|
[1]
|
Chen, H.-M. and Wu, M.-T. (2017) Residential Exposure to Chlorinated Hydrocarbons from Groundwater Contamination and the Impairment of Renal Function—An Ecological Study. Scientific Reports, 7, Article No. 40283. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Arjoon, A., Olaniran, A.O. and Pillay, B. (2012) Co-Contamination of Water with Chlorinated Hydrocarbons and Heavy Metals: Challenges and Current Bioremediation Strategies. International Journal of Environmental Science and Technology, 10, 395-412. [Google Scholar] [CrossRef]
|
|
[3]
|
Fahmy, S., Preis, E., Bakowsky, U. and Azzazy, H.M. (2020) Palladium Nanoparticles Fabricated by Green Chemistry: Promising Chemotherapeutic, Antioxidant and Antimicrobial Agents. Materials, 13, Article No. 3661. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Yaduvanshi, N., Jaiswal, S., Tewari, S., Shukla, S., Wabaidur, S.M., Dwivedi, J., et al. (2023) Palladium Nanoparticles and Their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. Inorganic Chemistry Communications, 151, Article ID: 110600. [Google Scholar] [CrossRef]
|
|
[5]
|
Ali, I., Peng, C., Khan, Z.M., Naz, I., Sultan, M., Ali, M., et al. (2019) Overview of Microbes Based Fabricated Biogenic Nanoparticles for Water and Wastewater Treatment. Journal of Environmental Management, 230, 128-150. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hou, Y., Zhang, B., Yun, H., Yang, Z., Han, J., Zhou, J., et al. (2017) Palladized Cells as Suspension Catalyst and Electrochemical Catalyst for Reductively Degrading Aromatics Contaminants: Roles of Pd Size and Distribution. Water Research, 125, 288-297. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Xiao, Z., Jiang, W., Chen, D. and Xu, Y. (2020) Bioremediation of Typical Chlorinated Hydrocarbons by Microbial Reductive Dechlorination and Its Key Players: A Review. Ecotoxicology and Environmental Safety, 202, Article ID: 110925. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Joudeh, N., Saragliadis, A., Koster, G., Mikheenko, P. and Linke, D. (2022) Synthesis Methods and Applications of Palladium Nanoparticles: A Review. Frontiers in Nanotechnology, 4, Article ID: 1062608. [Google Scholar] [CrossRef]
|
|
[9]
|
Zhang, Z., Shen, Q., Cissoko, N., Wo, J. and Xu, X. (2010) Catalytic Dechlorination of 2,4-Dichlorophenol by Pd/Fe Bimetallic Nanoparticles in the Presence of Humic Acid. Journal of Hazardous Materials, 182, 252-258. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tahri, N., Bahafid, W., Sayel, H. and El Ghachtouli, N. (2013) Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. In: Biodegradation—Life of Science, InTech. [Google Scholar] [CrossRef]
|
|
[11]
|
Luo, Y., Long, M., Zhou, Y., Zhou, C., Zheng, X. and Rittmann, B.E. (2022) Hydrodehalogenation of Trichlorofluoromethane over Biogenic Palladium Nanoparticles in Ambient Conditions. Environmental Science & Technology, 56, 13357-13367. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Law, C.K.Y., Kundu, K., Bonin, L., Peñacoba-Antona, L., Bolea-Fernandez, E., Vanhaecke, F., et al. (2023) Electrochemically Assisted Production of Biogenic Palladium Nanoparticles for the Catalytic Removal of Micropollutants in Wastewater Treatment Plants Effluent. Journal of Environmental Sciences, 128, 203-212. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hemalatha, K., Madhumitha, G., Kajbafvala, A., Anupama, N., Sompalle, R. and Mohana Roopan, S. (2013) Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview. Journal of Nanomaterials, 2013, Article ID: 341015. [Google Scholar] [CrossRef]
|
|
[14]
|
Hazarika, M., Borah, D., Bora, P., Silva, A.R. and Das, P. (2017) Biogenic Synthesis of Palladium Nanoparticles and Their Applications as Catalyst and Antimicrobial Agent. PLOS ONE, 12, e0184936. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Palem, R.R., Shimoga, G., Kim, S., Bathula, C., Ghodake, G.S. and Lee, S. (2022) Biogenic Palladium Nanoparticles: An Effectual Environmental Benign Catalyst for Organic Coupling Reactions. Journal of Industrial and Engineering Chemistry, 106, 52-68. [Google Scholar] [CrossRef]
|
|
[16]
|
Joudeh, N., Saragliadis, A., Schulz, C., Voigt, A., Almaas, E. and Linke, D. (2021) Transcriptomic Response Analysis of Escherichia coli to Palladium Stress. Frontiers in Microbiology, 12, Article ID: 741836. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Windt, W.D., Aelterman, P. and Verstraete, W. (2005) Bioreductive Deposition of Palladium (0) Nanoparticles on Shewanella oneidensis with Catalytic Activity towards Reductive Dechlorination of Polychlorinated Biphenyls. Environmental Microbiology, 7, 314-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Hosseinkhani, B., Hennebel, T., Van Nevel, S., Verschuere, S., Yakimov, M.M., Cappello, S., et al. (2013) Biogenic Nanopalladium Based Remediation of Chlorinated Hydrocarbons in Marine Environments. Environmental Science & Technology, 48, 550-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hosseinkhani, B., Nuzzo, A., Zanaroli, G., Fava, F. and Boon, N. (2015) Assessment of Catalytic Dechlorination Activity of Suspended and Immobilized Bio-Pd NPs in Different Marine Conditions. Applied Catalysis B: Environmental, 168, 62-67. [Google Scholar] [CrossRef]
|
|
[20]
|
Nuzzo, A., Hosseinkhani, B., Boon, N., Zanaroli, G. and Fava, F. (2017) Impact of Bio-Palladium Nanoparticles (Bio-Pd Nps) on the Activity and Structure of a Marine Microbial Community. Environmental Pollution, 220, 1068-1078. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Song, X., Shi, X. and Yang, M. (2018) Dual Application of Shewanella oneidensis MR‐1 in Green Biosynthesis of Pd Nanoparticles Supported on TiO2 Nanotubes and Assisted Photocatalytic Degradation of Methylene Blue. IET Nanobiotechnology, 12, 441-445. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Hosseinkhani, B., Søbjerg, L.S., Rotaru, A., Emtiazi, G., Skrydstrup, T. and Meyer, R.L. (2011) Microbially Supported Synthesis of Catalytically Active Bimetallic Pd‐Au Nanoparticles. Biotechnology and Bioengineering, 109, 45-52. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Law, C.K.Y., Bonin, L., De Gusseme, B., Boon, N. and Kundu, K. (2022) Biogenic Synthesis of Palladium Nanoparticles: New Production Methods and Applications. Nanotechnology Reviews, 11, 3104-3124. [Google Scholar] [CrossRef]
|
|
[24]
|
Hennebel, T., Simoen, H., De Windt, W., Verloo, M., Boon, N. and Verstraete, W. (2008) Biocatalytic Dechlorination of Trichloroethylene with Bio‐Palladium in a Pilot‐Scale Membrane Reactor. Biotechnology and Bioengineering, 102, 995-1002. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Suja, E., Nancharaiah, Y.V. and Venugopalan, V.P. (2014) Biogenic Nanopalladium Production by Self-Immobilized Granular Biomass: Application for Contaminant Remediation. Water Research, 65, 395-401. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Wang, Z., Zhang, L., Zhao, J. and Xing, B. (2016) Environmental Processes and Toxicity of Metallic Nanoparticles in Aquatic Systems as Affected by Natural Organic Matter. Environmental Science: Nano, 3, 240-255. [Google Scholar] [CrossRef]
|
|
[27]
|
Wang, W., Zhang, B., Liu, Q., Du, P., Liu, W. and He, Z. (2018) Biosynthesis of Palladium Nanoparticles Using Shewanella loihica PV-4 for Excellent Catalytic Reduction of Chromium(VI). Environmental Science: Nano, 5, 730-739. [Google Scholar] [CrossRef]
|
|
[28]
|
Zhou, C., Wang, Z., Ontiveros-Valencia, A., Long, M., Lai, C., Zhao, H., et al. (2017) Coupling of Pd Nanoparticles and Denitrifying Biofilm Promotes H2-Based Nitrate Removal with Greater Selectivity towards N2. Applied Catalysis B: Environmental, 206, 461-470. [Google Scholar] [CrossRef]
|
|
[29]
|
Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago, P., et al. (2004) Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: Use of Plants in Nanobiotechnology. Journal of Nanoparticle Research, 6, 377-382. [Google Scholar] [CrossRef]
|
|
[30]
|
Qazi, F., Hussain, Z. and Tahir, M.N. (2016) Advances in Biogenic Synthesis of Palladium Nanoparticles. RSC Advances, 6, 60277-60286. [Google Scholar] [CrossRef]
|
|
[31]
|
Liu, Y., Yang, F., Yue, P.L. and Chen, G. (2001) Catalytic Dechlorination of Chlorophenols in Water by Palladium/Iron. Water Research, 35, 1887-1890. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Tuo, Y., Liu, G., Zhou, J., Wang, A., Wang, J., Jin, R., et al. (2013) Microbial Formation of Palladium Nanoparticles by Geobacter Sulfurreducens for Chromate Reduction. Bioresource Technology, 133, 606-611. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hazra, C., Kundu, D., Chaudhari, A. and Jana, T. (2012) Biogenic Synthesis, Characterization, Toxicity and Photocatalysis of Zinc Sulfide Nanoparticles Using Rhamnolipids from Pseudomonas aeruginosa bs01 as Capping and Stabilizing Agent. Journal of Chemical Technology & Biotechnology, 88, 1039-1048. [Google Scholar] [CrossRef]
|
|
[34]
|
Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards Environmental Systems Biology of Shewanella. Nature Reviews Microbiology, 6, 592-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Xu, H., Tan, L., Cui, H., Xu, M., Xiao, Y., Wu, H., et al. (2018) Characterization of Pd(II) Biosorption in Aqueous Solution by Shewanella oneidensis Mr-1. Journal of Molecular Liquids, 255, 333-340. [Google Scholar] [CrossRef]
|
|
[36]
|
Wu, X., Zhao, F., Rahunen, N., Varcoe, J.R., Avignone‐Rossa, C., Thumser, A.E., et al. (2010) A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angewandte Chemie International Edition, 50, 427-430. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Yang, Z., Hou, Y., Zhang, B., Cheng, H., Yong, Y., Liu, W., et al. (2020) Insights into Palladium Nanoparticles Produced by Shewanella oneidensis MR-1: Roles of NADH Dehydrogenases and Hydrogenases. Environmental Research, 191, Article ID: 110196. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Ng, C.K., Cai Tan, T.K., Song, H. and Cao, B. (2013) Reductive Formation of Palladium Nanoparticles by Shewanella oneidensis: Role of Outer Membrane Cytochromes and Hydrogenases. RSC Advances, 3, 22498-22503. [Google Scholar] [CrossRef]
|
|
[39]
|
Quan, X., Zhang, X. and Xu, H. (2015) In-Situ Formation and Immobilization of Biogenic Nanopalladium into Anaerobic Granular Sludge Enhances Azo Dyes Degradation. Water Research, 78, 74-83. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Dundas, C.M., Graham, A.J., Romanovicz, D.K. and Keitz, B.K. (2018) Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype. ACS Synthetic Biology, 7, 2726-2736. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
De Windt, W., Boon, N., Van den Bulcke, J., Rubberecht, L., Prata, F., Mast, J., et al. (2006) Biological Control of the Size and Reactivity of Catalytic Pd(0) Produced by Shewanella oneidensis. Antonie van Leeuwenhoek, 90, 377-389. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Yong, P., Rowson, N.A., Farr, J.P.G., Harris, I.R. and Macaskie, L.E. (2002) Bioreduction and Biocrystallization of Palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Sathishkumar, M., Sneha, K., Kwak, I.S., Mao, J., Tripathy, S.J. and Yun, Y. (2009) Phyto-Crystallization of Palladium through Reduction Process Using Cinnamom Zeylanicum Bark Extract. Journal of Hazardous Materials, 171, 400-404. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Singh, A., Gautam, P.K., Verma, A., Singh, V., Shivapriya, P.M., Shivalkar, S., et al. (2020) Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnology Reports, 25, e00427. [Google Scholar] [CrossRef] [PubMed]
|