肝纤维化发生发展的信号通道及其相关靶点治疗进展
Therapeutic Advances in Signaling Channels and Their Associated Targets in the Development of Liver Fibrosis
DOI: 10.12677/jcpm.2025.45459, PDF, HTML, XML,    科研立项经费支持
作者: 朱芳卓, 庄 波, 张云起, 谭枨巍, 张茜茜*:济宁医学院临床医学院(附属医院),山东 济宁;赵士兴:济宁医学院临床医学院(附属医院),山东 济宁;济宁医学院附属医院重症医学科,山东 济宁;张 帆:济宁医学院临床医学院(附属医院),山东 济宁;济宁医学院附属医院消化内科,山东 济宁
关键词: 肝纤维化分子机制信号通道治疗靶点Liver Fibrosis Molecular Mechanisms Signaling Channels Therapeutic Targets
摘要: 肝纤维化是由多种病因引起的肝细胞反复损伤与修复、细胞外基质异常增生的病理过程,是进展为肝硬化甚至肝癌的关键因素。尽管去除病因可在一定程度上逆转肝纤维化,但逆转往往出现得较慢或较少,无法避免病情的进展,尤其是在肝纤维化晚期阶段。因此,明确肝纤维化的发生机制,探索逆转肝纤维化的治疗靶点是现阶段的重要研究方向。截至目前,已有大量抗纤维化方法在细胞研究和动物模型中得到验证,而且,越来越多的分子也正在以及将要进入临床试验,这推动了旨在寻找新治疗方法的前临床研究和临床试验。在本综述中,我们总结了肝纤维化发生发展的分子机制,以及基于这些分子机制潜在的治疗方法。
Abstract: Liver fibrosis is a pathological process of repeated damage and repair of hepatocytes and abnormal proliferation of extracellular matrix caused by a variety of etiologic factors, and is a key factor in the progression to cirrhosis and even hepatocellular carcinoma. Although removing the causes can reverse liver fibrosis to a certain extent, the reversal often occurs slower or less frequently, and the progression of the disease cannot be avoided, especially in the advanced stage of liver fibrosis. Therefore, clarifying the mechanism of liver fibrosis and exploring therapeutic targets for reversing liver fibrosis are important research directions at this stage. To date, a large number of antifibrotic approaches have been validated in cellular studies and animal models, and an increasing number of molecules are and will be entering clinical trials, which is driving preclinical studies and clinical trials aimed at finding new therapeutic approaches. In this review, we summarize the molecular mechanisms involved in the development of liver fibrosis and the potential therapeutic approaches based on these molecular mechanisms.
文章引用:朱芳卓, 赵士兴, 庄波, 张帆, 张云起, 谭枨巍, 张茜茜. 肝纤维化发生发展的信号通道及其相关靶点治疗进展[J]. 临床个性化医学, 2025, 4(5): 48-57. https://doi.org/10.12677/jcpm.2025.45459

1. 引言

肝纤维化(heptic fibrosis, HF)是由多种病因如病毒性肝炎、酒精性脂肪性肝病、非酒精性脂肪性肝病(NAFLD)、药物性肝损伤、胆汁淤积性肝病和自身免疫性肝病等引起的肝细胞损伤修复过程失调的结果。其主要的病理特征是细胞外基质(extracellular, matrix, ECM)合成增多、降解减少,进而沉积过多,破坏了肝脏的生理结构[1]。肝星状细胞(HSC)是肝纤维组织中ECM的主要来源,当肝脏受到短期损伤时,组织修复的过程与抗纤维化机制保持平衡,导致肌成纤维细胞失活或凋亡。相比之下,在慢性肝病中,HSC会持续向肌成纤维细胞转化,表达各种纤维蛋白,生成大量的ECM,导致肝纤维化的发生和发展[2]。肝纤维化持续加重会进一步发展为肝硬化,进而出现门脉高压、肝癌等严重并发症。而肝硬化与并发症高发病率和病人高死亡率密切相关[3]。目前,治疗晚期肝病的唯一有效方法只有肝移植[4]。肝纤维化作为肝硬化的早期阶段,在一定程度上可被逆转。因此,探究肝纤维化的发生机制以及针对其靶点对肝纤维化的治疗和控制对延缓疾病进展具有重要意义。现就肝纤维化发生发展中的相关分子通路和相应治疗进展进行综述,以期为靶向药物研发提供新思路。

2. 肝纤维化的分子信号通路

肝纤维化的发生与肝星状细胞(HSC)的激活有关,这是多种细胞因子的协同调控的结果,本文将描述涉及HSC激活的重要分子途径(图1)。

2.1. TGF-β与肝纤维化

转化生长因子β (transfoming growth factor-β, TGF-β)可以促进ECM合成,并抑制其降解,是导致肝纤维化的重要细胞因子。TGF-β超家族包括TGF-β、骨形成发生蛋白(BMP)、抑制素等33个成员组成,其中TGF-β主要包括TGF-β1、TGF-β2和TGF-β3三种类型。TGF-β中的TGF-β1被认为是肝纤维化形成的最关键因子,其表达与肝病进展的所有阶段都密切相关[5]。当肝细胞受到损伤时,Kupffer细胞、巨噬细胞等可生成大量TGF-β1并活化相邻的HSC,促使其转化成肌成纤维细胞,当肌成纤维细胞大量增殖

(a)

(b)

Figure 1. The important molecular pathways promoting HSC activation

1. 促进HSC激活的重要分子途径

后可以合成过量ECM,进而促进肝纤维化[6]。另外活化的HSC会产生大量组织金属酶抑制因子-1 (Tissue Inhibitor of Metalloproteinases-1, TIMP-1),TIMP-1可与基质金属蛋白酶-2 (Matrix Metalloproteinase-2, MMP-2)结合降低其活性,而MMP的作用是促进肝纤维化组织中ECM的降解,TIMP作为MMP的生理抑制剂能够调控MMP的活性,这种失衡进一步促进了ECM的沉积,促进肝纤维化[7]。TGF-β1的下游信号传导通常会汇聚到Smad蛋白上。Smad蛋白家族,根据功能不同分为三类:受体型Smad (R-Smad)包括Smad1、2、3、5、8,其中Smad2、Smad3属于TGF-β1激活的下游调节蛋白;抑制性Smad (I-Smad)包括Smad6、7,其中Smad7对TGF-β1/Smad通路起到主要抑制性调控作用,通用型Smad (CO-Smad)包括Smad4,参与TGF-β超家族中的各类信号通路[8]。TGF-β受体(TGF-βreceptor, TβR)包括TβRI、TβRII、TβRIII。其中TβRI、TβRII因其跨膜区含丝氨酸(Ser)/苏氨酸(Thr)蛋白激酶结构域而具有细胞信号转导活性。肝纤维化过程中TGF-β1与自身磷酸化的TGF-βRII相结合,启动信号转导过程,从而招募TGF-βRI,TGF-βRII与TGF-βRI形成异源二聚体,并发生磷酸化,磷酸化后的TGF-βRI能激活自身磷酸化酶活性,进一步磷酸化Smad2/3,被磷酸化的Smad2/3和Smad4结合一同转位至细胞核,调节可促进肝纤维化相关因子α-SMA、I型胶原蛋白(COL1A1)和Ⅲ型胶原蛋白(COL1A3)促纤维化基因的转录,肝纤维化由此产生。相反,Smad7能够充当负调控因子抑制TGF-β的促纤维化作用[8]。相关研究表明,复方苦参注射液(CKI)可以抑制小鼠肝脏中TGF-β1、COL1A、纤连蛋白和TIMP1的表达,然而敲除Smad7后则消除了CKI介导的HSCs活化抑制,这进一步验证了Smad7对TGF-β促纤维化的抑制作用[9]

2.2. PDGF

血小板源性生长因子(Platelet-Derived Growth Factor, PDGF)信号通道可以促进胶原蛋白的生成和沉积,并诱导HSC活化,在肝纤维化的发生和预后中起着重要作用。PDGF由四种不同的亚基组成,分别为PDGF-A、PDGF-B、PDGF-C、PDGF-D。这些亚基可以通过二硫键形成不同类型的二聚体,如PDGF-AA、PDGF-BB、PDGF-AB、PDGF-CC和PDGF-DD [10]。有研究表明,肝纤维化中NINJ2编码神经损伤诱导蛋白2 (Ninjurin2)的表达显著上调,抑制HSC中的PDGF-BB信号传导可以消除Ninjurin2的促纤维化作用[11]。PDGFR属于受体酪氨酸激酶(RTK)家族,具有蛋白酪氨酸激酶的功能,于血管内皮细胞、成纤维细胞和Kupffer细胞多见。PDGFR有PDGFR-α和PDGFR-β两种类型,与静止的HSCs相比,活化的HSCs中PDGFR-α的表达水平保持不变,只有PDGFR-β的表达上调[12]。另有研究表明,PDGFR-α在体内慢性肝损伤过程中也通过调节HSC存活和迁移发挥促纤维化作用[13]。由于配体的二聚化作用,当PDGFR与PDGF结合时,就会发生配体介导的受体二聚化及自身磷酸化[14]。在肝损伤期间,Kupffer细胞介导血小板的肝内募集。此外,PDGF也可由Kupffer细胞、内皮细胞和活化的HSC表达。最后,PDGFR在HSC膜上表达,因此可以通过自分泌机制刺激HSC激活。PDGF与其相应受体的结合诱导受体二聚化和磷酸化,进而磷酸化不同细胞内底物上的酪氨酸残基。刺激PDGFR会触发多种信号通路的激活,包括Ras/Raf系统、磷脂酶Cγ (PLCγ)、磷脂酰肌醇3-激酶(PI3K)/Akt通路,以及JAK/信号转导和转录激活因子(STAT)通路。然后,这些下游元件调节促纤维化靶基因的表达水平,例如I型胶原蛋白(COL1A1)、TIMP和MMP,以及细胞凋亡调节因子Bcl2,从而导致细胞增殖和存活[15]

2.3. Notch

Notch信号通路是一种高度进化保守的通路,调节多种组织中的细胞分化、增殖和凋亡。目前发现有四种Notch受体(Notch1, -2, -3和-4)和两种配体(Jagged1, -2和Dll1, -3, -4) [16]。Notch受体和Notch配体表达细胞之间的相互作用导致Notch信号级联的激活,进而触发配体激活的Notch受体被γ-分泌酶复合物切割,导致Notch细胞内结构域(NICD)的释放。随后,Notch细胞内结构域转移到细胞核中并结合DNA结合重组信号结合蛋白Jκ (Rbp-Jκ)和Mastermind蛋白(MAM)以激活经典Notch靶标的转录,包括发状分裂相关增强子(Hairy and Enhancer of Split 1, Hes1)和Hes相关1,2 (Hey)家族基因的毛状增强子[17]。Notch信号通路的激活与肝脏中的HSCs活化呈同步状态,HSCs中的Notch通路通过上皮间充质激活,活化HSC,增加ECM的沉积,加重肝纤维化[18]。研究表明,Notch信号参与了肝纤维化进展和消退的调节。一方面,纤维疤痕区域中的核NICD阳性细胞数量随着进展而增加,并随着消退而减少;另一方面,Notch3、Jagged1和Notch信号下游靶基因的表达量也随着肝纤维化的进展而增加,随着肝纤维化的消退而减少。肌成纤维细胞中Notch信号传导的阻断不仅通过抑制HSCs对肌成纤维细胞的激活来减少ECM的沉积,而且还上调了MMPs的表达,促进ECM的降解,从而抑制肝纤维化的进展[19]。综上所述,Notch信号激活可通过促进HSC的活化,进而促进肝纤维化的进展。

2.4. Wnt/β-Catenin

Wnt/β-catenin信号通路在指导分化、增殖、维持胚胎发育和体内平衡方面起着至关重要的作用。此外,它还参与各种人类疾病的发展[20]。Wnt通道的激活可以刺激HSC的增殖和活化,通过增加细胞外基质合成、上皮–间充质转化或与其他纤维化介质的相互作用来导致肝纤维化[21]。Wnt信号传导是由Wnt配体与卷曲受体(FZD)的结合触发的。哺乳动物有19个Wnt配体和10个卷曲受体,导致了Wnt信号传导激活的复杂性和特异性[22]。经典的Wnt途径通常是高度保守的,并通过自分泌/旁分泌的方式将细胞外的Wnt配体与膜受体结合而激活。一旦激活,典型的Wnt通路诱导β-catenin的稳定性并将其转移到细胞核,最终促进与细胞增殖、存活、分化和迁移有关的基因的表达[23]。胞外Wnt蛋白与靶细胞膜上的卷曲蛋白(Frz)和共受体低密度脂蛋白受体相关蛋白5/6 (LRP5/6)连接,从而传递信号通过蓬乱蛋白(Dvl)的磷酸化向细胞质发出细胞外信号。胞质内信号传导时,蓬乱蛋白通过抑制GSK-3β激活来防止β-catenin磷酸化或降解,从而积累游离β-catenin。核内信号转导时,当细胞质中游离的β-catenin达到一定水平时,即可进入细胞核,与核淋巴细胞增强因子/T淋巴细胞因子(LEF/TCF)结合,形成β-catenin-LEF/TCF复合物,导致经典Wnt信号通路中下游靶基因的转录[24]。研究表明,CCl4诱导的肝纤维化小鼠的原代HSC中和TGFβ1刺激的LX-2细胞中Polo样激酶1 (PLK1)的表达均有升高。抑制PLK1的表达降低了HSC的活化,促进了HSC凋亡,而Wnt/β-catenin可能是PLK1介导的HSC活化所必需的信号通路[25]。连翘素可以通过抑制多种促纤维化因子,调节多种炎症因子,抑制Wnt/β-catenin途径,从而抑制HSCs的激活和胶原的积累,从而抑制肝纤维化[26]

2.5. NF-κB

核因子κB (Nuclear factor-KappaB, NF-κB)转录因子在先天免疫、肝脏炎症、纤维化和细胞凋亡预防中发挥重要作用。NF-κB是一个转录因子家族,包括RelA (p65)、NF-κB1 (p50和p105)、NF-κB2 (p52和p100)、c-Rel和RelB。RelA、RelB和c-Rel含有具备转录激活活性的转录激活结构域(TAD)。然而,p50和p52缺乏TAD,它们形成的同二聚体是转录抑制因子,因此p50和p52通常会与含TAD的家族成员形成异二聚体以进一步发挥功能[27]。在非活性状态下,NF-κB蛋白存在于细胞质中,并与细胞质中的特异性抑制剂IkBα形成共聚物,但在经典NF-κB信号通路激活期间,IκBα迅速降解,导致多个NF-κB二聚体的释放,与许多免疫反应基因的启动子结合并激活转录[28]。肝巨噬细胞,即库普弗细胞(Kupffer cell),在肝纤维化中起着不可或缺的作用。肝损伤触发肝巨噬细胞的激活,并伴有炎性细胞因子和趋化因子的释放,进而导致HSC的激活和存活,最终促进纤维化[29]。当肝细胞受损时,会释放活性氧(ROS)和损伤相关分子模式(DAMPs)。这些DAMP能激活Toll样受体(TLRs)、肿瘤坏死因子受体以及白介素受体1 (IL-1)。DAMPs与其配体结合后,会触发TLR4/髓系分化88 (MYD88)通路,进而激活NF-κB。这一过程会促进包含NOD-、LRR-和pyrin结构域的蛋白3 (NLRP3)的转录,从而引发炎症反应,这与核苷酸结合寡聚结构域(NOD)、半胱天冬酶原-1 (pro-caspase-1)、白介素-18前体(pro-IL-18)和白介素-1β前体(pro-IL-1β)所引发的情况类似。同时,ROS还会触发NLRP3以及接头凋亡相关斑点,比如含有CARD (ASC)的凋亡相关斑点样蛋白的组装,并募集pro-caspase-1,最终触发炎性小体。激活后的炎性小体可促进IL-1β和IL-18的生成,进而激活肝星状细胞(HSC),最终导致肝纤维化的发展[30]

3. 治疗

3.1. TGF-β

鉴于TGF-β/Smad通道在活化HSC中的重要性,靶向TGF-β/Smad通道可能是肝纤维化的一种重要的潜在治疗策略。糖蛋白A重复优势蛋白(GARP)是一种膜蛋白,是TGF-β的对接受体。Zhang等[31]研究显示,与对照组相比,GARP敲除小鼠的纤维化基因(α平滑肌肌动蛋白,I型和III型胶原,TIMP金属调控酶抑制物1)表达降低,胶原沉积减少,同时α-SMA丰度以及羟脯氨酸含量降低,说明GARP缺失不易形成纤维化,在原有疾病上可缓解纤维化过程,且HSC上GARP的去除不会增加炎症或肝损伤,这表明GARP有望可作为治疗肝纤维化的靶点。另有研究表明在CCl4诱导的小鼠中,REDD1腺病毒感染可降低ALT/AST的水平和胶原蛋白的积累,可以显著抑制TGF-β诱导的纤溶酶原激活物抑制剂-1表达和Smad的磷酸化,这表明REDD1可以通过减少纤溶酶原激活物抑制剂-1和抑制TGF-β/Smad通道来防止肝纤维化[32]。Song等[33]探讨酪氨酸激酶受体B (TrkB)在肝纤维化进展中的调控网络和治疗潜力中发现,TGF-β在HSC中通过E3连接酶Nedd4-2刺激TrkB降解。免疫印迹实验证明,TrkB过表达可增强TGF-β1诱导的HSCs中COL1A1的产生。qRT-PCR分析进一步证实,在LX2细胞中,TrkB过表达能抑制TGF-β1对COL1A1和结缔组织生长因子(CTGF) mRNA水平的上调作用,进一步在体外和体内减轻肝纤维化。这些发现说明TrkB可能是肝纤维化的负性调节因子,这将为肝纤维化提供潜在的治疗靶点。灵芝是一种传统的食用药用蘑菇,作为一种饮食干预,已被广泛报道可改善肝脏疾病。甘草总萜类化合物(GLTTs)是一种灵芝提取物,已有研究表明GLTTs可以通过调节NF-κB以及TGF-β1/Smads通路,进而降低肝脏病理指标、促炎细胞因子水平以及肝脏胶原纤维的沉积,因此GLTTs可为新型功能性食品成分或药物在肝纤维化治疗中的应用提供潜在靶点[34]

3.2. PDGF

Liu等[35]研究表明丹酚酸B可以通过靶向PDGF-BB/PDGFRβ信号通路及其下游关键信号蛋白p-AKT/AKT、p-ERK/ERK和p-p38/p38的表达,抑制HSC增殖、激活和迁移,促进HSC细胞凋亡,并减少CCl4诱导的肝纤维化,有望成为抗纤维化药物。生长抑素及其类似物奥曲肽能够抑制DNA合成和活化的HSC的增殖。最近的研究表明奥曲肽的抗纤维化作用与多种机制有关,包括抑制炎症、调节Bcl-2/Bax信号通路、下调PI3K/AKT信号通路来抑制HSC激活和促进活化的HSC凋亡等。这些结果证明奥曲肽具有抗肝纤维化的治疗潜力,并可能为奥曲肽的抗纤维化作用提供新的机制[36]。利巴韦林(RPV)是一种广泛使用的抗HIV药物,最近有研究表明RPV可以通过选择性的STAT 1依赖性诱导肝星状细胞凋亡改善肝纤维化,在肝细胞中发挥旁分泌作用,从而促进肝再生。值得注意的是,RPV特别适用于对某些肝病易感的HIV感染患者,这一观点也得到了临床数据分析的支持。这提示RPV作为一种新的治疗策略本身可能具有很大的临床意义[37]。Antrodin C是一种樟树发酵代谢物,在体外和CCl4诱导的小鼠肝纤维化中,Antrodin C可以下调纤维化肝脏中α平滑肌肌动蛋白(α-SMA)和胶原蛋白I的表达。此外,Antrodin C改善了血清丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST)的升高。这是通过负向调节TGF-β1/Smad2以及PDGF-BB下游的AKT和ERK信号通路来发挥其抗纤维化作用的,这表明Antrodin C可作为一种保护性分子来减轻肝纤维化[38]

3.3. Notch

Zhou等[39]发现山奈酚可以通过抑制Jag1,导致Notch通路失活,进而抑制肝纤维化,减少胶原蛋白沉积并恢复肝功能,可能是治疗肝纤维化的新型候选药物。与CCl4诱导的大鼠肝纤维化模型一致,新型中药JY5可使BDL诱导的肝纤维化模型里Jagged1、Notch2、Notch3、Notch4的表达下降。而且,经JY5处理后,Dll1、Dll4和Jagged2的mRNA表达显著降低,α-SMA的mRNA及蛋白质表达同样显著降低。这表明,JY5可以通过抑制Notch信号通路发挥抗肝纤维化作用,从而抑制HSCs活化[40]。纳米颗粒介导的递送系统靶向肝脏γ分泌酶抑制物(GSI NPs)可以防止Notch受体的激活切割,在饮食NASH小鼠模型中减少了HFD诱导的肝纤维化和炎症,同时可以降低传统GSI给药的胃肠道毒性[41]。另有研究表明,肝细胞特异性删除CD36会导致小鼠肝脏损伤和纤维化。从机制上讲,CD36在脂筏中与Notch1和γ-分泌酶形成复合物。因此,CD36将Notch1锚定在脂筏中并阻断Notch1/γ-分泌酶相互作用,抑制γ-分泌酶介导的N1ICD产生以及下游纤维化和细胞凋亡相关基因的表达,靶向CD36可能为预防和治疗MAFLD中的肝损伤和纤维化提供一种新的治疗策略[42]

3.4. Wnt/β-Catenin

在小鼠实验中可以观察到miR-378a在肝纤维化组织中的表达显著降低,而Wnt-10的表达显著增加。而达沙替尼治疗组中肝脏miR-378表达显著增加,同时Wnt-10表达明显受抑制,α-SMA和I型胶原水平也显著降低,这表明达沙替尼可能是一种潜在的治疗肝纤维化的药物[43]。研究表明,育亨宾(YHC)可以减轻肝纤维化程度,当HSC受到TGF-β刺激后,β-catenin水平显着升高,而YHC组显著降低了Wnt、Wnt卷曲受体和β-连环蛋白水平的表达。此外,在体外样本中,YHC治疗降低了Wnt5a/b、p-GSK-3β的表达,并以剂量依赖性方式恢复了GSK-3β和DKK1的表达。体内实验中也有类似作用,减轻了TAA诱导的肝脏纤维化。但考虑到治疗效益,仍需开展深入的毒性研究以确定其最大耐受剂量。此外,还应开发新型制剂策略——通过提高生物利用度来增强疗效,从而减少YHC用量,最终改善临床疗效[44]。二苯乙烯(PSH)是白藜芦醇的甲基化衍生物,有抗炎、抗氧化和抗肿瘤活性。Zhou等[45]研究发现,PSH可以抑制HSC活化,减少细胞增殖、胶原蛋白表达和α-SMA的合成。此外,PSH可以诱导多种信号通道的减少,而Wnt被显著抑制,表达水平最低,TCF活性和β-catenin的表达也受到抑制,最终结果表明,PSH可以通过调节Wnt/β-catenin减少HSC的活化。含双皮质素结构域蛋白2 (DCDC2)由DCDC2基因编码,研究发现DCDC2的过表达部分通过Wnt/β-catenin信号通路抑制TGF-β1诱导的HSC激活,从而在体外抑制HSC增殖,并在体内减弱CCl4诱导的纤维化变化。这些发现强调了DCDC2在预防和治疗肝纤维化方面的潜在效用,为该领域的临床实践提供了一种新的方法[46]

3.5. NF-κB

阿司匹林是一种非甾体抗炎药,用于缓解炎症症状和疼痛,而肝纤维化的发生和发展总是与慢性炎症相关。Liu等[47]表明阿司匹林可以通过TLR4/NF-κB通路抑制肝星状细胞活化,进而减轻肝纤维化,阿司匹林可能是治疗肝纤维化的有效治疗剂。氟非尼酮是一种新型吡啶酮药物,可以减轻肝纤维化。通过抑制肝星状细胞的活化,显著减轻二甲基亚硝胺诱导的肝纤维化。Jiang等[48]研究表明氟非尼酮的抗纤维化和抗炎作用主要归因于抑制NF-κB通路的激活,已被批准用于治疗特发性肺纤维化。西他列汀是一种口服降糖药,用于治疗II型糖尿病。最近,许多研究集中在西他列汀除降血糖作用之外的药理活性。最近的研究表明西他列汀可以抑制Con A诱导的纤维化,其机制可能部分与增强Nrf2信号通路和抑制NF-κB相关,而NF-κB与肝脏炎症反应相互作用,西他列汀可能是抑制肝炎相关纤维化的新候选药物[49]。大麻二酚(CBD)是一种天然大麻素提取物,由于其强大的抗炎和氧化应激特性,对许多疾病具有治疗意义。Xie等[50]发现CBD不仅可以抑制HSCs中NF-κB的磷酸化,还能抑制IκBα的磷酸化和降解,从而防止游离NF-κB的释放,进而抑制HSCs的激活和胶原蛋白沉积来调节HSCs的纤维化表型,基于这些结果,CBD可能是治疗肝纤维化的有效方法,为该领域的未来研究提供了依据。

4. 总结与展望

肝纤维化是由多种病因引起的HSC活化,进而导致ECM沉积的病理过程。这是一个动态发展的过程,若及时干预,肝纤维化有望逆转,而不及时干预和治疗,肝纤维化会进展为肝硬化,并引起一系列危重并发症,甚至肝癌,危及病人生命。纵观肝纤维化的研究进程,人们对肝纤维化的认知有所提高,动物实验也证明某些药物真实有效,但实际用于临床的特效药物少之又少。因此,未来研究需进一步明确肝纤维化的复杂网络调控机制,开发多靶点联合治疗策略,同时加强临床试验设计,以期实现肝纤维化的精准医疗。此外,探索非侵入性的生物标志物用于疾病监测和疗效评估,也是推动肝纤维化治疗领域发展的关键。

基金项目

本课题来源于山东省医药卫生科技发展计划项目(202203080451)和济宁市重点研发计划项目(2024JNZC015)。

NOTES

*通讯作者。

参考文献

[1] He, Z., Yang, D., Fan, X., Zhang, M., Li, Y., Gu, X., et al. (2020) The Roles and Mechanisms of LncRNAs in Liver Fibrosis. International Journal of Molecular Sciences, 21, Article 1482.
https://doi.org/10.3390/ijms21041482
[2] Smith, A., Baumgartner, K. and Bositis, C. (2019) Cirrhosis: Diagnosis and Management. American Family Physician, 100, 759-770.
[3] Ginès, P., Krag, A., Abraldes, J.G., Solà, E., Fabrellas, N. and Kamath, P.S. (2021) Liver Cirrhosis. The Lancet, 398, 1359-1376.
https://doi.org/10.1016/s0140-6736(21)01374-x
[4] Gu, L., Zhang, F., Wu, J. and Zhuge, Y. (2022) Nanotechnology in Drug Delivery for Liver Fibrosis. Frontiers in Molecular Biosciences, 8, Article 804396.
https://doi.org/10.3389/fmolb.2021.804396
[5] Li, B., Ma, Y., Tan, L., Ren, H., Wu, L., Su, Q., et al. (2023) 20-Hydroxytetraenoic Acid Induces Hepatic Fibrosis via the TGF-β1/Smad3 Signaling Pathway. Toxicology Letters, 373, 1-12.
https://doi.org/10.1016/j.toxlet.2022.11.001
[6] Xu, Y., Sun, X., Zhang, R., Cao, T., Cai, S., Boyer, J.L., et al. (2020) A Positive Feedback Loop of TET3 and TGF-β1 Promotes Liver Fibrosis. Cell Reports, 30, 1310-1318.e5.
https://doi.org/10.1016/j.celrep.2019.12.092
[7] Shan, L., Wang, F., Zhai, D., Meng, X., Liu, J. and Lv, X. (2023) Matrix Metalloproteinases Induce Extracellular Matrix Degradation through Various Pathways to Alleviate Hepatic Fibrosis. Biomedicine & Pharmacotherapy, 161, Article ID: 114472.
https://doi.org/10.1016/j.biopha.2023.114472
[8] Xin, X., Cheng, X., Zeng, F., Xu, Q. and Hou, L. (2024) The Role of TGF-β/Smad Signaling in Hepatocellular Carcinoma: From Mechanism to Therapy and Prognosis. International Journal of Biological Sciences, 20, 1436-1451.
https://doi.org/10.7150/ijbs.89568
[9] Yang, Y., Sun, M., Li, W., Liu, C., Jiang, Z., Gu, P., et al. (2021) Rebalancing TGF‐β/Smad7 Signaling via Compound Kushen Injection in Hepatic Stellate Cells Protects against Liver Fibrosis and Hepatocarcinogenesis. Clinical and Translational Medicine, 11, e410.
https://doi.org/10.1002/ctm2.410
[10] Cao, Z., Liu, Y., Wang, Y. and Leng, P. (2023) Research Progress on the Role of PDGF/PDGFR in Type 2 Diabetes. Biomedicine & Pharmacotherapy, 164, Article ID: 114983.
https://doi.org/10.1016/j.biopha.2023.114983
[11] Wang, Y., Wang, P., Yu, Y., Huang, E., Yao, Y., Guo, D., et al. (2023) Hepatocyte Ninjurin2 Promotes Hepatic Stellate Cell Activation and Liver Fibrosis through the IGF1R/EGR1/PDGF-BB Signaling Pathway. Metabolism, 140, Article ID: 155380.
https://doi.org/10.1016/j.metabol.2022.155380
[12] Wang, R., Liu, F., Chen, P., Li, S., Gu, Y., Wang, L., et al. (2023) Gomisin D Alleviates Liver Fibrosis through Targeting PDGFRβ in Hepatic Stellate Cells. International Journal of Biological Macromolecules, 235, Article ID: 123639.
https://doi.org/10.1016/j.ijbiomac.2023.123639
[13] Kikuchi, A., Singh, S., Poddar, M., Nakao, T., Schmidt, H.M., Gayden, J.D., et al. (2020) Hepatic Stellate Cell-Specific Platelet-Derived Growth Factor Receptor-α Loss Reduces Fibrosis and Promotes Repair after Hepatocellular Injury. The American Journal of Pathology, 190, 2080-2094.
https://doi.org/10.1016/j.ajpath.2020.06.006
[14] Ai, J., Liu, C., Zhang, W. and Rao, G. (2024) Current Status of Drugs Targeting PDGF/PDGFR. Drug Discovery Today, 29, Article ID: 103989.
https://doi.org/10.1016/j.drudis.2024.103989
[15] Roehlen, N., Crouchet, E. and Baumert, T.F. (2020) Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells, 9, Article 875.
https://doi.org/10.3390/cells9040875
[16] Valizadeh, A., Sayadmanesh, A., Asemi, Z., Alemi, F., Mahmoodpoor, A. and Yousefi, B. (2021) Regulatory Roles of the Notch Signaling Pathway in Liver Repair and Regeneration: A Novel Therapeutic Target. Current Medicinal Chemistry, 28, 8608-8626.
https://doi.org/10.2174/0929867328666210419123200
[17] Zhou, B., Lin, W., Long, Y., Yang, Y., Zhang, H., Wu, K., et al. (2022) Notch Signaling Pathway: Architecture, Disease, and Therapeutics. Signal Transduction and Targeted Therapy, 7, Article No. 95.
https://doi.org/10.1038/s41392-022-00934-y
[18] Bansal, R., van Baarlen, J., Storm, G. and Prakash, J. (2015) The Interplay of the Notch Signaling in Hepatic Stellate Cells and Macrophages Determines the Fate of Liver Fibrogenesis. Scientific Reports, 5, Article No. 18272.
https://doi.org/10.1038/srep18272
[19] Yue, Z., Jiang, Z., Ruan, B., Duan, J., Song, P., Liu, J., et al. (2021) Disruption of Myofibroblastic Notch Signaling Attenuates Liver Fibrosis by Modulating Fibrosis Progression and Regression. International Journal of Biological Sciences, 17, 2135-2146.
https://doi.org/10.7150/ijbs.60056
[20] Li, X., Jiang, F., Hu, Y., Lang, Z., Zhan, Y., Zhang, R., et al. (2023) Schisandrin B Promotes Hepatic Stellate Cell Ferroptosis via WNT Pathway-Mediated Ly6clo Macrophages. Journal of Agricultural and Food Chemistry, 71, 17295-17307.
https://doi.org/10.1021/acs.jafc.3c03409
[21] Hu, H., Cao, G., Wu, X., Vaziri, N.D. and Zhao, Y. (2020) WNT Signaling Pathway in Aging-Related Tissue Fibrosis and Therapies. Ageing Research Reviews, 60, Article ID: 101063.
https://doi.org/10.1016/j.arr.2020.101063
[22] Zou, G. and Park, J. (2023) WNT Signaling in Liver Regeneration, Disease, and Cancer. Clinical and Molecular Hepatology, 29, 33-50.
https://doi.org/10.3350/cmh.2022.0058
[23] Liu, J., Xiao, Q., Xiao, J., Niu, C., Li, Y., Zhang, X., et al. (2022) WNT/β-Catenin Signalling: Function, Biological Mechanisms, and Therapeutic Opportunities. Signal Transduction and Targeted Therapy, 7, Article No. 3.
https://doi.org/10.1038/s41392-021-00762-6
[24] Yan, Y., Zeng, J., Xing, L. and Li, C. (2021) Extra-and Intra-Cellular Mechanisms of Hepatic Stellate Cell Activation. Biomedicines, 9, Article 1014.
https://doi.org/10.3390/biomedicines9081014
[25] Chen, Y., Chen, X., Ji, Y., Zhu, S., Bu, F., Du, X., et al. (2020) PLK1 Regulates Hepatic Stellate Cell Activation and Liver Fibrosis through WNT/β‐Catenin Signalling Pathway. Journal of Cellular and Molecular Medicine, 24, 7405-7416.
https://doi.org/10.1111/jcmm.15356
[26] Wang, C., Liu, Y., Gong, L., Xue, X., Fu, K., Ma, C., et al. (2023) Phillygenin Ameliorates Carbon Tetrachloride-Induced Liver Fibrosis: Suppression of Inflammation and WNT/β-Catenin Signaling Pathway. Inflammation, 46, 1543-1560.
https://doi.org/10.1007/s10753-023-01826-1
[27] Guo, Q., Jin, Y., Chen, X., Ye, X., Shen, X., Lin, M., et al. (2024) NF-κB in Biology and Targeted Therapy: New Insights and Translational Implications. Signal Transduction and Targeted Therapy, 9, Article No. 53.
https://doi.org/10.1038/s41392-024-01757-9
[28] Gaptulbarova, K.A., Tsyganov, M.M., Pevzner, A.M., Ibragimova, M.K. and Litviakov, N.V. (2023) NF-κB as a Potential Prognostic Marker and a Candidate for Targeted Therapy of Cancer. Experimental Oncology, 42, 263-269.
https://doi.org/10.32471/exp-oncology.2312-8852.vol-42-no-4.15414
[29] Chen, J., Yang, Y., Meng, X., Lin, R., Tian, X., Zhang, Y., et al. (2024) Oxysophoridine Inhibits Oxidative Stress and Inflammation in Hepatic Fibrosis via Regulating NRF2 and NF-κB Pathways. Phytomedicine, 132, Article ID: 155585.
https://doi.org/10.1016/j.phymed.2024.155585
[30] Zhang, Y., Ren, L., Tian, Y., Guo, X., Wei, F. and Zhang, Y. (2024) Signaling Pathways That Activate Hepatic Stellate Cells during Liver Fibrosis. Frontiers in Medicine, 11, Article 1454980.
https://doi.org/10.3389/fmed.2024.1454980
[31] Zhang, X., Sharma, P., Maschmeyer, P., Hu, Y., Lou, M., Kim, J., et al. (2023) GARP on Hepatic Stellate Cells Is Essential for the Development of Liver Fibrosis. Journal of Hepatology, 79, 1214-1225.
https://doi.org/10.1016/j.jhep.2023.05.043
[32] Cho, S.S., Lee, J.H., Kim, K.M., Park, E.Y., Ku, S.K., Cho, I.J., et al. (2021) REDD1 Attenuates Hepatic Stellate Cell Activation and Liver Fibrosis via Inhibiting of TGF-β/Smad Signaling Pathway. Free Radical Biology and Medicine, 176, 246-256.
https://doi.org/10.1016/j.freeradbiomed.2021.10.002
[33] Song, Y., Wei, J., Li, R., Fu, R., Han, P., Wang, H., et al. (2023) Tyrosine Kinase Receptor B Attenuates Liver Fibrosis by Inhibiting TGF-β/Smad Signaling. Hepatology, 78, 1433-1447.
https://doi.org/10.1097/hep.0000000000000319
[34] Zhang, J., Wang, W., Cui, X., Zhu, P., Li, S., Yuan, S., et al. (2024) Ganoderma Lucidum Ethanol Extracts Ameliorate Hepatic Fibrosis and Promote the Communication between Metabolites and Gut Microbiota G_Ruminococcus through the NF-κB and TGF-β1/Smads Pathways. Journal of Ethnopharmacology, 322, Article ID: 117656.
https://doi.org/10.1016/j.jep.2023.117656
[35] Liu, F., Li, S., Chen, P., Gu, Y., Wang, S., Wang, L., et al. (2023) Salvianolic Acid B Inhibits Hepatic Stellate Cell Activation and Liver Fibrosis by Targeting PDGFRβ. International Immunopharmacology, 122, Article ID: 110550.
https://doi.org/10.1016/j.intimp.2023.110550
[36] Zhang, C., An, R., Bao, Y., Meng, X., Wang, T., Sun, H., et al. (2019) Inhibitory Effects of Octreotide on the Progression of Hepatic Fibrosis via the Regulation of Bcl-2/Bax and PI3K/AKT Signaling Pathways. International Immunopharmacology, 73, 515-526.
https://doi.org/10.1016/j.intimp.2019.05.055
[37] Martí-Rodrigo, A., Alegre, F., Moragrega, Á.B., García-García, F., Martí-Rodrigo, P., Fernández-Iglesias, A., et al. (2019) Rilpivirine Attenuates Liver Fibrosis through Selective Stat1-Mediated Apoptosis in Hepatic Stellate Cells. Gut, 69, 920-932.
https://doi.org/10.1136/gutjnl-2019-318372
[38] Xu, X., Geng, Y., Xu, H., Ren, Y., Liu, D. and Mao, Y. (2022) Antrodia Camphorata-Derived Antrodin C Inhibits Liver Fibrosis by Blocking TGF-β and PDGF Signaling Pathways. Frontiers in Molecular Biosciences, 9, Article 835508.
https://doi.org/10.3389/fmolb.2022.835508
[39] Zhou, G., Li, C., Zhang, R., Zhan, Y., Lin, L., Lang, Z., et al. (2022) Kaempferol Inhibits Hepatic Stellate Cell Activation by Regulating miR-26b-5p/Jag1 Axis and Notch Pathway. Frontiers in Pharmacology, 13, Article 881855.
https://doi.org/10.3389/fphar.2022.881855
[40] Fu, Y., Xiao, Z., Tian, X., Liu, W., Xu, Z., Yang, T., et al. (2021) The Novel Chinese Medicine JY5 Formula Alleviates Hepatic Fibrosis by Inhibiting the Notch Signaling Pathway. Frontiers in Pharmacology, 12, Article 671152.
https://doi.org/10.3389/fphar.2021.671152
[41] Richter, L.R., Wan, Q., Wen, D., Zhang, Y., Yu, J., Kang, J.k., et al. (2020) Targeted Delivery of Notch Inhibitor Attenuates Obesity-Induced Glucose Intolerance and Liver Fibrosis. ACS Nano, 14, 6878-6886.
https://doi.org/10.1021/acsnano.0c01007
[42] Li, Y., Zhang, L., Jiao, J., Ding, Q., Li, Y., Zhao, Z., et al. (2023) Hepatocyte CD36 Protects Mice from NASH Diet-Induced Liver Injury and Fibrosis via Blocking N1ICD Production. Biochimica et Biophysica Acta (BBA)Molecular Basis of Disease, 1869, Article ID: 166800.
https://doi.org/10.1016/j.bbadis.2023.166800
[43] Zaafan, M.A. and Abdelhamid, A.M. (2021) Dasatinib Ameliorates Thioacetamide-Induced Liver Fibrosis: Modulation of miR-378 and miR-17 and Their Linked WNT/β-Catenin and TGF-β/Smads Pathways. Journal of Enzyme Inhibition and Medicinal Chemistry, 37, 118-124.
https://doi.org/10.1080/14756366.2021.1995379
[44] Sharma, N., Sistla, R. and Andugulapati, S.B. (2024) Yohimbine Ameliorates Liver Inflammation and Fibrosis by Regulating Oxidative Stress and Wnt/β-Catenin Pathway. Phytomedicine, 123, Article ID: 155182.
https://doi.org/10.1016/j.phymed.2023.155182
[45] Zhou, G., Li, C., Zhan, Y., Zhang, R., Lv, B., Geng, W., et al. (2020) Pinostilbene Hydrate Suppresses Hepatic Stellate Cell Activation via Inhibition of miR-17-5p-Mediated WNT/β-Catenin Pathway. Phytomedicine, 79, Article ID: 153321.
https://doi.org/10.1016/j.phymed.2020.153321
[46] Liu, Q., Chen, J., Ma, T., Huang, W. and Lu, C. (2024) DCDC2 Inhibits Hepatic Stellate Cell Activation and Ameliorates CCl4-Induced Liver Fibrosis by Suppressing WNT/β-Catenin Signaling. Scientific Reports, 14, Article No. 9425.
https://doi.org/10.1038/s41598-024-59698-w
[47] Liu, Y., Nong, L., Jia, Y., Tan, A., Duan, L., Lu, Y., et al. (2020) Aspirin Alleviates Hepatic Fibrosis by Suppressing Hepatic Stellate Cells Activation via the TLR4/NF-κB Pathway. Aging, 12, 6058-6066.
https://doi.org/10.18632/aging.103002
[48] Tu, S., Jiang, Y., Cheng, H., Yuan, X., He, Y., Peng, Y., et al. (2021) Fluorofenidone Protects Liver against Inflammation and Fibrosis by Blocking the Activation of NF‐κB Pathway. The FASEB Journal, 35, e21497.
https://doi.org/10.1096/fj.202002402r
[49] Sharawy, M.H., El-Kashef, D.H., Shaaban, A.A. and El-Agamy, D.S. (2021) Anti-Fibrotic Activity of Sitagliptin against Concanavalin A-Induced Hepatic Fibrosis. Role of NRF2 Activation/NF-κB Inhibition. International Immunopharmacology, 100, Article ID: 108088.
https://doi.org/10.1016/j.intimp.2021.108088
[50] Xie, N., Ma, R., Wang, L., Shu, Y., He, P., Zhou, Y., et al. (2024) Cannabidiol Regulates the Activation of Hepatic Stellate Cells by Modulating the NOX4 and NF-κB Pathways. Food and Chemical Toxicology, 186, Article ID: 114517.
https://doi.org/10.1016/j.fct.2024.114517