|
[1]
|
Wang, Y., Chang, Y., Zhang, X., Gao, M., Zhang, Q., Li, X., et al. (2022) Salidroside Protects against Osteoporosis in Ovariectomized Rats by Inhibiting Oxidative Stress and Promoting Osteogenesis via Nrf2 Activation. Phytomedicine, 99, Article ID: 154020. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Forciea, M.A., McLean, R.M. and Qaseem, A. (2017) Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update from the American College of Physicians. Annals of Internal Medicine, 167, Article No. 904. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Salari, N., Ghasemi, H., Mohammadi, L., Behzadi, M.h., Rabieenia, E., Shohaimi, S., et al. (2021) The Global Prevalence of Osteoporosis in the World: A Comprehensive Systematic Review and Meta-Analysis. Journal of Orthopaedic Surgery and Research, 16, Article No. 609. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zeng, Q., Li, N., Wang, Q., Feng, J., Sun, D., Zhang, Q., et al. (2019) The Prevalence of Osteoporosis in China, a Nationwide, Multicenter DXA Survey. Journal of Bone and Mineral Research, 34, 1789-1797. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Si, L., Winzenberg, T.M., Jiang, Q., Chen, M. and Palmer, A.J. (2015) Projection of Osteoporosis-Related Fractures and Costs in China: 2010-2050. Osteoporosis International, 26, 1929-1937. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Zhivodernikov, I.V., Kirichenko, T.V., Markina, Y.V., Postnov, A.Y. and Markin, A.M. (2023) Molecular and Cellular Mechanisms of Osteoporosis. International Journal of Molecular Sciences, 24, Article No. 15772. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Deeks, E.D. (2018) Author Correction To: Denosumab: A Review in Postmenopausal Osteoporosis. Drugs & Aging, 35, Article No. 261. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Ilyas, Z. and Camacho, P.M. (2019) Rare Adverse Effects of Bisphosphonate Therapy. Current Opinion in Endocrinology, Diabetes & Obesity, 26, 335-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Deardorff, W.J., Cenzer, I., Nguyen, B. and Lee, S.J. (2022) Time to Benefit of Bisphosphonate Therapy for the Prevention of Fractures among Postmenopausal Women with Osteoporosis: A Meta-Analysis of Randomized Clinical Trials. JAMA Internal Medicine, 182, 33-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Yao, Z., Getting, S.J. and Locke, I.C. (2021) Regulation of TNF-Induced Osteoclast Differentiation. Cells, 11, Article No. 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Deng, T., Ding, W., Lu, X., Zhang, Q., Du, J., Wang, L., et al. (2024) Pharmacological and Mechanistic Aspects of Quercetin in Osteoporosis. Frontiers in Pharmacology, 15, Article ID: 1338951. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
尹春春. 早期神经毒性体外评价方法的建立及槟榔和虎杖的神经毒性评价[D]: [硕士学位论文]. 镇江: 江苏大学, 2017.
|
|
[13]
|
Lin, Z., Xiong, Y., Hu, Y., Chen, L., Panayi, A.C., Xue, H., et al. (2021) Polydatin Ameliorates Osteoporosis via Suppression of the Mitogen-Activated Protein Kinase Signaling Pathway. Frontiers in Cell and Developmental Biology, 9, Article ID: 730362. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Chen, X., Shen, Y., He, M., Yang, F., Yang, P., Pang, F., et al. (2019) Polydatin Promotes the Osteogenic Differentiation of Human Bone Mesenchymal Stem Cells by Activating the Bmp2-Wnt/β-Catenin Signaling Pathway. Biomedicine & Pharmacotherapy, 112, Article ID: 108746. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
樊慧婷, 丁世兰, 林洪生. 中药虎杖的药理研究进展[J]. 中国中药杂志, 2013, 38(15): 2545-2548.
|
|
[16]
|
Hsin, K., Ghosh, S. and Kitano, H. (2013) Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology. PLOS ONE, 8, e83922. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Li, H., Gong, Y., Wang, Y., Sang, W., Wang, C., Zhang, Y., et al. (2025) β-Sitosterol Modulates Osteogenic and Adipogenic Balance in BMSCs to Suppress Osteoporosis via Regulating mTOR-IMP1-Adipoq Axis. Phytomedicine, 138, Article ID: 156400. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Babu, S. and Jayaraman, S. (2020) An Update on β-Sitosterol: A Potential Herbal Nutraceutical for Diabetic Management. Biomedicine & Pharmacotherapy, 131, Article ID: 110702. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Guo, H., Chen, X., Li, J., Mo, G., Li, Y., Tang, Y., et al. (2025) β-Sitosterol Inhibits Osteoclast Activity and Reduces Ovariectomy-Induced Bone Loss by Regulating the cAMP and NF-κB Signaling Pathways. Cellular Signalling, 130, Article ID: 111672. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
王昊翔, 江树连, 袁杰, 等. 基于网络药理学和分子对接技术研究当归-川芎治疗骨折的作用机制[J]. 中医临床研究, 2025, 17(1): 15-22.
|
|
[21]
|
Feng, R., Wang, Q., Yu, T., Hu, H., Wu, G., Duan, X., et al. (2024) Quercetin Ameliorates Bone Loss in OVX Rats by Modulating the Intestinal Flora-Scfas-Inflammatory Signaling Axis. International Immunopharmacology, 136, Article ID: 112341. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Vakili, S., Zal, F., Mostafavi‐pour, Z., Savardashtaki, A. and Koohpeyma, F. (2020) Quercetin and Vitamin E Alleviate Ovariectomy‐Induced Osteoporosis by Modulating Autophagy and Apoptosis in Rat Bone Cells. Journal of Cellular Physiology, 236, 3495-3509. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Jing, Z., Wang, C., Yang, Q., Wei, X., Jin, Y., Meng, Q., et al. (2018) Luteolin Attenuates Glucocorticoid‐Induced Osteoporosis by Regulating ERK/Lrp-5/GSK-3β Signaling Pathway in Vivo and in Vitro. Journal of Cellular Physiology, 234, 4472-4490. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Garlanda, C., Dinarello, C.A. and Mantovani, A. (2013) The Interleukin-1 Family: Back to the Future. Immunity, 39, 1003-1018. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Ruscitti, P., Cipriani, P., Carubbi, F., Liakouli, V., Zazzeroni, F., Di Benedetto, P., et al. (2015) The Role of Il‐1β in the Bone Loss during Rheumatic Diseases. Mediators of Inflammation, 2015, Article ID: 782382. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Ji, Y., Jiang, X., Li, W. and Ge, X. (2019) Impact of Interleukin-6 Gene Polymorphisms and Its Interaction with Obesity on Osteoporosis Risk in Chinese Postmenopausal Women. Environmental Health and Preventive Medicine, 24, Article No. 48. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Edwards, C.J. and Williams, E. (2010) The Role of Interleukin-6 in Rheumatoid Arthritis-Associated Osteoporosis. Osteoporosis International, 21, 1287-1293. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Shi, X., Jiang, J., Hong, R., Xu, F. and Dai, S. (2023) Circulating IGFBP-3 and Interleukin 6 as Predictors of Osteoporosis in Postmenopausal Women: A Cross-Sectional Study. Mediators of Inflammation, 2023, Article ID: 2613766. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Li, C., Ma, Z., Jian, L., Wang, X., Sun, L., Liu, X., et al. (2021) Iguratimod Inhibits Osteoclastogenesis by Modulating the RANKL and TNF-α Signaling Pathways. International Immunopharmacology, 90, Article ID: 107219. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Zhao, Z., Hou, X., Yin, X., Li, Y., Duan, R., Boyce, B.F., et al. (2015) TNF Induction of NF-κB RelB Enhances RANKL-Induced Osteoclastogenesis by Promoting Inflammatory Macrophage Differentiation but Also Limits It through Suppression of NFATc1 Expression. PLOS ONE, 10, e0135728. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Ghasemian, M., Rajabibazl, M., Sahebi, U., Sadeghi, S., Maleki, R., Hashemnia, V., et al. (2022) Long Non-Coding RNA MIR4435-2HG: A Key Molecule in Progression of Cancer and Non-Cancerous Disorders. Cancer Cell International, 22, Article No. 215. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yang, Y., Lu, L., Wang, J., Ma, S., Xu, B., Lin, R., et al. (2023) Tubson-2 Decoction Ameliorates Rheumatoid Arthritis Complicated with Osteoporosis in CIA Rats Involving Isochlorogenic Acid a Regulating IL-17/MAPK Pathway. Phytomedicine, 116, Article ID: 154875. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Chen, W., Wu, P., Yu, F., Luo, G., Qing, L. and Tang, J. (2022) HIF-1α Regulates Bone Homeostasis and Angiogenesis, Participating in the Occurrence of Bone Metabolic Diseases. Cells, 11, Article No. 3552. [Google Scholar] [CrossRef] [PubMed]
|