|
[1]
|
Chen, D.W., Lang, B.H.H., McLeod, D.S.A., Newbold, K. and Haymart, M.R. (2023) Thyroid Cancer. The Lancet, 401, 1531-1544. https://doi.org/10.1016/s0140-6736(23)00020-x
|
|
[2]
|
焦世峰, 杨美东, 穆安会. 甲状腺癌的诊断及手术治疗研究进展[J]. 临床医学研究与实践, 2025, 10(18): 195-198.
|
|
[3]
|
李忠慧, 贾宗杭, 周鹏, 等. 甲状腺癌术后并发症的中医药研究进展[J]. 四川中医, 2025, 43(5): 199-207.
|
|
[4]
|
王心雨, 陈红跃, 杨萌萌, 等. 中医药通过凋亡与自噬途径干预甲状腺癌研究进展[J]. 中医学报, 2024, 39(5): 986-993.
|
|
[5]
|
曹青青, 程闻, 张婷, 等. 甲状腺癌之古今中医认识及辨治异同探析[J]. 中国民族民间医药, 2024, 33(9): 16-20.
|
|
[6]
|
刘佳, 王昊. 王昊基于“虚实异治”论治甲状腺癌经验[J]. 中国中医药图书情报杂志, 2024, 48(3): 209-212.
|
|
[7]
|
Wang, S., He, Y., Wang, J. and Luo, E. (2024) Re-Exploration of Immunotherapy Targeting EMT of Hepatocellular Carcinoma: Starting from the NF-κB Pathway. Biomedicine & Pharmacotherapy, 174, Article 116566. https://doi.org/10.1016/j.biopha.2024.116566
|
|
[8]
|
Wan, F. and Lenardo, M.J. (2010) The Nuclear Signaling of NF-κB: Current Knowledge, New Insights, and Future Perspectives. Cell Research, 20, 24-33. https://doi.org/10.1038/cr.2009.137
|
|
[9]
|
Gilmore, T.D. (2006) Introduction to NF-κB: Players, Pathways, Perspectives. Oncogene, 25, 6680-6684. https://doi.org/10.1038/sj.onc.1209954
|
|
[10]
|
Li, Y., Zhao, B., Peng, J., Tang, H., Wang, S., Peng, S., et al. (2024) Inhibition of NF-κB Signaling Unveils Novel Strategies to Overcome Drug Resistance in Cancers. Drug Resistance Updates, 73, Article 101042. https://doi.org/10.1016/j.drup.2023.101042
|
|
[11]
|
de Jong, S.J., Albrecht, J., Schmidt, M., Müller-Fleckenstein, I. and Biesinger, B. (2010) Activation of Noncanonical NF-κB Signaling by the Oncoprotein Tio. Journal of Biological Chemistry, 285, 16495-16503. https://doi.org/10.1074/jbc.m110.102848
|
|
[12]
|
Su, L., Ren, Y., Chen, Z., Ma, H., Zheng, F., Li, F., et al. (2022) Ginsenoside Rb1 Improves Brain, Lung, and Intestinal Barrier Damage in Middle Cerebral Artery Occlusion/Reperfusion (MCAO/R) Micevia the PPARγ Signaling Pathway. Chinese Journal of Natural Medicines, 20, 561-571. https://doi.org/10.1016/s1875-5364(22)60204-8
|
|
[13]
|
Vallabhapurapu, S. and Karin, M. (2009) Regulation and Function of NF-κB Transcription Factors in the Immune System. Annual Review of Immunology, 27, 693-733. https://doi.org/10.1146/annurev.immunol.021908.132641
|
|
[14]
|
Su, K., Yu, C.Y., Chen, Y., Hua, K. and Chen, Y.S. (2014) 3,4-Dihydroxytoluene, a Metabolite of Rutin, Inhibits Inflammatory Responses in Lipopolysaccharide-Activated Macrophages by Reducing the Activation of NF-κB Signaling. BMC Complementary and Alternative Medicine, 14, Article No. 21. https://doi.org/10.1186/1472-6882-14-21
|
|
[15]
|
张凡, 齐鹏飞, 李道明, 等. 甲状腺癌组织中NF-κB、HMGB1表达[J]. 中国老年学杂志, 2022, 42(10): 2368-2371.
|
|
[16]
|
Wu, C., Hsu, F., Chao, T., Lee, Y. and Kuo, Y. (2022) Revealing the Suppressive Role of Protein Kinase C Delta and P38 Mitogen-Activated Protein Kinase (MAPK)/NF-κB Axis Associates with Lenvatinib-Inhibited Progression in Hepatocellular Carcinoma in Vitro and in Vivo. Biomedicine & Pharmacotherapy, 145, Article 112437. https://doi.org/10.1016/j.biopha.2021.112437
|
|
[17]
|
Zhi, T.X., Liu, K.Q., Cai, K.Y., Zhao, Y.C., Li, Z.W., Wang, X., et al. (2022) Anti‐Lung Cancer Activities of 1,2,3‐triazole Curcumin Derivatives via Regulation of the MAPK/NF-κB/STAT3 Signaling Pathways. ChemMedChem, 17, e202100676. https://doi.org/10.1002/cmdc.202100676
|
|
[18]
|
Saberiyan, M., Zarei, M., Safi, A., Movahhed, P., Khorasanian, R., Adelian, S., et al. (2024) The Role of DAPK2 as a Key Regulatory Element in Various Human Cancers: A Systematic Review. Molecular Biology Reports, 51, Article No. 886. https://doi.org/10.1007/s11033-024-09761-6
|
|
[19]
|
Jiang, Y., Liu, J., Xu, H., Zhou, X., He, L. and Zhu, C. (2021) DAPK2 Activates NF-κB through Autophagy-Dependent Degradation of I-κBα during Thyroid Cancer Development and Progression. Annals of Translational Medicine, 9, 1083-1083. https://doi.org/10.21037/atm-21-2062
|
|
[20]
|
Zhang, L., Sun, L., Wang, L., Wang, J., Wang, D., Jiang, J., et al. (2023) Mitochondrial Division Inhibitor (Mdivi-1) Inhibits Proliferation and Epithelial-Mesenchymal Transition via the NF-κB Pathway in Thyroid Cancer Cells. Toxicology in Vitro, 88, Article 105552. https://doi.org/10.1016/j.tiv.2023.105552
|
|
[21]
|
Jaume, J.C. (2025) Thyroid Cancer—The Tumor Immune Microenvironment (TIME) over Time and Space. Cancers, 17, Article 794. https://doi.org/10.3390/cancers17050794
|
|
[22]
|
Song, M., Liu, Q., Sun, W. and Zhang, H. (2023) Crosstalk between Thyroid Carcinoma and Tumor-Correlated Immune Cells in the Tumor Microenvironment. Cancers, 15, Article 2863. https://doi.org/10.3390/cancers15102863
|
|
[23]
|
Yin, H., Tang, Y., Guo, Y. and Wen, S. (2020) Immune Microenvironment of Thyroid Cancer. Journal of Cancer, 11, 4884-4896. https://doi.org/10.7150/jca.44506
|
|
[24]
|
Crescenzi, E., Leonardi, A. and Pacifico, F. (2024) NF-κB in Thyroid Cancer: An Update. International Journal of Molecular Sciences, 25, Article 11464. https://doi.org/10.3390/ijms252111464
|
|
[25]
|
Crescenzi, E., Mellone, S., Gragnano, G., Iaccarino, A., Leonardi, A. and Pacifico, F. (2023) NGAL Mediates Anaplastic Thyroid Carcinoma Cells Survival through FAS/CD95 Inhibition. Endocrinology, 165, bqad190. https://doi.org/10.1210/endocr/bqad190
|
|
[26]
|
Volpe, V., Raia, Z., Sanguigno, L., Somma, D., Mastrovito, P., Moscato, F., et al. (2013) NGAL Controls the Metastatic Potential of Anaplastic Thyroid Carcinoma Cells. The Journal of Clinical Endocrinology & Metabolism, 98, 228-235. https://doi.org/10.1210/jc.2012-2528
|
|
[27]
|
Pacifico, F., Pisa, L., Mellone, S., Cillo, M., Lepore, A. and Leonardi, A. (2018) NGAL Promotes Recruitment of Tumor Infiltrating Leukocytes. Oncotarget, 9, 30761-30772. https://doi.org/10.18632/oncotarget.25625
|
|
[28]
|
Kim, H., Kim, H., Lee, J. and Hwangbo, C. (2023) Toll-Like Receptor 4 (TLR4): New Insight Immune and Aging. Immunity & Ageing, 20, Article No. 67. https://doi.org/10.1186/s12979-023-00383-3
|
|
[29]
|
Roy, A., Srivastava, M., Saqib, U., Liu, D., Faisal, S.M., Sugathan, S., et al. (2016) Potential Therapeutic Targets for Inflammation in Toll-Like Receptor 4 (TLR4)-Mediated Signaling Pathways. International Immunopharmacology, 40, 79-89. https://doi.org/10.1016/j.intimp.2016.08.026
|
|
[30]
|
Pacifico, F. and Leonardi, A. (2010) Role of NF-κB in Thyroid Cancer. Molecular and Cellular Endocrinology, 321, 29-35. https://doi.org/10.1016/j.mce.2009.10.010
|
|
[31]
|
Bauerle, K.T., Schweppe, R.E. and Haugen, B.R. (2010) Inhibition of Nuclear Factor-Kappa B Differentially Affects Thyroid Cancer Cell Growth, Apoptosis, and Invasion. Molecular Cancer, 9, Article No. 117. https://doi.org/10.1186/1476-4598-9-117
|
|
[32]
|
Huang, L., Wang, Z., Cao, C., Ke, Z., Wang, F., Wang, R., et al. (2017) AEG-1 Associates with Metastasis in Papillary Thyroid Cancer through Upregulation of MMP2/9. International Journal of Oncology, 51, 812-822. https://doi.org/10.3892/ijo.2017.4074
|
|
[33]
|
Geropoulos, G., Psarras, K., Papaioannou, M., Giannis, D., Meitanidou, M., Kapriniotis, K., et al. (2022) Circulating Micrornas and Clinicopathological Findings of Papillary Thyroid Cancer: A Systematic Review. In Vivo, 36, 1551-1569. https://doi.org/10.21873/invivo.12866
|
|
[34]
|
Lee, J.C., Zhao, J., Gundara, J., Serpell, J., Bach, L.A. and Sidhu, S. (2015) Papillary Thyroid Cancer-Derived Exosomes Contain miRNA-146b and miRNA-222. Journal of Surgical Research, 196, 39-48. https://doi.org/10.1016/j.jss.2015.02.027
|
|
[35]
|
Suresh, R., Sethi, S., Ali, S., et al. (2015) Differential Expression of MicroRNAs in Papillary Thyroid Carcinoma and Their Role in Racial Disparity. Journal of Cancer Science & Therapy, 7, 145-154.
|
|
[36]
|
张莉. MicroRNA-146b-3p通过靶向NF2促进甲状腺乳头状癌转移的研究[D]: [博士学位论文]. 济南: 山东大学, 2019.
|
|
[37]
|
Hassan, H.M., Hamdan, A.M., Alattar, A., Alshaman, R., Bahattab, O. and Al-Gayyar, M.M.H. (2024) Evaluating Anticancer Activity of Emodin by Enhancing Antioxidant Activities and Affecting PKC/ADAMTS4 Pathway in Thioacetamide-Induced Hepatocellular Carcinoma in Rats. Redox Report, 29, Article 2365590. https://doi.org/10.1080/13510002.2024.2365590
|
|
[38]
|
Xin, K., Ge, M., Li, X., Su, H., Ke, J., Chen, K., et al. (2024) Emodin Suppresses Mast Cell Migration via Modulating the JAK2/STAT3/JMJD3/CXCR3 Signaling to Prevent Cystitis. Neurourology and Urodynamics, 43, 2258-2268. https://doi.org/10.1002/nau.25540
|
|
[39]
|
Ritacca, A.G., Prejanò, M., Alberto, M.E., Marino, T., Toscano, M. and Russo, N. (2024) On the Antibacterial Photodynamic Inactivation Mechanism of emodin and Dermocybin Natural Photosensitizers: A Theoretical Investigation. Journal of Computational Chemistry, 45, 1254-1260. https://doi.org/10.1002/jcc.27326
|
|
[40]
|
Zhang, F., Gu, T., Li, J., Zhu, Y., Chu, M., Zhou, Q., et al. (2024) Emodin Regulated Lactate Metabolism by Inhibiting MCT1 to Delay Non-Small Cell Lung Cancer Progression. Human Cell, 38, Article No. 11. https://doi.org/10.1007/s13577-024-01140-4
|
|
[41]
|
Liu, X., Wei, W., Wu, Y., Wang, Y., Zhang, W., Wang, Y., et al. (2023) Emodin Treatment of Papillary Thyroid Cancer Cell Lines in Vitro Inhibits Proliferation and Enhances Apoptosis via Downregulation of NF-κB and Its Upstream TLR4 Signaling. Oncology Letters, 26, Article No. 514. https://doi.org/10.3892/ol.2023.14101
|
|
[42]
|
AbdulHussein, A.H., Al‐Taee, M.M., Radih, Z.A., Aljuboory, D.S., Mohammed, Z.Q., Hashesh, T.S., et al. (2023) Mechanisms of Cancer Cell Death Induction by Triptolide. BioFactors, 49, 718-735. https://doi.org/10.1002/biof.1944
|
|
[43]
|
Feng, K., Li, X., Bai, Y., Zhang, D. and Tian, L. (2024) Mechanisms of Cancer Cell Death Induction by Triptolide: A Comprehensive Overview. Heliyon, 10, e24335. https://doi.org/10.1016/j.heliyon.2024.e24335
|
|
[44]
|
Wang, F., An, S., Yin, Y., Li, J., Sun, C., Lan, J., et al. (2021) Triptolide Is a Promising Therapeutic Approach in Treating Thyroid Cancer Based on in Silico and in Vitro Experiment. Drug Design, Development and Therapy, 15, 4275-4287. https://doi.org/10.2147/dddt.s322502
|
|
[45]
|
Maiti, P., Scott, J., Sengupta, D., Al-Gharaibeh, A. and Dunbar, G.L. (2019) Curcumin and Solid Lipid Curcumin Particles Induce Autophagy, but Inhibit Mitophagy and the PI3K-Akt/MTOR Pathway in Cultured Glioblastoma Cells. International Journal of Molecular Sciences, 20, Article 399. https://doi.org/10.3390/ijms20020399
|
|
[46]
|
Esposito, T., Lucariello, A., Hay, E., Contieri, M., Tammaro, P., Varriale, B., et al. (2019) Effects of Curcumin and Its Adjuvant on TPC1 Thyroid Cell Line. Chemico-Biological Interactions, 305, 112-118. https://doi.org/10.1016/j.cbi.2019.03.031
|
|
[47]
|
Schwertheim, S., Wein, F., Lennartz, K., Worm, K., Schmid, K.W. and Sheu-Grabellus, S. (2017) Curcumin Induces G2/M Arrest, Apoptosis, NF-κB Inhibition, and Expression of Differentiation Genes in Thyroid Carcinoma Cells. Journal of Cancer Research and Clinical Oncology, 143, 1143-1154. https://doi.org/10.1007/s00432-017-2380-z
|
|
[48]
|
Hassan, M.H.U., Shahbaz, M., Momal, U., Naeem, H., Imran, M., Abdelgawad, M.A., et al. (2025) Exploring Punicalagin Potential against Cancers: A Comprehensive Review. Food Science & Nutrition, 13, e70072. https://doi.org/10.1002/fsn3.70072
|
|
[49]
|
Cheng, X., Yao, X., Xu, S., Pan, J., Yu, H., Bao, J., et al. (2018) Punicalagin Induces Senescent Growth Arrest in Human Papillary Thyroid Carcinoma BCPAP Cells via NF-κB Signaling Pathway. Biomedicine & Pharmacotherapy, 103, 490-498. https://doi.org/10.1016/j.biopha.2018.04.074
|
|
[50]
|
姚欣. 安石榴苷对乳头状甲状腺癌BCPAP细胞的抑制作用及机理研究[D]: [硕士学位论文]. 无锡: 江南大学, 2018.
|
|
[51]
|
王继达, 王丽, 刘海朝, 等. 黄芪注射液辅助放化疗对癌症患者疗效和不良反应的系统评价[J]. 药物评价研究, 2022, 45(6): 1147-1157.
|
|
[52]
|
黄兰, 孟雨萌, 孟尚文, 等. 黄芪注射液对甲状腺癌荷瘤小鼠肿瘤抑制作用及组织凋亡相关蛋白表达与NF-κB通路的影响[J]. 四川中医, 2024, 42(11): 72-75.
|
|
[53]
|
Yu, C., Zhang, L., Luo, D., Yan, F., Liu, J., Shao, S., et al. (2018) MicroRNA-146b-3p Promotes Cell Metastasis by Directly Targeting NF2 in Human Papillary Thyroid Cancer. Thyroid, 28, 1627-1641. https://doi.org/10.1089/thy.2017.0626
|
|
[54]
|
武红园. 夏枯草通过调控MicroRNA-146对甲状腺乳头状癌细胞增殖、侵袭的影响[D]: [硕士学位论文]. 郑州: 河南中医药大学, 2022.
|
|
[55]
|
魏健, 赵蕾, 张荣伟, 等. β-榄香烯对人乳头状甲状腺癌细胞生物学行为的影响及其作用机制[J]. 现代肿瘤医学, 2019, 27(11): 1852-1855.
|
|
[56]
|
张雅兰, 康柳枝, 黄培瑜, 等. β-榄香烯对分化型甲状腺癌细胞TPC-1131I敏感性的影响及机制研究[J]. 毒理学杂志, 2023, 37(1): 24-30.
|
|
[57]
|
Zheng, X., Jia, B., Song, X., Kong, Q., Wu, M., Qiu, Z., et al. (2018) Preventive Potential of Resveratrol in Carcinogen-Induced Rat Thyroid Tumorigenesis. Nutrients, 10, Article 279. https://doi.org/10.3390/nu10030279
|
|
[58]
|
Zhao, S., Liu, Z., Wang, M., He, D., Liu, L., Shu, Y., et al. (2018) Anti-Inflammatory Effects of Zhishi and Zhiqiao Revealed by Network Pharmacology Integrated with Molecular Mechanism and Metabolomics Studies. Phytomedicine, 50, 61-72. https://doi.org/10.1016/j.phymed.2018.09.184
|
|
[59]
|
Xie, L., Zhao, Y., Zheng, Y. and Li, X. (2023) The Pharmacology and Mechanisms of Platycodin D, an Active Triterpenoid Saponin from Platycodon Grandiflorus. Frontiers in Pharmacology, 14, Article 1148853. https://doi.org/10.3389/fphar.2023.1148853
|
|
[60]
|
Deng, B. and Sun, M. (2022) Platycodin D Inhibits the Malignant Progression of Papillary Thyroid Carcinoma by NF-κB and Enhances the Therapeutic Efficacy of Pembrolizumab. Drug Development Research, 83, 708-720. https://doi.org/10.1002/ddr.21902
|
|
[61]
|
Chen, H., Wu, Y., Wang, J., Li, Y., Chen, Y., Wang, X., et al. (2024) Tilianin Enhances the Antitumor Effect of Sufentanil on Non-Small Cell Lung Cancer. Journal of Biochemical and Molecular Toxicology, 38, e23761. https://doi.org/10.1002/jbt.23761
|
|
[62]
|
Xiong, C., Yan, B., Xia, S., Yu, F., Zhao, J. and Bai, H. (2021) Tilianin Inhibits the Human Ovarian Cancer (PA-1) Cell Proliferation via Blocking Cell Cycle, Inducing Apoptosis and Inhibiting JAK2/STAT3 Signaling Pathway. Saudi Journal of Biological Sciences, 28, 4900-4907. https://doi.org/10.1016/j.sjbs.2021.06.033
|
|
[63]
|
Liu, J., Zhu, Z., Dong, Y., Shi, D., Ding, Y. and Zheng, F. (2025) Tilianin Regulates the Proliferation, Invasion and Tumor Immune Microenvironment of Thyroid Cancer Cells through the Tlr4/NF-ΚB Axis. International Immunopharmacology, 158, Article 114783. https://doi.org/10.1016/j.intimp.2025.114783
|
|
[64]
|
Li, Y., Miao, J., Liu, C., Tao, J., Zhou, S., Song, X., et al. (2025) Kushenol O Regulates GALNT7/Nf-κB Axis-Mediated Macrophage M2 Polarization and Efferocytosis in Papillary Thyroid Carcinoma. Phytomedicine, 138, Article 156373. https://doi.org/10.1016/j.phymed.2025.156373
|
|
[65]
|
Allegri, L., Capriglione, F., Maggisano, V., Damante, G. and Baldan, F. (2021) Effects of Dihydrotanshinone I on Proliferation and Invasiveness of Paclitaxel-Resistant Anaplastic Thyroid Cancer Cells. International Journal of Molecular Sciences, 22, Article 8083. https://doi.org/10.3390/ijms22158083
|
|
[66]
|
Lepore, S.M., Maggisano, V., Lombardo, G.E., et al. (2019) Antiproliferative Effects of Cynaropicrin on Anaplastic Thyroid Cancer Cells. Endocrine, Metabolic & Immune Disorders Drug Targets, 19, 59-66. https://doi.org/10.2174/1871530318666180928153241
|
|
[67]
|
Song, W., Yao, R., Vijayalakshmi, A., et al. (2025) Eupatorin Modulates BCPAP in Thyroid Cancer Cell Proliferation via Suppressing the NF-κB/PI3K/AKT Signaling Pathways. Advances in Clinical and Experimental Medicine, 38, 1365-1374. https://doi.org/10.17219/acem/191595
|
|
[68]
|
罗婷, 范郁山, 代波. 右归丸的临床研究进展[J]. 大众科技, 2021, 23(1): 68-70, 111.
|
|
[69]
|
谭从娥, 杨飞, 陈金妍, 等. Toll样受体信号转导通路在肾阳虚证中的改变及右归丸干预的影响[J]. 中华中医药杂志, 2019, 34(4): 1742-1746.
|
|
[70]
|
范浩群. 右归丸加减治疗甲状腺乳头状癌术后脾肾阳虚证的临床疗效观察[D]: [博士学位论文]. 广州: 广州中医药大学, 2025.
|