[1]
|
He, Z., Yang, D., Fan, X., Zhang, M., Li, Y., Gu, X., et al. (2020) The Roles and Mechanisms of LncRNAs in Liver Fibrosis. International Journal of Molecular Sciences, 21, Article 1482. https://doi.org/10.3390/ijms21041482
|
[2]
|
Smith, A., Baumgartner, K. and Bositis, C. (2019) Cirrhosis: Diagnosis and Management. American Family Physician, 100, 759-770.
|
[3]
|
Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N. and Kamath, P.S. (2021) Liver Cirrhosis. The Lancet, 398, 1359-1376. https://doi.org/10.1016/s0140-6736(21)01374-x
|
[4]
|
Gu, L., Zhang, F., Wu, J. and Zhuge, Y. (2022) Nanotechnology in Drug Delivery for Liver Fibrosis. Frontiers in Molecular Biosciences, 8, Article 804396. https://doi.org/10.3389/fmolb.2021.804396
|
[5]
|
Li, B., Ma, Y., Tan, L., Ren, H., Wu, L., Su, Q., et al. (2023) 20-Hydroxytetraenoic Acid Induces Hepatic Fibrosis via the TGF-β1/Smad3 Signaling Pathway. Toxicology Letters, 373, 1-12. https://doi.org/10.1016/j.toxlet.2022.11.001
|
[6]
|
Xu, Y., Sun, X., Zhang, R., Cao, T., Cai, S., Boyer, J.L., et al. (2020) A Positive Feedback Loop of TET3 and TGF-β1 Promotes Liver Fibrosis. Cell Reports, 30, 1310-1318.e5. https://doi.org/10.1016/j.celrep.2019.12.092
|
[7]
|
Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J. and Lv, X. (2023) Matrix Metalloproteinases Induce Extracellular Matrix Degradation through Various Pathways to Alleviate Hepatic Fibrosis. Biomedicine & Pharmacotherapy, 161, Article ID: 114472. https://doi.org/10.1016/j.biopha.2023.114472
|
[8]
|
Xin, X., Cheng, X., Zeng, F., Xu, Q. and Hou, L. (2024) The Role of TGF-β/Smad Signaling in Hepatocellular Carcinoma: From Mechanism to Therapy and Prognosis. International Journal of Biological Sciences, 20, 1436-1451. https://doi.org/10.7150/ijbs.89568
|
[9]
|
Yang, Y., Sun, M., Li, W., Liu, C., Jiang, Z., Gu, P., et al. (2021) Rebalancing TGF‐β/Smad7 Signaling via Compound Kushen Injection in Hepatic Stellate Cells Protects against Liver Fibrosis and Hepatocarcinogenesis. Clinical and Translational Medicine, 11, e410. https://doi.org/10.1002/ctm2.410
|
[10]
|
Cao, Z., Liu, Y., Wang, Y. and Leng, P. (2023) Research Progress on the Role of PDGF/PDGFR in Type 2 Diabetes. Biomedicine & Pharmacotherapy, 164, Article ID: 114983. https://doi.org/10.1016/j.biopha.2023.114983
|
[11]
|
Wang, Y., Wang, P., Yu, Y., Huang, E., Yao, Y., Guo, D., et al. (2023) Hepatocyte Ninjurin2 Promotes Hepatic Stellate Cell Activation and Liver Fibrosis through the IGF1R/EGR1/PDGF-BB Signaling Pathway. Metabolism, 140, Article ID: 155380. https://doi.org/10.1016/j.metabol.2022.155380
|
[12]
|
Wang, R., Liu, F., Chen, P., Li, S., Gu, Y., Wang, L., et al. (2023) Gomisin D Alleviates Liver Fibrosis through Targeting PDGFRβ in Hepatic Stellate Cells. International Journal of Biological Macromolecules, 235, Article ID: 123639. https://doi.org/10.1016/j.ijbiomac.2023.123639
|
[13]
|
Kikuchi, A., Singh, S., Poddar, M., Nakao, T., Schmidt, H.M., Gayden, J.D., et al. (2020) Hepatic Stellate Cell-Specific Platelet-Derived Growth Factor Receptor-α Loss Reduces Fibrosis and Promotes Repair after Hepatocellular Injury. The American Journal of Pathology, 190, 2080-2094. https://doi.org/10.1016/j.ajpath.2020.06.006
|
[14]
|
Ai, J., Liu, C., Zhang, W. and Rao, G. (2024) Current Status of Drugs Targeting PDGF/PDGFR. Drug Discovery Today, 29, Article ID: 103989. https://doi.org/10.1016/j.drudis.2024.103989
|
[15]
|
Roehlen, N., Crouchet, E. and Baumert, T.F. (2020) Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9, Article 875. https://doi.org/10.3390/cells9040875
|
[16]
|
Valizadeh, A., Sayadmanesh, A., Asemi, Z., Alemi, F., Mahmoodpoor, A. and Yousefi, B. (2021) Regulatory Roles of the Notch Signaling Pathway in Liver Repair and Regeneration: A Novel Therapeutic Target. Current Medicinal Chemistry, 28, 8608-8626. https://doi.org/10.2174/0929867328666210419123200
|
[17]
|
Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., et al. (2022) Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduction and Targeted Therapy, 7, Article No. 95. https://doi.org/10.1038/s41392-022-00934-y
|
[18]
|
Bansal, R., van Baarlen, J., Storm, G. and Prakash, J. (2015) The Interplay of the Notch Signaling in Hepatic Stellate Cells and Macrophages Determines the Fate of Liver Fibrogenesis. Scientific Reports, 5, Article No. 18272. https://doi.org/10.1038/srep18272
|
[19]
|
Yue, Z., Jiang, Z., Ruan, B., Duan, J., Song, P., Liu, J., et al. (2021) Disruption of Myofibroblastic Notch Signaling Attenuates Liver Fibrosis by Modulating Fibrosis Progression and Regression. International Journal of Biological Sciences, 17, 2135-2146. https://doi.org/10.7150/ijbs.60056
|
[20]
|
Li, X., Jiang, F., Hu, Y., Lang, Z., Zhan, Y., Zhang, R., et al. (2023) Schisandrin B Promotes Hepatic Stellate Cell Ferroptosis via WNT Pathway-Mediated Ly6clo Macrophages. Journal of Agricultural and Food Chemistry, 71, 17295-17307. https://doi.org/10.1021/acs.jafc.3c03409
|
[21]
|
Hu, H., Cao, G., Wu, X., Vaziri, N.D. and Zhao, Y. (2020) WNT Signaling Pathway in Aging-Related Tissue Fibrosis and Therapies. Ageing Research Reviews, 60, Article ID: 101063. https://doi.org/10.1016/j.arr.2020.101063
|
[22]
|
Zou, G. and Park, J. (2023) WNT Signaling in Liver Regeneration, Disease, and Cancer. Clinical and Molecular Hepatology, 29, 33-50. https://doi.org/10.3350/cmh.2022.0058
|
[23]
|
Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) WNT/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3. https://doi.org/10.1038/s41392-021-00762-6
|
[24]
|
Yan, Y., Zeng, J., Xing, L. and Li, C. (2021) Extra-and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines, 9, Article 1014. https://doi.org/10.3390/biomedicines9081014
|
[25]
|
Chen, Y., Chen, X., Ji, Y., Zhu, S., Bu, F., Du, X., et al. (2020) PLK1 Regulates Hepatic Stellate Cell Activation and Liver Fibrosis through WNT/β‐Catenin Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 7405-7416. https://doi.org/10.1111/jcmm.15356
|
[26]
|
Wang, C., Liu, Y., Gong, L., Xue, X., Fu, K., Ma, C., et al. (2023) Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and WNT/β-Catenin Signaling Pathway. Inflammation, 46, 1543-1560. https://doi.org/10.1007/s10753-023-01826-1
|
[27]
|
Guo, Q., Jin, Y., Chen, X., Ye, X., Shen, X., Lin, M., et al. (2024) NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduction and Targeted Therapy, 9, Article No. 53. https://doi.org/10.1038/s41392-024-01757-9
|
[28]
|
Gaptulbarova, K.A., Tsyganov, M.M., Pevzner, A.M., Ibragimova, M.K. and Litviakov, N.V. (2023) NF-κB as a Potential Prognostic Marker and a Candidate for Targeted Therapy of Cancer. Experimental Oncology, 42, 263-269. https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-4.15414
|
[29]
|
Chen, J., Yang, Y., Meng, X., Lin, R., Tian, X., Zhang, Y., et al. (2024) Oxysophoridine Inhibits Oxidative Stress and Inflammation in Hepatic Fibrosis via Regulating NRF2 and NF-κB Pathways. Phytomedicine, 132, Article ID: 155585. https://doi.org/10.1016/j.phymed.2024.155585
|
[30]
|
Zhang, Y., Ren, L., Tian, Y., Guo, X., Wei, F. and Zhang, Y. (2024) Signaling Pathways That Activate Hepatic Stellate Cells during Liver Fibrosis. Frontiers in Medicine, 11, Article 1454980. https://doi.org/10.3389/fmed.2024.1454980
|
[31]
|
Zhang, X., Sharma, P., Maschmeyer, P., Hu, Y., Lou, M., Kim, J., et al. (2023) GARP on Hepatic Stellate Cells Is Essential for the Development of Liver Fibrosis. Journal of Hepatology, 79, 1214-1225. https://doi.org/10.1016/j.jhep.2023.05.043
|
[32]
|
Cho, S.S., Lee, J.H., Kim, K.M., Park, E.Y., Ku, S.K., Cho, I.J., et al. (2021) REDD1 Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis via Inhibiting of TGF-β/Smad Signaling Pathway. Free Radical Biology and Medicine, 176, 246-256. https://doi.org/10.1016/j.freeradbiomed.2021.10.002
|
[33]
|
Song, Y., Wei, J., Li, R., Fu, R., Han, P., Wang, H., et al. (2023) Tyrosine Kinase Receptor B Attenuates Liver Fibrosis by Inhibiting TGF-β/Smad Signaling. Hepatology, 78, 1433-1447. https://doi.org/10.1097/hep.0000000000000319
|
[34]
|
Zhang, J., Wang, W., Cui, X., Zhu, P., Li, S., Yuan, S., et al. (2024) Ganoderma Lucidum Ethanol Extracts Ameliorate Hepatic Fibrosis and Promote the Communication between Metabolites and Gut Microbiota G_Ruminococcus through the NF-κB and TGF-β1/Smads Pathways. Journal of Ethnopharmacology, 322, Article ID: 117656. https://doi.org/10.1016/j.jep.2023.117656
|
[35]
|
Liu, F., Li, S., Chen, P., Gu, Y., Wang, S., Wang, L., et al. (2023) Salvianolic Acid B Inhibits Hepatic Stellate Cell Activation and Liver Fibrosis by Targeting PDGFRβ. International Immunopharmacology, 122, Article ID: 110550. https://doi.org/10.1016/j.intimp.2023.110550
|
[36]
|
Zhang, C., An, R., Bao, Y., Meng, X., Wang, T., Sun, H., et al. (2019) Inhibitory Effects of Octreotide on the Progression of Hepatic Fibrosis via the Regulation of Bcl-2/Bax and PI3K/AKT Signaling Pathways. International Immunopharmacology, 73, 515-526. https://doi.org/10.1016/j.intimp.2019.05.055
|
[37]
|
Martí-Rodrigo, A., Alegre, F., Moragrega, Á.B., García-García, F., Martí-Rodrigo, P., Fernández-Iglesias, A., et al. (2019) Rilpivirine Attenuates Liver Fibrosis through Selective Stat1-Mediated Apoptosis in Hepatic Stellate Cells. Gut, 69, 920-932. https://doi.org/10.1136/gutjnl-2019-318372
|
[38]
|
Xu, X., Geng, Y., Xu, H., Ren, Y., Liu, D. and Mao, Y. (2022) Antrodia Camphorata-Derived Antrodin C Inhibits Liver Fibrosis by Blocking TGF-β and PDGF Signaling Pathways. Frontiers in Molecular Biosciences, 9, Article 835508. https://doi.org/10.3389/fmolb.2022.835508
|
[39]
|
Zhou, G., Li, C., Zhang, R., Zhan, Y., Lin, L., Lang, Z., et al. (2022) Kaempferol Inhibits Hepatic Stellate Cell Activation by Regulating miR-26b-5p/Jag1 Axis and Notch Pathway. Frontiers in Pharmacology, 13, Article 881855. https://doi.org/10.3389/fphar.2022.881855
|
[40]
|
Fu, Y., Xiao, Z., Tian, X., Liu, W., Xu, Z., Yang, T., et al. (2021) The Novel Chinese Medicine JY5 Formula Alleviates Hepatic Fibrosis by Inhibiting the Notch Signaling Pathway. Frontiers in Pharmacology, 12, Article 671152. https://doi.org/10.3389/fphar.2021.671152
|
[41]
|
Richter, L.R., Wan, Q., Wen, D., Zhang, Y., Yu, J., Kang, J.k., et al. (2020) Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS Nano, 14, 6878-6886. https://doi.org/10.1021/acsnano.0c01007
|
[42]
|
Li, Y., Zhang, L., Jiao, J., Ding, Q., Li, Y., Zhao, Z., et al. (2023) Hepatocyte CD36 Protects Mice from NASH Diet-Induced Liver Injury and Fibrosis via Blocking N1ICD Production. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1869, Article ID: 166800. https://doi.org/10.1016/j.bbadis.2023.166800
|
[43]
|
Zaafan, M.A. and Abdelhamid, A.M. (2021) Dasatinib Ameliorates Thioacetamide-Induced Liver Fibrosis: Modulation of miR-378 and miR-17 and Their Linked WNT/β-Catenin and TGF-β/Smads Pathways. Journal of Enzyme Inhibition and Medicinal Chemistry, 37, 118-124. https://doi.org/10.1080/14756366.2021.1995379
|
[44]
|
Sharma, N., Sistla, R. and Andugulapati, S.B. (2024) Yohimbine Ameliorates Liver Inflammation and Fibrosis by Regulating Oxidative Stress and Wnt/β-Catenin Pathway. Phytomedicine, 123, Article ID: 155182. https://doi.org/10.1016/j.phymed.2023.155182
|
[45]
|
Zhou, G., Li, C., Zhan, Y., Zhang, R., Lv, B., Geng, W., et al. (2020) Pinostilbene Hydrate Suppresses Hepatic Stellate Cell Activation via Inhibition of miR-17-5p-Mediated WNT/β-Catenin Pathway. Phytomedicine, 79, Article ID: 153321. https://doi.org/10.1016/j.phymed.2020.153321
|
[46]
|
Liu, Q., Chen, J., Ma, T., Huang, W. and Lu, C. (2024) DCDC2 Inhibits Hepatic Stellate Cell Activation and Ameliorates CCl4-Induced Liver Fibrosis by Suppressing WNT/β-Catenin Signaling. Scientific Reports, 14, Article No. 9425. https://doi.org/10.1038/s41598-024-59698-w
|
[47]
|
Liu, Y., Nong, L., Jia, Y., Tan, A., Duan, L., Lu, Y., et al. (2020) Aspirin Alleviates Hepatic Fibrosis by Suppressing Hepatic Stellate Cells Activation via the TLR4/NF-κB Pathway. Aging, 12, 6058-6066. https://doi.org/10.18632/aging.103002
|
[48]
|
Tu, S., Jiang, Y., Cheng, H., Yuan, X., He, Y., Peng, Y., et al. (2021) Fluorofenidone Protects Liver against Inflammation and Fibrosis by Blocking the Activation of NF‐κB Pathway. The FASEB Journal, 35, e21497. https://doi.org/10.1096/fj.202002402r
|
[49]
|
Sharawy, M.H., El-Kashef, D.H., Shaaban, A.A. and El-Agamy, D.S. (2021) Anti-Fibrotic Activity of Sitagliptin against Concanavalin A-Induced Hepatic Fibrosis. Role of NRF2 Activation/NF-κB Inhibition. International Immunopharmacology, 100, Article ID: 108088. https://doi.org/10.1016/j.intimp.2021.108088
|
[50]
|
Xie, N., Ma, R., Wang, L., Shu, Y., He, P., Zhou, Y., et al. (2024) Cannabidiol Regulates the Activation of Hepatic Stellate Cells by Modulating the NOX4 and NF-κB Pathways. Food and Chemical Toxicology, 186, Article ID: 114517. https://doi.org/10.1016/j.fct.2024.114517
|