|
[1]
|
Arnold, M., Morgan, E., Rumgay, H., Mafra, A., Singh, D., Laversanne, M., et al. (2022) Current and Future Burden of Breast Cancer: Global Statistics for 2020 and 2040. The Breast, 66, 15-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Daly, A.A., Rolph, R., Cutress, R.I. and Copson, E.R. (2021) A Review of Modifiable Risk Factors in Young Women for the Prevention of Breast Cancer. Breast Cancer: Targets and Therapy, 13, 241-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, H., Hu, J., Meng, R., Liu, F., Xu, F. and Huang, M. (2024) A Systematic Review and Meta-Analysis Comparing the Diagnostic Capability of Automated Breast Ultrasound and Contrast-Enhanced Ultrasound in Breast Cancer. Frontiers in Oncology, 13, Article ID: 1305545. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Ginsburg, O., Yip, C., Brooks, A., Cabanes, A., Caleffi, M., Dunstan Yataco, J.A., et al. (2020) Breast Cancer Early Detection: A Phased Approach to Implementation. Cancer, 126, 2379-2393. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Giaquinto, A.N., Sung, H., Miller, K.D., Kramer, J.L., Newman, L.A., Minihan, A., et al. (2022) Breast Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 524-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Fitzgerald, R.C., Antoniou, A.C., Fruk, L. and Rosenfeld, N. (2022) The Future of Early Cancer Detection. Nature Medicine, 28, 666-677. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Mori, N., Li, L., Matsuda, M., Mori, Y. and Mugikura, S. (2024) Prospects of Perfusion Contrast-Enhanced Ultrasound (CE-US) in Diagnosing Axillary Lymph Node Metastases in Breast Cancer: A Comparison with Lymphatic CE-US. Journal of Medical Ultrasonics, 51, 587-597. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Chung, H.L., Le-Petross, H.T. and Leung, J.W.T. (2021) Imaging Updates to Breast Cancer Lymph Node Management. RadioGraphics, 41, 1283-1299. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Loveless, M.E., Li, X., Huamani, J., Lyshchik, A., Dawant, B., Hallahan, D., et al. (2008) A Method for Assessing the Microvasculature in a Murine Tumor Model Using Contrast-Enhanced Ultrasonography. Journal of Ultrasound in Medicine, 27, 1699-1709. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tian, Y., Wang, W., Hu, Y., Chen, F., Liu, Z., Li, L., et al. (2024) The Size Differences of Breast Cancer and Benign Tumors Measured by Two‐Dimensional Ultrasound and Contrast‐Enhanced Ultrasound. Journal of Ultrasound in Medicine, 43, 1245-1250. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hendriks, G.A.G.M., Chen, C., Mann, R., Hansen, H.H.G. and de Korte, C.L. (2024) Automated 3-D Ultrasound Elastography of the Breast: An in Vivo Validation Study. Ultrasound in Medicine & Biology, 50, 358-363. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kwon, B.R., Chang, J.M., Kim, S.Y., Lee, S.H., Kim, S., Lee, S.M., et al. (2020) Automated Breast Ultrasound System for Breast Cancer Evaluation: Diagnostic Performance of the Two-View Scan Technique in Women with Small Breasts. Korean Journal of Radiology, 21, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Kim, S.M., Jang, M., Yun, B.L., Shin, S.U., Rim, J., Kang, E., et al. (2024) Automated versus Handheld Breast Ultrasound for Evaluating Axillary Lymph Nodes in Patients with Breast Cancer. Korean Journal of Radiology, 25, Article No. 146. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
van Esser, S. (2007) Accuracy of Contrast-Enhanced Breast Ultrasound for Pre-Operative Tumor Size Assessment in Patients Diagnosed with Invasive Ductal Carcinoma of the Breast. Cancer Imaging, 7, 63-68. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Shoma, A., Moutamed, A., Ameen, M. and Abdelwahab, A. (2006) Ultrasound for Accurate Measurement of Invasive Breast Cancer Tumor Size. The Breast Journal, 12, 252-256. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Li, X., Li, Y., Zhu, Y., et al. (2018) Association between Enhancement Patterns and Parameters of ContrastEnhanced Ultrasound and Microvessel Distribution in Breast Cancer. Oncology Letters, 15, 5643-5649.
|
|
[17]
|
Shibuya, M. (2012) Vascular Endothelial Growth Factor and Its Receptor System: Physiological Functions in Angiogenesis and Pathological Roles in Various Diseases. Journal of Biochemistry, 153, 13-19. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J. and Holash, J. (2000) Vascular-Specific Growth Factors and Blood Vessel Formation. Nature, 407, 242-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Carmeliet, P. and Jain, R.K. (2000) Angiogenesis in Cancer and Other Diseases. Nature, 407, 249-257. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Cao, X., Bao, W., Zhu, S., Wang, L., Sun, M., Wang, L., et al. (2014) Contrast-Enhanced Ultrasound Characteristics of Breast Cancer: Correlation with Prognostic Factors. Ultrasound in Medicine & Biology, 40, 11-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Zhang, Y., Wang, X., Kang, S., Li, X. and Geng, J. (2015) Contrast-Enhanced Ultrasonography in Qualitative Diagnosis of Sentinel Lymph Node Metastasis in Breast Cancer: A Meta-Analysis. Journal of Cancer Research and Therapeutics, 11, Article No. 697. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Fowler, J.C., Solanki, C.K., Guenther, I., Barber, R., Miller, F., Bobrow, L., et al. (2009) A Pilot Study of Dual-Isotope Lymphoscintigraphy for Breast Sentinel Node Biopsy Comparing Intradermal and Intraparenchymal Injection. European Journal of Surgical Oncology (EJSO), 35, 1041-1047. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Wang, Y., Li, Y., Song, Y., Chen, C., Wang, Z., Li, L., et al. (2022) Comparison of Ultrasound and Mammography for Early Diagnosis of Breast Cancer among Chinese Women with Suspected Breast Lesions: A Prospective Trial. Thoracic Cancer, 13, 3145-3151. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Wang, Q., Li, B., Liu, Z., Shang, H., Jing, H., Shao, H., et al. (2022) Prediction Model of Axillary Lymph Node Status Using Automated Breast Ultrasound (ABUS) and Ki-67 Status in Early-Stage Breast Cancer. BMC Cancer, 22, Article No. 929. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Uematsu, T. (2023) Rethinking Screening Mammography in Japan: Next-Generation Breast Cancer Screening through Breast Awareness and Supplemental Ultrasonography. Breast Cancer, 31, 24-30. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Galati, F., Moffa, G. and Pediconi, F. (2022) Breast Imaging: Beyond the Detection. European Journal of Radiology, 146, Article ID: 110051. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sun, L., Qi, M., Cui, X. and Song, Q. (2022) The Clinical Application of Combined Ultrasound, Mammography, and Tumor Markers in Screening Breast Cancer among High-Risk Women. Computational and Mathematical Methods in Medicine, 2022, Article ID: 4074628. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Łuczyńska, E., Pawlak, M., Popiela, T. and Rudnicki, W. (2022) The Role of ABUS in the Diagnosis of Breast Cancer. Journal of Ultrasonography, 22, 76-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Žaja, M. and Matijaš, T. (2022) Automated Breast Ultrasound. Radiološki vjesnik, 46, 10-17. [Google Scholar] [CrossRef]
|
|
[30]
|
Brem, R.F., Tabár, L., Duffy, S.W., Inciardi, M.F., Guingrich, J.A., Hashimoto, B.E., et al. (2015) Assessing Improvement in Detection of Breast Cancer with Three-Dimensional Automated Breast US in Women with Dense Breast Tissue: The Somoinsight Study. Radiology, 274, 663-673. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Boca (Bene), I., Dudea, S.M. and Ciurea, A.I. (2021) Contrast-Enhanced Ultrasonography in the Diagnosis and Treatment Modulation of Breast Cancer. Journal of Personalized Medicine, 11, Article No. 81. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Sigrist, R.M.S., Liau, J., Kaffas, A.E., Chammas, M.C. and Willmann, J.K. (2017) Ultrasound Elastography: Review of Techniques and Clinical Applications. Theranostics, 7, 1303-1329. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Goddi, A., Bonardi, M. and Alessi, S. (2012) Breast Elastography: A Literature Review. Journal of Ultrasound, 15, 192-198. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Pillai, A., Voruganti, T., Barr, R. and Langdon, J. (2022) Diagnostic Accuracy of Shear-Wave Elastography for Breast Lesion Characterization in Women: A Systematic Review and Meta-Analysis. Journal of the American College of Radiology, 19, 625-634.e0. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Hong, S., Li, W., Gao, W., Liu, M., Song, D., Dong, Y., et al. (2021) Diagnostic Performance of Elastography for Breast Non-Mass Lesions: A Systematic Review and Meta-Analysis. European Journal of Radiology, 144, Article ID: 109991. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Lei, Y., Yin, M., Yu, M., Yu, J., Zeng, S., Lv, W., et al. (2021) Artificial Intelligence in Medical Imaging of the Breast. Frontiers in Oncology, 11, Article ID: 600557. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Baek, J., Kim, J., Kim, H.J., Yoon, J.H., Park, H.Y., Lee, J., et al. (2025) Clinical Application of Artificial Intelligence in Breast Ultrasound. Journal of the Korean Society of Radiology, 86, Article No. 216. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Wu, G., Zhou, L., Xu, J., Wang, J., Wei, Q., Deng, Y., et al. (2019) Artificial Intelligence in Breast Ultrasound. World Journal of Radiology, 11, 19-26. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Fruchtman Brot, H. and Mango, V.L. (2024) Artificial Intelligence in Breast Ultrasound: Application in Clinical Practice. Ultrasonography, 43, 3-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Jin, Z., Li, J., Niu, R., Fu, N., Jiang, Y., Li, S., et al. (2024) Application of an Artificial Intelligence-Assisted Diagnostic System for Breast Ultrasound: A Prospective Study. Gland Surgery, 13, 2221-2231. [Google Scholar] [CrossRef] [PubMed]
|