/8介导的MyD88依赖途径下调导致NF-κB通路抑制,引发免疫稳态失衡,而右归丸可以特异性上调TLR1、TLR8及MYD88表达,逆转NF-κB通路活性,并通过TLR4/MyD88/NF-κB级联反应重建免疫调节功能[69]。同时,右归丸协同提升垂体–甲状腺轴TSH、T3、T4水平,抑制NF-κB下游促炎介质TNF-α、IL-6、COX-2的表达,阻断肿瘤炎症微环境,最终通过激活NF-κB介导的线粒体凋亡途径抑制TC细胞增殖[70]

6. 中医药靶向NF-κB通路治疗TC面临的挑战

中医药靶向调控NF-κB通路为甲状腺癌的防治提供了多层面的干预策略,然而该领域的研究与转化仍面临若干现实瓶颈。许多活性成分的体内药效发挥受到药代动力学性质的限制,例如姜黄素、白藜芦醇等单体成分存在水溶性差、代谢稳定性低和口服生物利用度不佳的问题,即使借助新型递药系统有所改善,其成药性仍有待进一步提高。部分高效抗肿瘤成分的临床应用受限于其毒副作用,以雷公藤内酯为例,虽其抑制NF-κB通路和诱导肿瘤细胞凋亡的活性显著,但治疗窗口窄,对肝肾及造血系统的潜在毒性不容忽视,这要求通过结构优化、剂型改良或联合用药策略以实现疗效与安全性的平衡。并且中药复方成分复杂,也给其质量控制、机制阐释和标准化应用带来挑战。复方中多种活性成分可能通过协同或拮抗作用影响NF-κB通路的多个靶点,但精确解析其物质基础、明确君臣佐使的现代药理学内涵、建立稳定可控的质量标准体系仍存在较大困难。最后,现有研究多数仍处于临床前阶段,向临床应用的转化存在明显证据鸿沟。缺乏设计严谨、大样本、多中心的高质量随机对照试验支持,临床终点指标不统一,中医药证候分类与现代医学诊断体系的结合尚不成熟,这些都限制了中医药靶向NF-κB治疗策略在临床中的推广和认可。

7. 小结与展望

甲状腺癌的发病机制与NF-κB信号通路的异常激活密切相关。该通路通过调控炎症微环境、抑制细胞凋亡、促进增殖与侵袭转移等过程驱动甲状腺癌恶性进展,其与TLR4、miRNA(如miR-146b-3p)、DAPK2等因子的交互作用进一步加剧肿瘤免疫逃逸和耐药性。中医药干预甲状腺癌的核心优势在于多靶点调控NF-κB通路:中药单体如大黄素通过抑制TLR4/MyD88信号阻断p65核转位,雷公藤内酯通过抑制IKK磷酸化及p65转录活性诱导凋亡;复方制剂如消瘿散结汤通过柴胡皂苷A调控PI3K/Akt/NF-κB轴,右归丸通过TLR4/MyD88/NF-κB级联反应重建免疫稳态。中医“气滞痰凝血瘀毒结”的病机演变与NF-κB介导的“炎症–癌变”转化相关,“疏肝理气、化痰散结、清热解毒”等治则为靶向该通路提供了理论基础。

未来研究需着力从基础机制和临床转化两个维度深化中医药通过NF-κB通路防治甲状腺癌的价值。应重点研究NF-κB经典与非经典途径中的关键节点(如NIK/IKKα复合物、泛素化修饰过程),结合单细胞测序和空间转录组学等先进技术,刻画中药干预下肿瘤微环境的免疫和代谢重塑规律。加强中药复方研究,通过“药物体系–生物网络–药理效应”整合策略阐明复方多组分协同调控NF-κB通路的机制,并建立病证结合的药效评价体系。针对临床瓶颈如ATC耐药问题,可优先在体内外模型中验证雷公藤内酯与二氢丹参酮I等单体的联合策略,评估其逆转NF-κB介导耐药的协同效应。积极推动高质量临床研究,开展多中心随机对照试验评价中药联合方案对晚期甲状腺癌的疗效和安全性,通过高级别循证证据促进中医药的临床整合与应用,最终为甲状腺癌的中西医结合防治提供新范式。

NOTES

*通讯作者。

参考文献

[1] Chen, D.W., Lang, B.H.H., McLeod, D.S.A., Newbold, K. and Haymart, M.R. (2023) Thyroid Cancer. The Lancet, 401, 1531-1544.
https://doi.org/10.1016/s0140-6736(23)00020-x
[2] 焦世峰, 杨美东, 穆安会. 甲状腺癌的诊断及手术治疗研究进展[J]. 临床医学研究与实践, 2025, 10(18): 195-198.
[3] 李忠慧, 贾宗杭, 周鹏, 等. 甲状腺癌术后并发症的中医药研究进展[J]. 四川中医, 2025, 43(5): 199-207.
[4] 王心雨, 陈红跃, 杨萌萌, 等. 中医药通过凋亡与自噬途径干预甲状腺癌研究进展[J]. 中医学报, 2024, 39(5): 986-993.
[5] 曹青青, 程闻, 张婷, 等. 甲状腺癌之古今中医认识及辨治异同探析[J]. 中国民族民间医药, 2024, 33(9): 16-20.
[6] 刘佳, 王昊. 王昊基于“虚实异治”论治甲状腺癌经验[J]. 中国中医药图书情报杂志, 2024, 48(3): 209-212.
[7] Wang, S., He, Y., Wang, J. and Luo, E. (2024) Re-Exploration of Immunotherapy Targeting EMT of Hepatocellular Carcinoma: Starting from the NF-κB Pathway. Biomedicine & Pharmacotherapy, 174, Article 116566.
https://doi.org/10.1016/j.biopha.2024.116566
[8] Wan, F. and Lenardo, M.J. (2010) The Nuclear Signaling of NF-κB: Current Knowledge, New Insights, and Future Perspectives. Cell Research, 20, 24-33.
https://doi.org/10.1038/cr.2009.137
[9] Gilmore, T.D. (2006) Introduction to NF-κB: Players, Pathways, Perspectives. Oncogene, 25, 6680-6684.
https://doi.org/10.1038/sj.onc.1209954
[10] Li, Y., Zhao, B., Peng, J., Tang, H., Wang, S., Peng, S., et al. (2024) Inhibition of NF-κB Signaling Unveils Novel Strategies to Overcome Drug Resistance in Cancers. Drug Resistance Updates, 73, Article 101042.
https://doi.org/10.1016/j.drup.2023.101042
[11] de Jong, S.J., Albrecht, J., Schmidt, M., Müller-Fleckenstein, I. and Biesinger, B. (2010) Activation of Noncanonical NF-κB Signaling by the Oncoprotein Tio. Journal of Biological Chemistry, 285, 16495-16503.
https://doi.org/10.1074/jbc.m110.102848
[12] Su, L., Ren, Y., Chen, Z., Ma, H., Zheng, F., Li, F., et al. (2022) Ginsenoside Rb1 Improves Brain, Lung, and Intestinal Barrier Damage in Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) Micevia the PPARγ Signaling Pathway. Chinese Journal of Natural Medicines, 20, 561-571.
https://doi.org/10.1016/s1875-5364(22)60204-8
[13] Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-κB Transcription Factors in the Immune System. Annual Review of Immunology, 27, 693-733.
https://doi.org/10.1146/annurev.immunol.021908.132641
[14] Su, K., Yu, C.Y., Chen, Y., Hua, K. and Chen, Y.S. (2014) 3,4-Dihydroxytoluene, a Metabolite of Rutin, Inhibits Inflammatory Responses in Lipopolysaccharide-Activated Macrophages by Reducing the Activation of NF-κB Signaling. BMC Complementary and Alternative Medicine, 14, Article No. 21.
https://doi.org/10.1186/1472-6882-14-21
[15] 张凡, 齐鹏飞, 李道明, 等. 甲状腺癌组织中NF-κB、HMGB1表达[J]. 中国老年学杂志, 2022, 42(10): 2368-2371.
[16] Wu, C., Hsu, F., Chao, T., Lee, Y. and Kuo, Y. (2022) Revealing the Suppressive Role of Protein Kinase C Delta and P38 Mitogen-Activated Protein Kinase (MAPK)/NF-κB Axis Associates with Lenvatinib-Inhibited Progression in Hepatocellular Carcinoma in Vitro and in Vivo. Biomedicine & Pharmacotherapy, 145, Article 112437.
https://doi.org/10.1016/j.biopha.2021.112437
[17] Zhi, T.X., Liu, K.Q., Cai, K.Y., Zhao, Y.C., Li, Z.W., Wang, X., et al. (2022) Anti‐Lung Cancer Activities of 1,2,3‐triazole Curcumin Derivatives via Regulation of the MAPK/NF-κB/STAT3 Signaling Pathways. ChemMedChem, 17, e202100676.
https://doi.org/10.1002/cmdc.202100676
[18] Saberiyan, M., Zarei, M., Safi, A., Movahhed, P., Khorasanian, R., Adelian, S., et al. (2024) The Role of DAPK2 as a Key Regulatory Element in Various Human Cancers: A Systematic Review. Molecular Biology Reports, 51, Article No. 886.
https://doi.org/10.1007/s11033-024-09761-6
[19] Jiang, Y., Liu, J., Xu, H., Zhou, X., He, L. and Zhu, C. (2021) DAPK2 Activates NF-κB through Autophagy-Dependent Degradation of I-κBα during Thyroid Cancer Development and Progression. Annals of Translational Medicine, 9, 1083-1083.
https://doi.org/10.21037/atm-21-2062
[20] Zhang, L., Sun, L., Wang, L., Wang, J., Wang, D., Jiang, J., et al. (2023) Mitochondrial Division Inhibitor (Mdivi-1) Inhibits Proliferation and Epithelial-Mesenchymal Transition via the NF-κB Pathway in Thyroid Cancer Cells. Toxicology in Vitro, 88, Article 105552.
https://doi.org/10.1016/j.tiv.2023.105552
[21] Jaume, J.C. (2025) Thyroid Cancer—The Tumor Immune Microenvironment (TIME) over Time and Space. Cancers, 17, Article 794.
https://doi.org/10.3390/cancers17050794
[22] Song, M., Liu, Q., Sun, W. and Zhang, H. (2023) Crosstalk between Thyroid Carcinoma and Tumor-Correlated Immune Cells in the Tumor Microenvironment. Cancers, 15, Article 2863.
https://doi.org/10.3390/cancers15102863
[23] Yin, H., Tang, Y., Guo, Y. and Wen, S. (2020) Immune Microenvironment of Thyroid Cancer. Journal of Cancer, 11, 4884-4896.
https://doi.org/10.7150/jca.44506
[24] Crescenzi, E., Leonardi, A. and Pacifico, F. (2024) NF-κB in Thyroid Cancer: An Update. International Journal of Molecular Sciences, 25, Article 11464.
https://doi.org/10.3390/ijms252111464
[25] Crescenzi, E., Mellone, S., Gragnano, G., Iaccarino, A., Leonardi, A. and Pacifico, F. (2023) NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival through FAS/CD95 Inhibition. Endocrinology, 165, bqad190.
https://doi.org/10.1210/endocr/bqad190
[26] Volpe, V., Raia, Z., Sanguigno, L., Somma, D., Mastrovito, P., Moscato, F., et al. (2013) NGAL Controls the Metastatic Potential of Anaplastic Thyroid Carcinoma Cells. The Journal of Clinical Endocrinology & Metabolism, 98, 228-235.
https://doi.org/10.1210/jc.2012-2528
[27] Pacifico, F., Pisa, L., Mellone, S., Cillo, M., Lepore, A. and Leonardi, A. (2018) NGAL Promotes Recruitment of Tumor Infiltrating Leukocytes. Oncotarget, 9, 30761-30772.
https://doi.org/10.18632/oncotarget.25625
[28] Kim, H., Kim, H., Lee, J. and Hwangbo, C. (2023) Toll-Like Receptor 4 (TLR4): New Insight Immune and Aging. Immunity & Ageing, 20, Article No. 67.
https://doi.org/10.1186/s12979-023-00383-3
[29] Roy, A., Srivastava, M., Saqib, U., Liu, D., Faisal, S.M., Sugathan, S., et al. (2016) Potential Therapeutic Targets for Inflammation in Toll-Like Receptor 4 (TLR4)-Mediated Signaling Pathways. International Immunopharmacology, 40, 79-89.
https://doi.org/10.1016/j.intimp.2016.08.026
[30] Pacifico, F. and Leonardi, A. (2010) Role of NF-κB in Thyroid Cancer. Molecular and Cellular Endocrinology, 321, 29-35.
https://doi.org/10.1016/j.mce.2009.10.010
[31] Bauerle, K.T., Schweppe, R.E. and Haugen, B.R. (2010) Inhibition of Nuclear Factor-Kappa B Differentially Affects Thyroid Cancer Cell Growth, Apoptosis, and Invasion. Molecular Cancer, 9, Article No. 117.
https://doi.org/10.1186/1476-4598-9-117
[32] Huang, L., Wang, Z., Cao, C., Ke, Z., Wang, F., Wang, R., et al. (2017) AEG-1 Associates with Metastasis in Papillary Thyroid Cancer through Upregulation of MMP2/9. International Journal of Oncology, 51, 812-822.
https://doi.org/10.3892/ijo.2017.4074
[33] Geropoulos, G., Psarras, K., Papaioannou, M., Giannis, D., Meitanidou, M., Kapriniotis, K., et al. (2022) Circulating Micrornas and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review. In Vivo, 36, 1551-1569.
https://doi.org/10.21873/invivo.12866
[34] Lee, J.C., Zhao, J., Gundara, J., Serpell, J., Bach, L.A. and Sidhu, S. (2015) Papillary Thyroid Cancer-Derived Exosomes Contain miRNA-146b and miRNA-222. Journal of Surgical Research, 196, 39-48.
https://doi.org/10.1016/j.jss.2015.02.027
[35] Suresh, R., Sethi, S., Ali, S., et al. (2015) Differential Expression of MicroRNAs in Papillary Thyroid Carcinoma and Their Role in Racial Disparity. Journal of Cancer Science & Therapy, 7, 145-154.
[36] 张莉. MicroRNA-146b-3p通过靶向NF2促进甲状腺乳头状癌转移的研究[D]: [博士学位论文]. 济南: 山东大学, 2019.
[37] Hassan, H.M., Hamdan, A.M., Alattar, A., Alshaman, R., Bahattab, O. and Al-Gayyar, M.M.H. (2024) Evaluating Anticancer Activity of Emodin by Enhancing Antioxidant Activities and Affecting PKC/ADAMTS4 Pathway in Thioacetamide-Induced Hepatocellular Carcinoma in Rats. Redox Report, 29, Article 2365590.
https://doi.org/10.1080/13510002.2024.2365590
[38] Xin, K., Ge, M., Li, X., Su, H., Ke, J., Chen, K., et al. (2024) Emodin Suppresses Mast Cell Migration via Modulating the JAK2/STAT3/JMJD3/CXCR3 Signaling to Prevent Cystitis. Neurourology and Urodynamics, 43, 2258-2268.
https://doi.org/10.1002/nau.25540
[39] Ritacca, A.G., Prejanò, M., Alberto, M.E., Marino, T., Toscano, M. and Russo, N. (2024) On the Antibacterial Photodynamic Inactivation Mechanism of emodin and Dermocybin Natural Photosensitizers: A Theoretical Investigation. Journal of Computational Chemistry, 45, 1254-1260.
https://doi.org/10.1002/jcc.27326
[40] Zhang, F., Gu, T., Li, J., Zhu, Y., Chu, M., Zhou, Q., et al. (2024) Emodin Regulated Lactate Metabolism by Inhibiting MCT1 to Delay Non-Small Cell Lung Cancer Progression. Human Cell, 38, Article No. 11.
https://doi.org/10.1007/s13577-024-01140-4
[41] Liu, X., Wei, W., Wu, Y., Wang, Y., Zhang, W., Wang, Y., et al. (2023) Emodin Treatment of Papillary Thyroid Cancer Cell Lines in Vitro Inhibits Proliferation and Enhances Apoptosis via Downregulation of NF-κB and Its Upstream TLR4 Signaling. Oncology Letters, 26, Article No. 514.
https://doi.org/10.3892/ol.2023.14101
[42] AbdulHussein, A.H., Al‐Taee, M.M., Radih, Z.A., Aljuboory, D.S., Mohammed, Z.Q., Hashesh, T.S., et al. (2023) Mechanisms of Cancer Cell Death Induction by Triptolide. BioFactors, 49, 718-735.
https://doi.org/10.1002/biof.1944
[43] Feng, K., Li, X., Bai, Y., Zhang, D. and Tian, L. (2024) Mechanisms of Cancer Cell Death Induction by Triptolide: A Comprehensive Overview. Heliyon, 10, e24335.
https://doi.org/10.1016/j.heliyon.2024.e24335
[44] Wang, F., An, S., Yin, Y., Li, J., Sun, C., Lan, J., et al. (2021) Triptolide Is a Promising Therapeutic Approach in Treating Thyroid Cancer Based on in Silico and in Vitro Experiment. Drug Design, Development and Therapy, 15, 4275-4287.
https://doi.org/10.2147/dddt.s322502
[45] Maiti, P., Scott, J., Sengupta, D., Al-Gharaibeh, A. and Dunbar, G.L. (2019) Curcumin and Solid Lipid Curcumin Particles Induce Autophagy, but Inhibit Mitophagy and the PI3K-Akt/MTOR Pathway in Cultured Glioblastoma Cells. International Journal of Molecular Sciences, 20, Article 399.
https://doi.org/10.3390/ijms20020399
[46] Esposito, T., Lucariello, A., Hay, E., Contieri, M., Tammaro, P., Varriale, B., et al. (2019) Effects of Curcumin and Its Adjuvant on TPC1 Thyroid Cell Line. Chemico-Biological Interactions, 305, 112-118.
https://doi.org/10.1016/j.cbi.2019.03.031
[47] Schwertheim, S., Wein, F., Lennartz, K., Worm, K., Schmid, K.W. and Sheu-Grabellus, S. (2017) Curcumin Induces G2/M Arrest, Apoptosis, NF-κB Inhibition, and Expression of Differentiation Genes in Thyroid Carcinoma Cells. Journal of Cancer Research and Clinical Oncology, 143, 1143-1154.
https://doi.org/10.1007/s00432-017-2380-z
[48] Hassan, M.H.U., Shahbaz, M., Momal, U., Naeem, H., Imran, M., Abdelgawad, M.A., et al. (2025) Exploring Punicalagin Potential against Cancers: A Comprehensive Review. Food Science & Nutrition, 13, e70072.
https://doi.org/10.1002/fsn3.70072
[49] Cheng, X., Yao, X., Xu, S., Pan, J., Yu, H., Bao, J., et al. (2018) Punicalagin Induces Senescent Growth Arrest in Human Papillary Thyroid Carcinoma BCPAP Cells via NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 103, 490-498.
https://doi.org/10.1016/j.biopha.2018.04.074
[50] 姚欣. 安石榴苷对乳头状甲状腺癌BCPAP细胞的抑制作用及机理研究[D]: [硕士学位论文]. 无锡: 江南大学, 2018.
[51] 王继达, 王丽, 刘海朝, 等. 黄芪注射液辅助放化疗对癌症患者疗效和不良反应的系统评价[J]. 药物评价研究, 2022, 45(6): 1147-1157.
[52] 黄兰, 孟雨萌, 孟尚文, 等. 黄芪注射液对甲状腺癌荷瘤小鼠肿瘤抑制作用及组织凋亡相关蛋白表达与NF-κB通路的影响[J]. 四川中医, 2024, 42(11): 72-75.
[53] Yu, C., Zhang, L., Luo, D., Yan, F., Liu, J., Shao, S., et al. (2018) MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid, 28, 1627-1641.
https://doi.org/10.1089/thy.2017.0626
[54] 武红园. 夏枯草通过调控MicroRNA-146对甲状腺乳头状癌细胞增殖、侵袭的影响[D]: [硕士学位论文]. 郑州: 河南中医药大学, 2022.
[55] 魏健, 赵蕾, 张荣伟, 等. β-榄香烯对人乳头状甲状腺癌细胞生物学行为的影响及其作用机制[J]. 现代肿瘤医学, 2019, 27(11): 1852-1855.
[56] 张雅兰, 康柳枝, 黄培瑜, 等. β-榄香烯对分化型甲状腺癌细胞TPC-1131I敏感性的影响及机制研究[J]. 毒理学杂志, 2023, 37(1): 24-30.
[57] Zheng, X., Jia, B., Song, X., Kong, Q., Wu, M., Qiu, Z., et al. (2018) Preventive Potential of Resveratrol in Carcinogen-Induced Rat Thyroid Tumorigenesis. Nutrients, 10, Article 279.
https://doi.org/10.3390/nu10030279
[58] Zhao, S., Liu, Z., Wang, M., He, D., Liu, L., Shu, Y., et al. (2018) Anti-Inflammatory Effects of Zhishi and Zhiqiao Revealed by Network Pharmacology Integrated with Molecular Mechanism and Metabolomics Studies. Phytomedicine, 50, 61-72.
https://doi.org/10.1016/j.phymed.2018.09.184
[59] Xie, L., Zhao, Y., Zheng, Y. and Li, X. (2023) The Pharmacology and Mechanisms of Platycodin D, an Active Triterpenoid Saponin from Platycodon Grandiflorus. Frontiers in Pharmacology, 14, Article 1148853.
https://doi.org/10.3389/fphar.2023.1148853
[60] Deng, B. and Sun, M. (2022) Platycodin D Inhibits the Malignant Progression of Papillary Thyroid Carcinoma by NF-κB and Enhances the Therapeutic Efficacy of Pembrolizumab. Drug Development Research, 83, 708-720.
https://doi.org/10.1002/ddr.21902
[61] Chen, H., Wu, Y., Wang, J., Li, Y., Chen, Y., Wang, X., et al. (2024) Tilianin Enhances the Antitumor Effect of Sufentanil on Non-Small Cell Lung Cancer. Journal of Biochemical and Molecular Toxicology, 38, e23761.
https://doi.org/10.1002/jbt.23761
[62] Xiong, C., Yan, B., Xia, S., Yu, F., Zhao, J. and Bai, H. (2021) Tilianin Inhibits the Human Ovarian Cancer (PA-1) Cell Proliferation via Blocking Cell Cycle, Inducing Apoptosis and Inhibiting JAK2/STAT3 Signaling Pathway. Saudi Journal of Biological Sciences, 28, 4900-4907.
https://doi.org/10.1016/j.sjbs.2021.06.033
[63] Liu, J., Zhu, Z., Dong, Y., Shi, D., Ding, Y. and Zheng, F. (2025) Tilianin Regulates the Proliferation, Invasion and Tumor Immune Microenvironment of Thyroid Cancer Cells through the Tlr4/NF-ΚB Axis. International Immunopharmacology, 158, Article 114783.
https://doi.org/10.1016/j.intimp.2025.114783
[64] Li, Y., Miao, J., Liu, C., Tao, J., Zhou, S., Song, X., et al. (2025) Kushenol O Regulates GALNT7/Nf-κB Axis-Mediated Macrophage M2 Polarization and Efferocytosis in Papillary Thyroid Carcinoma. Phytomedicine, 138, Article 156373.
https://doi.org/10.1016/j.phymed.2025.156373
[65] Allegri, L., Capriglione, F., Maggisano, V., Damante, G. and Baldan, F. (2021) Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. International Journal of Molecular Sciences, 22, Article 8083.
https://doi.org/10.3390/ijms22158083
[66] Lepore, S.M., Maggisano, V., Lombardo, G.E., et al. (2019) Antiproliferative Effects of Cynaropicrin on Anaplastic Thyroid Cancer Cells. Endocrine, Metabolic & Immune Disorders Drug Targets, 19, 59-66.
https://doi.org/10.2174/1871530318666180928153241
[67] Song, W., Yao, R., Vijayalakshmi, A., et al. (2025) Eupatorin Modulates BCPAP in Thyroid Cancer Cell Proliferation via Suppressing the NF-κB/PI3K/AKT Signaling Pathways. Advances in Clinical and Experimental Medicine, 38, 1365-1374.
https://doi.org/10.17219/acem/191595
[68] 罗婷, 范郁山, 代波. 右归丸的临床研究进展[J]. 大众科技, 2021, 23(1): 68-70, 111.
[69] 谭从娥, 杨飞, 陈金妍, 等. Toll样受体信号转导通路在肾阳虚证中的改变及右归丸干预的影响[J]. 中华中医药杂志, 2019, 34(4): 1742-1746.
[70] 范浩群. 右归丸加减治疗甲状腺乳头状癌术后脾肾阳虚证的临床疗效观察[D]: [博士学位论文]. 广州: 广州中医药大学, 2025.