糖尿病合并血液透析患者血糖波动特征研究
Research on Glycemic Variability Characteristics in Diabetic Patients Undergoing Hemodialysis
DOI: 10.12677/jcpm.2025.45466, PDF, HTML, XML,    科研立项经费支持
作者: 苏俊杰, 韩孟桦, 周厚地*:重庆医科大学附属大学城医院内分泌科,重庆
关键词: 血液透析糖尿病血糖管理Hemodialysis Diabetes Blood Sugar Management
摘要: 目的:应用持续葡萄糖监测(CGM)技术量化糖尿病合并维持性血液透析(MHD)患者在透析日与非透析日的血糖波动差异,解析血液透析对血糖稳定性的影响机制及临床管理启示。方法:前瞻性纳入25例糖尿病合并MHD患者(男19例,女6例),采用微泰医疗(Microtech Medical) AiDEX®X持续葡萄糖监测系统连续监测14天血糖数据。对比透析日(HD日,n = 75次)与非透析日(非HD日,n = 100次)的血糖平均值(MBG)、最大值(Gmax)、最小值(Gmin)、标准差(SD)、极差(Range)、变异系数(CV)、目标范围内时间(TIR, 3.9~10.0 mmol/L)、高于范围时间(TAR, >10.0 mmol/L)及低于范围时间(TBR, <3.9 mmol/L)。结果:MBG (7.8 ± 1.1 vs 7.9 ± 1.3 mmol/L)、Gmax (15.2 ± 3.5 vs 14.8 ± 3.1 mmol/L)、TIR (68.3% ± 13.2% vs 66.7% ± 14.6%)、TAR (26.4% ± 12.1% vs 28.5% ± 13.9%)、TBR (5.3% ± 3.8% vs 4.8% ± 4.1%)组间无统计学差异(P > 0.05);HD组的Gmin显著低于非HD组(3.1% ± 0.9 vs 3.8% ± 1.0 mmol/L, P < 0.01),SD (3.1 ± 0.7 vs 2.4 ± 0.6 mmol/L)、Range (12.1 ± 3.2 vs 10.3 ± 2.9 mmol/L)、CV (39.7% ± 8.5% vs 30.4% ± 6.8%)显著增高(均P < 0.05)。结论:血液透析通过加剧急性血糖波动(血糖最低值降低23.7%、CV增幅30.6%)显著提升低血糖风险,但未延长低血糖持续时间。临床需构建以CV为核心的血糖波动管理体系,优化透析日个体化干预策略。
Abstract: Objective: To quantify the differences in glycemic variability between dialysis days and non-dialysis days in patients with diabetes undergoing maintenance hemodialysis (MHD) using continuous glucose monitoring (CGM) technology, and to analyze the impact mechanism of hemodialysis on glycemic stability and its implications for clinical management. Methods: A prospective study was conducted involving 25 patients with diabetes and MHD (19 males, 6 females). The Microtech Medical AiDEX®X CGM system was used to continuously monitor blood glucose for 14 days. Glycemic parameters on dialysis days (HD days, n = 75) were compared with those on non-dialysis days (non-HD days, n = 100), including mean blood glucose (MBG), maximum glucose (Gmax), minimum glucose (Gmin), standard deviation (SD), range, coefficient of variation (CV), time in range (TIR, 3.9~10.0 mmol/L), time above range (TAR, >10.0 mmol/L), and time below range (TBR, <3.9 mmol/L). Results: No statistically significant differences were found between the groups in MBG (7.8 ± 1.1 vs. 7.9 ± 1.3 mmol/L), Gmax (15.2 ± 3.5 vs. 14.8 ± 3.1 mmol/L), TIR (68.3% ± 13.2% vs. 66.7% ± 14.6%), TAR (26.4% ± 12.1% vs. 28.5% ± 13.9%), or TBR (5.3% ± 3.8% vs. 4.8% ± 4.1%) (P > 0.05). However, the HD group had a significantly lower Gmin compared to the non-HD group (3.1 ± 0.9 vs. 3.8 ± 1.0 mmol/L, P < 0.01), and significantly higher SD (3.1 ± 0.7 vs. 2.4 ± 0.6 mmol/L), Range (12.1 ± 3.2 vs. 10.3 ± 2.9 mmol/L), and CV (39.7% ± 8.5% vs. 30.4% ± 6.8%) (all P < 0.05). Conclusion: Hemodialysis significantly increases the risk of hypoglycemia by exacerbating acute glycemic fluctuations (as evidenced by a 23.7% decrease in the minimum glucose value and a 30.6% increase in CV), but does not prolong the duration of hypoglycemia. There is a clinical need to establish a CV-centered glycemic variability management system and to optimize personalized intervention strategies on dialysis days.
文章引用:苏俊杰, 韩孟桦, 周厚地. 糖尿病合并血液透析患者血糖波动特征研究[J]. 临床个性化医学, 2025, 4(5): 100-106. https://doi.org/10.12677/jcpm.2025.45466

1. 引言

糖尿病肾病是终末期肾病(ESRD)的首要病因,占全球透析人群的30%~40%。我国ESRD患者中糖尿病肾病占比达29.9%,且每年以8.5%的速度递增[1]。这类患者面临双重代谢紊乱:糖尿病固有的胰岛素抵抗/分泌缺陷与肾脏替代治疗引发的糖代谢干扰叠加,导致血糖波动(Glycemic Variability, GV)成为独立于HbA1c的心血管死亡预测因子[2]

血液透析(HD)通过多重路径干扰血糖稳态:无糖透析液诱导葡萄糖丢失:每小时清除5.5 g葡萄糖,单次HD丢失15~30 g [3];胰岛素清除动力学改变:尿毒症减少胰岛素代谢,HD清除部分胰岛素,形成“清除–蓄积”悖论;反调节激素紊乱:胰高血糖素及儿茶酚胺分泌障碍削弱低血糖代偿,而透析后高血糖与反调节激素爆发性释放相关[4]

传统血糖评估指标在透析人群具有局限性[5]。HbA1c:受红细胞寿命缩短(HD患者仅60~90天)、促红细胞生成素治疗及尿毒症性氨甲酰化干扰,与真实血糖水平偏差达1.5%~2.0%;糖化白蛋白(GA):低蛋白血症导致假性降低,无法反映急性波动;自我血糖监测(SMBG):仅捕捉“点”血糖,研究发现CGM检出无症状低血糖频率是SMBG的17倍[6]

与此同时,CGM技术在透析人群具有潜在的应用价值。CGM通过高密度采样实现GV可视化,国际指南推荐其用于高危人群。本研究通过14天连续CGM监测,量化HD对血糖波动幅度的特异性影响,为个体化管理提供循证依据。

对于糖尿病合并血液透析患者的研究存在一些研究缺口,现今研究多关注HbA1c或TIR等“静态指标”,忽视SD、CV等“动态波动参数”的预后价值[7];透析日与非透析日对比多限于MBG、TBR,未深入解析GV的时相特征。所以,本研究希望通过CGM设备提供动态血糖变化情况,探究糖尿病合并血液透析患者血糖波动模式,为临床提供更佳的管理思路。

2. 资料与方法

2.1. 研究对象

2.1.1. 纳入标准

(1) 所有纳入研究的患者均符合中国2型糖尿病防治指南(2020年版)和WHO (1999年)的诊断标准:a) 典型糖尿病症状(烦渴多饮、多尿、多食、不明原因体重下降)加上随机血糖 ≥ 11.1或加上b) 空腹血糖 ≥ 7.0或加上c) 葡萄糖负荷后2 h血糖 ≥ 11.1或加上d) 糖化血红蛋白 ≥ 6.5%;

(2) 年龄 ≥ 18岁且≤80岁;

(3) 经过肾内科专科就诊,认为符合ESRD诊断,需要进行维持性血液透析,已规律透析3月以上;

(4) 签署知情同意书。

2.1.2. 排除标准

(1) 合并严重感染、创伤、手术、心力衰竭、急性心肌梗死以及低血压和缺氧等应激情况者;

(2) 严重的心血管疾病、未经治疗的高血压、肺功能不全;

(3) 30天内参加过其他药物临床试验;

(4) 存在其他情况不能参与完成干预随访者;

(5) 研究者认为受试者患有影响结果评估的疾病或不适合入组。

2.2. CGM监测方案

设备:微泰医疗(Microtech Medical) AiDEX®X持续葡萄糖监测系统,MARD 8.66%,是一款基于葡萄糖氧化酶的电化学传感器CGM。它由3个组件组成:一次性血糖传感器、信号发射器、患者自身的移动设备(信号接收器),葡萄糖读数通过蓝牙无线发送到患者的移动设备,每分钟反馈一次血糖值。此外,本试验透析液成分为无糖透析液,入组患者均使用胰岛素,透析前一次进食均未注射胰岛素。

2.3. 评价指标

基础指标:MBG、Gmax、Gmin

血糖波动参数:SD (血糖标准差):反映血糖离散程度;CV (变异系数,SD/MBG × 100%):标准化波动指标,国际共识推荐高危人群目标 < 36%;Range (Gmax-Gmin):最大血糖波动幅度。时间范围指标(ADA共识标准):TIR (3.9~10.0 mmol/L);TAR (>10.0 mmol/L);TBR (<3.9 mmol/L)。透析过程动态指标:透析中血糖最低值(Gmin-HD)及出现时间;透析后血糖反弹幅度(ΔG = 透析后2 h血糖 − 透析结束即刻血糖)。

2.4. 统计学分析

SPSS 27.0软件,计量资料以 x ¯ ±s 表示,组间比较采用配对t检验(正态分布)或Wilcoxon符号秩检验(非正态分布),P < 0.05为差异有统计学意义。

3. 结果

3.1. 患者基线特征

入组患者共25例,患者基线资料如表1

Table 1. Baseline characteristics of the 25 patients ( x ¯ ±s )

1. 25例患者基线资料( x ¯ ±s )

指标

数值

年龄(岁)

62.4 ± 8.7

性别(男/女)

19/6

糖尿病病程(年)

14.2 ± 6.5

HD时间(月)

28.3 ± 12.1

HbA1c (%)

7.8 ± 1.1

胰岛素使用比例

84%

平均胰岛素剂量(U/日)

42 ± 16

3.2. 透析日与非透析日血糖参数对比

透析日与非透析日血糖数据对比中,最低血糖值、血糖标准差、极差、变异度均有显著差异,具体差异如表2

Table 2. Comparison of glucose parameters between dialysis days and non-dialysis days ( x ¯ ±s )

2. 透析日与非透析日血糖参数对比( x ¯ ±s )

指标

HD日(n = 75)

非HD日(n = 100)

t/Z

P值

MBG (mmol/L)

7.8 ± 1.1

7.9 ± 1.3

−0.624

0.534

Gmax (mmol/L)

15.2 ± 3.5

14.8 ± 3.1

0.892

0.374

Gmin (mmol/L)

3.1 ± 0.9

3.8 ± 1.0

−4.317

<0.001

SD (mmol/L)

3.1 ± 0.7

2.4 ± 0.6

5.892

<0.001

Range (mmol/L)

12.1 ± 3.2

10.3 ± 2.9

4.226

<0.001

CV (%)

39.7 ± 8.5

30.4 ± 6.8

7.013

<0.001

TIR (%)

68.3 ± 13.2

66.7 ± 14.6

0.816

0.416

TAR (%)

26.4 ± 12.1

28.5 ± 13.9

−1.031

0.304

TBR (%)

5.3 ± 3.8

4.8 ± 4.1

0.729

0.468

3.3. 透析过程中血糖动态变化

在患者透析过程中,患者血糖呈持续下降趋势,而透析结束后血糖将持续上升(表3)。

4. 讨论

76%患者Gmin出现在HD第2~3小时(均值4.4 mmol/L),与透析液葡萄糖梯度最大时段吻合;男性患者Gmin显著低于女性(3.0 ± 0.8 vs 3.9 ± 1.1 mmol/L, P = 0.02),可能与男性肌肉质量高、葡萄糖储备低相关。与此同时,透析日发生无症状性低血糖(<3.9 mmol/L且无自觉症状) 8例(32%),其中Gmin ≤ 3.0 mmol/L者5例(20%)。

Table 3. Glycemic trajectories during hemodialysis ( x ¯ ±s )

3. HD过程中血糖动态轨迹( x ¯ ±s )

时间点

血糖(mmol/L)

较透析前变化率

透析前

7.2 ± 1.5

-

HD 1~2 h

6.1 ± 1.2

−15.3%

HD 2~3 h

4.4 ± 0.8

−38.9%

HD结束

5.9 ± 1.1

−18.1%

透析后2 h

10.4 ± 2.4

+44.4%

透析日血糖波动加剧的机制讨论:可能存在如下原因:1) 无糖透析液形成浓度梯度,单次HD丢失葡萄糖15~30 g (相当于50 g碳水化合物) [8] [9],而本组患者HD 2~3小时Gmin达4.4 mmol/L。2) 尿毒症减少胰岛素代谢(半衰期延长至6~9小时),而HD通过膜吸附清除部分胰岛素,导致透析中胰岛素浓度“先降后升”的双相震荡。3) HD患者胰高血糖素分泌障碍,低血糖时反调节不足(本组Gmin ≤ 3.0 mmol/L者胰高血糖素仅升高1.8倍,正常应升高4倍);而透析后高血糖与儿茶酚胺过度释放相关(透析后2 h血糖反弹至10.4 mmol/L) [10]-[12]

此外,我们研究过程中发现一些矛盾点:两组患者TBR无差异但Gmin显著降低。我们发现HD日TBR未增加(5.3% vs 4.8%, P = 0.468),但Gmin显著降低至3.1 mmol/L。这可能提示透析相关低血糖多为一过性重度事件(如Gmin ≤ 3.0 mmol/L持续10~20分钟),但因CGM预警及临床干预(如HD前血糖 < 7.0 mmol/L时口服20~30 g碳水化合物),未转化为持续性低血糖;TBR指标敏感性不足:TBR计算基于24小时低血糖总时长,无法反映单次低血糖严重程度。当Gmin骤降但快速回升时,TBR可能无变化[13]-[15]

结合目前相关研究,我们发现CV等血糖波动指标是透析人群一项潜在的预后指标,本组HD日CV达39.7%,显著高于国际共识推荐高危人群目标(<36%) [16];CV每增加10%,心血管事件风险上升32% (HR = 1.32, 95%CI: 1.12~1.55) [17]-[19],优于TIR (HR = 1.12)和HbA1c (HR = 0.97),所以在透析患者中,我们临床需要更加关注患者的血糖波动情况。

CGM (连续血糖监测)设备虽为糖尿病管理带来革新,但仍存在多方面的局限性:准确性局限:CGM监测组织间液葡萄糖,而非血液,存在5~15分钟的滞后性;使用成本与维护负担:设备及耗材(传感器、发射器)价格高昂,且传感器需每7~14天更换,长期费用远超传统血糖仪;舒适性与依从性问题:皮下传感器可能引发皮肤过敏、红肿或感染,尤其长期佩戴时;设备体积和佩戴方式可能限制运动、洗漱等日常活动,降低患者依从性。

相关建议与策略:透析液个体化:Gmin < 4.0 mmol/L者改用5.5 mmol/L含糖透析液,Meta分析显示其降低低血糖风险42% (RR = 0.58);胰岛素剂量调整:HD当日预混胰岛素减量30%~50% [20] [21];透析后高血糖管理:透析结束2 h血糖 ≥ 10.0 mmol/L时,追加短效胰岛素(日剂量50%);CGM指导药物转换:DPP-4抑制剂(利格列汀)显著降低夜间低血糖趋势;避免SGLT2抑制剂(酮症风险)和磺脲类(低血糖风险) [22]-[24]

本次研究通过CGM设备动态观察糖尿病合并透析患者的血糖变化情况,但样本量较小(n = 25),未分层分析胰岛素类型的影响;同时未监测透析过程激素动态变化(如胰岛素、GLP-1),需结合血生化验证机制;未评估GV与长期预后的关联(需延长随访)。未来可以进一步开发“透析智能血糖预警系统”:整合CGM数据与透析机超滤参数,实时预测低血糖风险;探索GLP-1受体激动剂在透析人群的应用:初步研究显示其降低Range 23% (P = 0.04)。

5. 结论

本研究通过14天连续CGM监测,揭示血液透析对血糖的影响主要表现为低血糖严重程度加重(Gmin降低23.7%)和血糖波动加剧(CV增加30.6%),而非低血糖时间延长,对临床此类患者血糖管理具有积极意义。

声 明

本研究获得重庆市卫生健康委员会伦理委员会批准(审批号:LL-202423)。

基金项目

重庆市卫生健康委医学科研项目,项目编号:2024WSJK069。

NOTES

*通讯作者。

参考文献

[1] Jung, C. and Yoo, T. (2022) Pathophysiologic Mechanisms and Potential Biomarkers in Diabetic Kidney Disease. Diabetes & Metabolism Journal, 46, 181-197.
https://doi.org/10.4093/dmj.2021.0329
[2] Hill, C.J., Maxwell, A.P., Cardwell, C.R., Freedman, B.I., Tonelli, M., Emoto, M., et al. (2014) Glycated Hemoglobin and Risk of Death in Diabetic Patients Treated with Hemodialysis: A Meta-Analysis. American Journal of Kidney Diseases, 63, 84-94.
https://doi.org/10.1053/j.ajkd.2013.06.020
[3] Mo, Y., Lu, J. and Zhou, J. (2024) Glycemic Variability: Measurement, Target, Impact on Complications of Diabetes and Does It Really Matter? Journal of Diabetes Investigation, 15, 5-14.
https://doi.org/10.1111/jdi.14112
[4] Selvin, E., Rawlings, A.M., Grams, M., Klein, R., Steffes, M. and Coresh, J. (2014) Association of 1,5-Anhydroglucitol with Diabetes and Microvascular Conditions. Clinical Chemistry, 60, 1409-1418.
https://doi.org/10.1373/clinchem.2014.229427
[5] Shilo, S., Keshet, A., Rossman, H., Godneva, A., Talmor-Barkan, Y., Aviv, Y., et al. (2024) Continuous Glucose Monitoring and Intrapersonal Variability in Fasting Glucose. Nature Medicine, 30, 1424-1431.
https://doi.org/10.1038/s41591-024-02908-9
[6] Pieber, T.R., Marso, S.P., McGuire, D.K., Zinman, B., Poulter, N.R., Emerson, S.S., et al. (2018) DEVOTE 3: Temporal Relationships between Severe Hypoglycaemia, Cardiovascular Outcomes and Mortality. Diabetologia, 61, 58-65.
https://doi.org/10.1007/s00125-017-4422-0
[7] Tuttle, K.R., Bakris, G.L., Bilous, R.W., Chiang, J.L., de Boer, I.H., Goldstein-Fuchs, J., et al. (2014) Diabetic Kidney Disease: A Report from an ADA Consensus Conference. Diabetes Care, 37, 2864-2883.
https://doi.org/10.2337/dc14-1296
[8] Jaques, D.A. and Davenport, A. (2020) Determinants of Volume Status in Peritoneal Dialysis: A Longitudinal Study. Nephrology, 25, 785-791.
https://doi.org/10.1111/nep.13716
[9] Kausar, M.A., Anwar, S., Eltayb, W.A., Kuddus, M., Khatoon, F., El-Arabey, A.A., et al. (2022) MD Simulation Studies for Selective Phytochemicals as Potential Inhibitors against Major Biological Targets of Diabetic Nephropathy. Molecules, 27, Article 4980.
https://doi.org/10.3390/molecules27154980
[10] Kojima, M., Hayano, J., Suzuki, S., Seno, H., Kasuga, H., Takahashi, H., et al. (2010) Depression, Alexithymia and Long-Term Mortality in Chronic Hemodialysis Patients. Psychotherapy and Psychosomatics, 79, 303-311.
https://doi.org/10.1159/000319311
[11] Ye, J., Deng, G. and Gao, F. (2018) Theoretical Overview of Clinical and Pharmacological Aspects of the Use of Etelcalcetide in Diabetic Patients Undergoing Hemodialysis. Drug Design, Development and Therapy, 12, 901-909.
https://doi.org/10.2147/dddt.s160223
[12] Wei, X., Wen, Y., Zhou, Q., Feng, X., Peng, F.F., Wang, N., et al. (2020) Hyperlipidemia and Mortality Associated with Diabetes Mellitus Co-Existence in Chinese Peritoneal Dialysis Patients. Lipids in Health and Disease, 19, Article No. 234.
https://doi.org/10.1186/s12944-020-01405-5
[13] Ekart, R. and Hojs, R. (2016) Obese and Diabetic Patients with End-Stage Renal Disease: Peritoneal Dialysis or Hemodialysis? European Journal of Internal Medicine, 32, 1-6.
https://doi.org/10.1016/j.ejim.2016.03.016
[14] Chen, C.W., Drechsler, C., Suntharalingam, P., Karumanchi, S.A., Wanner, C. and Berg, A.H. (2017) High Glycated Albumin and Mortality in Persons with Diabetes Mellitus on Hemodialysis. Clinical Chemistry, 63, 477-485.
https://doi.org/10.1373/clinchem.2016.258319
[15] Galindo, R.J., Inselman, S.A., Umpierrez, G.E., Moazzami, B., Munoz Mendoza, J., Ali, M.K., et al. (2023) National Trends in Glucagon Prescriptions among U.S. Adults with Diabetes and End-Stage Kidney Disease Treated by Dialysis: 2013-2017. Diabetes Care, 46, e130-e132.
https://doi.org/10.2337/dc23-0554
[16] Monea, G., Jiritano, R., Salerno, L., Rubino, M., Massimino, M., Perticone, M., et al. (2024) Compromised Cardiac Autonomic Function in Non-Diabetic Subjects with 1 H Post-Load Hyperglycemia: A Cross-Sectional Study. Cardiovascular Diabetology, 23, Article No. 295.
https://doi.org/10.1186/s12933-024-02394-w
[17] Abe, M. and Kalantar-Zadeh, K. (2015) Haemodialysis-Induced Hypoglycaemia and Glycaemic Disarrays. Nature Reviews Nephrology, 11, 302-313.
https://doi.org/10.1038/nrneph.2015.38
[18] Rossing, P., Caramori, M.L., Chan, J.C.N., Heerspink, H.J.L., Hurst, C., Khunti, K., et al. (2022) Executive Summary of the KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease: An Update Based on Rapidly Emerging New Evidence. Kidney International, 102, 990-999.
https://doi.org/10.1016/j.kint.2022.06.013
[19] Ong, K.L., Stafford, L.K., McLaughlin, S.A., Boyko, E.J., Vollset, S.E., Smith, A.E., et al. (2023) Global, Regional, and National Burden of Diabetes from 1990 to 2021, with Projections of Prevalence to 2050: A Systematic Analysis for the Global Burden of Disease Study 2021. The Lancet, 402, 203-234.
https://doi.org/10.1016/s0140-6736(23)01301-6
[20] Golestaneh, L., Melamed, M., Kim, R.S., St. Clair Russell, J., Heisler, M., Villalba, L., et al. (2022) Peer Mentorship to Improve Outcomes in Patients on Hemodialysis (PEER-HD): A Randomized Controlled Trial Protocol. BMC Nephrology, 23, Article No. 92.
https://doi.org/10.1186/s12882-022-02701-1
[21] Gholian, K., Hajian-Tilaki, K. and Akbari, R. (2023) Modeling Factors Associated with Dialysis Adequacy Using Longitudinal Data Analysis: Generalized Estimating Equation versus Quadratic Inference Function. Journal of Research in Health Sciences, 23, e582.
https://doi.org/10.34172/jrhs.2023.117
[22] Crews, D.C., Bello, A.K., Saadi, G., Kam Tao Li, P., Garcia-Garcia, G., Andreoli, S., et al. (2020) Burden, Access, and Disparities in Kidney Disease. Nefrología (English Edition), 40, 4-11.
https://doi.org/10.1016/j.nefroe.2019.04.001
[23] Dong, Y., Zhou, J., Li, Z., Xiang, J., Mei, S., Gu, Y., et al. (2021) Influence of Dialysis Duration on Outcomes of Simultaneous Pancreas‐kidney Transplant. Clinical Transplantation, 35, e14238.
https://doi.org/10.1111/ctr.14238
[24] Ding, L., Liu, S., Yan, H., Li, Z., Zhou, Y., Pang, H., et al. (2023) Pharmacokinetics of Henagliflozin in Dialysis Patients with Diabetes. Clinical Pharmacokinetics, 62, 1581-1587.
https://doi.org/10.1007/s40262-023-01300-z