不同因子对生物纳米钯合成及催化活性的影响
The Influence of Different Environmental Factors on the Synthesis and Catalytic Activity of Biogenetic Palladium Nanoparticles
DOI: 10.12677/aep.2025.159141, PDF, HTML, XML,    科研立项经费支持
作者: 王佳悦, 凌嘉潞:湖北省区域发展与环境响应重点实验室,资源环境学院湖北大学,湖北 武汉;赵丽娅, 李兆华, 温丽莲*:湖北省区域发展与环境响应重点实验室,资源环境学院湖北大学,湖北 武汉;湖北省农村安全饮用水工程技术研究中心,湖北大学,湖北 武汉
关键词: Shewanella oneidensis MR-1生物钯纳米颗粒催化活性环境因子Shewanella oneidensis MR-1 Bio-Pd NPs Catalytic Activity Environmental Factors
摘要: 近年来,纳米钯材料以其高催化活性受到广泛研究,生物合成纳米钯具有绿色性、经济性,高效性、可持续性,被视为非常有前景的研究方向。本研究利用Shewanella oneidensis MR-1合成具有高效催化活性的纳米钯,采用正交试验设计,探究在不同的Pd(II)浓度、电子供体类型、溶解氧和pH对纳米钯合成及其催化活性的影响。结果表明:溶解氧、电子供体类型、Pd(II)浓度、pH这四种环境因子对生物纳米钯合成的影响程度依次递减。四种环境因子均对生物纳米钯的合成影响显著。合成具有高效催化活性的生物纳米钯的最佳条件为:200 mg/L Pd(II),采用氢气作为电子供体,控制较低的溶解氧。
Abstract: In recent years, palladium nanoparticle materials have gained significant attention due to their high catalytic activity. The biogenetic palladium nanoparticles (Bio-Pd NPs) offer advantages such as environmental friendliness, cost-effectiveness, high efficiency, and sustainability, making it a highly promising research direction. In this study, Shewanella oneidensis MR-1 was utilized to synthesize Bio-Pd NPs with high catalytic activity. An orthogonal experimental design was employed to investigate the effects of several factors on the synthesis and catalytic activity of Bio-Pd NPs, which includes different Pd(II) concentrations, electron donor types, dissolved oxygen (DO) and pH. The results indicated that the four environmental factors, DO, electron donor, Pd(II) concentration and pH, affected the synthesis of bio-nanopalladium in decreasing order of significance. All these environmental factors above had significant effects. Besides, with hydrogen as the electron donor, under high Pd(II) concentration and low DO conditions, Bio-Pd NPs with high catalytic activity could be synthesized efficiently. The optimal conditions for synthesizing Bio-Pd NPs with high catalytic activity are: 200 mg/L Pd(II), using hydrogen as an electron donor, and controlling the dissolved oxygen at a low level.
文章引用:王佳悦, 凌嘉潞, 赵丽娅, 李兆华, 温丽莲. 不同因子对生物纳米钯合成及催化活性的影响[J]. 环境保护前沿, 2025, 15(9): 1256-1268. https://doi.org/10.12677/aep.2025.159141

1. 引言

随着矿业、化工、农业等领域的不断发展,氯化烃的污染问题日益显著,其具有毒性、积蓄性、污染持久性,对地下水、土壤、海洋的生态环境造成了较大威胁[1]-[3]。氯代烃污染的去除方法包括物理、化学和生物脱氯技术[4]-[6]。目前研究的物理和化学直接处理存在价格偏高、能耗较大、对环境不友好等问题[7]-[9],相比之下,生物修复技术如微生物还原脱氯在该领域得到了广泛的研究,但单纯利用常规的生物处理法存在还原速率低和有毒中间产物累积的问题[10]-[12]。因此,新的修复技术亟待开发和研究。

纳米修复技术作为生物法的补充被广泛地应用于现场污染修复实践。纳米钯具有高比表面积和强催化活性,在氯代烃降解中具有广泛的应用前景[13]-[16]。纳米钯可通过化学和微生物方法合成,由于化学合成过程需要一系列昂贵有毒的试剂、载体和稳定剂,微生物还原法更受到研究者的青睐。De Windt团队首先利用异化金属还原细菌Shewanella oneidensis MR-1 (S. oneidensis MR-1)合成了纳米钯(Pd NPs),并证明了其对氯化物脱氯的高效性[17]。Hosseinkhani等人同样利用S. oneidensis MR-1合成了纳米钯,并利用三氯乙烯(TCE)为目标污染物模拟在海洋中氯化烃的还原脱氯,发现50 mg/L生物合成的纳米钯在1 h内实现了20 mg/L三氯乙烯的完全脱氯[18] [19]。Nuzzo团队证明了这种生物合成纳米钯粒子(Bio-Pd NPs)对海洋细菌群落无毒性,同时也提到生物纳米钯的存在可增加群落的多样性[20]。在最近的研究中,Yang等人也利用S. oneidensis MR-1在厌氧条件下将Pd(II)还原成了纳米钯[21]。由此可见,生物纳米钯不仅在合成工艺上具有绿色性、经济性,在处理效果上也具有高效性,处理完后对生态不产生破坏,因此被视为十分具有前景的技术,对污染物生物降解有重要意义[15] [20] [22]-[23]

生物纳米钯的制备及其催化活性受到环境因子的影响,目前的研究仅针对单一的环境因子开展研究,主要研究结果包括:1) 细菌种类,能在胞外和细胞壁上附着纳米钯的菌属比仅能在胞内产生纳米钯的菌属的催化活性高,催化活性与纳米钯颗粒大小无关[18];2) 电子供体,活化的纳米钯才具有脱氯还原作用,而外源性氢气是常用的活化剂,有研究表明微生物发酵产生的氢气也能活化纳米钯,且随着氢气含量的增加,污染物去除效率也增加[24] [25];3) 环境抑制因子,例如硫化物、腐殖酸,在高浓度硫化物条件下,纳米钯失去催化活性,腐殖酸通过螯合作用、吸附作用和化学失活从而影响纳米钯的活性[19] [26]。此外,有研究表明酸碱度和污染物浓度对催化活性有影响[27],而盐度、氧化还原电位对纳米钯催化活性无影响[18] [28]。然而,关于多种因子共存条件下对生物纳米钯合成及其脱氯催化活性的影响却未得到系统研究。

本研究的目标是探究不同环境因子对绿色制备高催化活性生物纳米钯的影响。通过正交试验方法,探究在不同的Pd(II)浓度、电子供体类型、pH、溶解氧条件下,S. oneidensis MR-1菌合成具有高催化活性的生物纳米钯及其催化还原脱氯的效果。实验过程中,将利用气相色谱法评估催化脱氯效果,利用扫描电子显微镜表征合成生物纳米钯的大小和形状,利用SPSS和Origin软件分析数据,从而优化高催化活性纳米钯的条件参数。研究结果将揭示不同环境因子对纳米钯催化脱氯的影响程度,丰富合成机理的理论依据,为高效合成生物纳米材料提供理论依据。

2. 实验材料与方法

2.1. 实验材料

甲酸钠(HCOONa)、盐酸(HCl)、氢氧化钠(NaOH)、氯化钠(NaCl)、乳酸钠(C3H5O3Na)购自国药集团化学试剂有限公司。三氯乙烯(C2HCl3)购自上海麦克林生化科技股份有限公司。刃天青(C16H18ClN3S)、四氯钯酸钠(Na2 [PdCl4])、胰蛋白胨、酵母提取物购自上海阿拉丁生化科技股份有限公司。氮气(N2 (≥99.999%))和氢气(H2 (99.9%))购自武汉市翔云工贸有限责任公司。

2.2. LB培养基的制备

制备1 L的LB液体培养基,其配方为:胰蛋白胨10 g、酵母提取物5 g、氯化钠10 g。用1 M NaOH或1 M HCl调节pH至7.0~7.2。然后,将培养基分装到100 mL锥形瓶中,用高压蒸汽灭菌锅在121℃下灭菌15~20 min。灭菌后,培养基可在室温或4℃保存备用。

2.3. MR-1菌的复活和收集

首先进行Shewanella oneidensis MR-1 (ATCC编号700550)菌的复活,即在100 mL的LB培养基中加入0.1 ml的菌种,放入培养箱30 ℃、150 rpm培养16 h后再传代培养两代。然后再进行MR-1菌的收集,即取20 mL的菌液,在4000 rpm条件下离心10 min获得菌体,用灭菌的去离子水漂洗3次,最后用灭菌的去离子水水悬浮菌体,菌体浓度用紫外分光光度计测定,确保OD600 (optical density)值在0.6~1之间。制备好的MR-1菌放在4℃冰箱保存备用。

2.4. 正交试验设计

通过正交试验设计,探究不同环境因子对生物纳米钯合成及其催化活性的影响。环境因子包括:Pd(II)浓度、pH、溶解氧DO和电子供体类型,每个因子设置3个水平。其中,Pd(II)的浓度梯度为:50 mg/L,100 mg/L,200 mg/L;pH值分别为5,7,9。DO定性设为有氧、微氧、缺氧,其中有氧组不做处理,微氧组充氮气处理,缺氧组充氮气并加热处理。电子供体类型包括氢气、甲酸钠、乳酸钠。选用L9 (34)正交表安排实验,一共设置9个实验组(表1),每组设置2个平行。

2.5. 实验操作步骤

实验流程如下:向容量瓶中加入0.25 mL 0.1%刃天青(w/w),用去离子水定容至1 L,然后将溶液注入三颈烧瓶,用架子固定。针对有氧组,不做其他操作,用注射器将培养基分别注入各血清瓶,每瓶80 mL,

Table 1. Orthogonal test arrangement

1. 正交试验表

实验组

钯浓度(mg/L)

pH

氧气

电子供体

A

50

5

缺氧

氢气

B

50

7

微氧

甲酸钠

C

50

9

有氧

乳酸钠

D

100

5

微氧

乳酸钠

E

100

7

有氧

氢气

F

100

9

缺氧

甲酸钠

G

200

5

有氧

甲酸钠

H

200

7

缺氧

乳酸钠

I

200

9

微氧

氢气

密封。针对微氧组,通入氮气15 min,用注射器将培养基分装,每瓶80 mL,密封。针对缺氧组,插上冷凝管,通入氮气15 min,然后移接到加热皿加热,先用100℃~120℃加热,沸腾后将温度调至70℃~80℃,维持30 min,加热结束后,盖上盖子,放掉冷凝管的水,在通氮气条件下分装,每瓶80 mL,密封。之后,用0.1 M的HCl或NaOH控制pH值分别在5,7,9。完成后,将培养基放入高压灭菌锅灭菌,121℃ 30 min。冷却后,倒置常温保存备用。

按照表1,分别向每个处理组中加入电子供体和Na2 [PdCl4],电子供体添加量按照过量等电子当量添加,具体添加量如表2所示。之后加入5 mL MR-1菌,在室温(28℃)温和振摇(120 rpm)条件下培养。当观察到培养基中有黑色沉淀后,向有黑色沉淀的处理组中加入2.4 μLTCE (纯度99.9%,理论液相浓度为330 M),定期取样,当TCE全部降解后,停止实验。实验结束后,取10 mL液样,在−20℃冰箱保存,以便后续样品表征分析。

Table 2. Electron donor dosage (based on 80 mL)

2. 电子供体添加量(按80 mL计算)

电子供体

mol e- equivalent/mol

物质的量(μmol)

添加量(mL)

理论液相终浓度(mmol/L)

氢气

2

801

19.260 (99.99%)

10.643

甲酸钠

2

801

0.786 (1 M)

9.825

乳酸钠

12

134

0.131 (1 M)

1.638

2.6. 分析方法

采用气相色谱法对每个血清瓶内成分进行分析,主要分析内容有TCE,二氯乙烯(DCE),氯乙烯(VC),乙烯(ETH),乙烷(C2H6)和甲烷(CH4)。气相色谱仪型号为6890N (安捷伦科技(中国)有限公司)。毛细管柱型号为RT-QS-BOND生产于RESTEK瑞思泰康科技(北京)有限公司,规格如下:长度30 m,内径530 μm,膜厚20 μm,耐受最高温度250℃。气体载体为N2,流速为86.9 mL/min,进样器温度为200℃,检测器温度为240℃,柱温箱升温程序为:初始温度为60℃,保持2 min;以10℃/min升温到100℃,保持2 min;最后以20℃/min升温至210℃,保持6 min。进样方法为手动取进样,进样量为100 μL。生物纳米钯的表征采用扫描电子显微镜,型号HITACHI日立S-4800,能谱型号HORIBA EMAX mics2,喷金仪型号HIYACHI MC1000,临界点干燥仪型号Tousimis Autosamdri-815, Series,加速电压3 KV或5 KV,SEM点分辨率50 nm,元素分析采用EDS分析。

3. 结果与讨论

3.1. 生物纳米钯的合成情况

在这四种不同因素的三种不同水平影响下,Shewanella oneidensis MR-1还原Pd(II)生成钯颗粒的变化过程如图1所示。由图可得,除以乳酸钠为电子供体的处理组(图1C,图1D和图1H)中没有黑色沉淀产生,其他的处理组中均可观察到黑色颗粒沉淀。

影响因素为电子供体时,黑色沉淀生成速度为氢气 > 甲酸钠;影响因素为氧气含量时,黑色沉淀生成速度为无氧状态 > 微氧状态 > 好氧状态;影响因素为Pd(II)初始浓度时,黑色沉淀生成速度为50 mg/L > 100 mg/L > 200 m/L;影响因素为pH值时,黑色沉淀生成速度为7 > 9 > 5。

Figure 1. Biological nanopalladium synthesis phenomenon. (A) Group A: Hydrogen gas, anoxic conditions, Pd(II) concentration 50 mg/L, pH 5; (B) Group B: Sodium formate, microaerophilic conditions, Pd(II) concentration 50 mg/L, pH 7; (C) Group C: Sodium lactate, aerobic conditions, Pd(II) concentration 50 mg/L, pH 9; (D) Group D: Sodium lactate, microaeric conditions, Pd(II) concentration 100 mg/L, pH 5; (E) Group E: Hydrogen gas, aerobic conditions, Pd(II) concentration 100 mg/L, pH 7; (F) Group F: Sodium formate, anaerobic conditions, Pd(II) concentration 100 mg/L, pH 9; (G) Group G: Sodium formate, aerobic, Pd(II) concentration 200 mg/L, pH 7; (H) Group H: Sodium lactate, anoxic, Pd(II) concentration 200 mg/L, pH 7; (I) Group I: Hydrogen gas, microaeric, Pd(II) concentration 200 mg/L, pH 9

1. 生物纳米钯合成现象。(A) 实验组A,氢气,缺氧,Pd(II)浓度50 mg/L,pH为5;(B) 实验组B,甲酸钠,微氧,Pd(II)浓度50 mg/L,pH为7;(C) 实验组C,乳酸钠,有氧,Pd(II)浓度50 mg/L,pH为9;(D) 实验组D,乳酸钠,微氧,Pd(II)浓度100 mg/L,pH为5;(E) 实验组E,氢气,有氧,Pd(II)浓度100 mg/L,pH为7;(F) 实验组F,甲酸钠,缺氧,Pd(II)浓度100 mg/L,pH为9;(G) 实验组G,甲酸钠,有氧,Pd(II)浓度200 mg/L,pH为7;(H) 实验组H,乳酸钠,缺氧,Pd(II)浓度200 mg/L,pH为7;(I) 实验组I,氢气,微氧,Pd(II)浓度200 mg/L,pH为9

为了鉴定黑色物质的组成成分,用SEM-EDS方对该物质进行表征(图2图3)。由图2可知,对比6个实验组,A组的纳米颗粒呈方块状,分散较为均匀,颗粒粒径介于0.02~0.05 μm之间,少部分粒径在0.2 μm左右。B组呈现为颗粒附着在菌体表面,颗粒极小,大约在1 nm左右,表面较为粗糙。E组纳米钯呈现粗糙球状,形状较为统一,多体现为堆积聚集状态,颗粒粒径介于0.01~0.25 μm之间。F组纳米钯同样呈球状,颗粒粒径介于0.01~0.25 μm之间。G组纳米钯呈现细小的球状,分布密集,布满细胞表面,粒径较小,介于0.01~0.25 μm之间。I组纳米钯同样呈现球状,存在聚集现象,粒径介于0.01~0.25 μm。根据目前已有的报道,用微生物、植物或其他生物方法合成的生物纳米钯均呈现球状,与E、F、G、I组合成纳米钯形状基本符合[29]-[31],推测较高浓度Pd(II)条件,用氢气和甲酸钠作为电子供体,合成情况理想。

Figure 2. SEM images of bio-nano palladium. (A) Group A: Hydrogen gas, anoxic conditions, Pd(II) concentration 50 mg/L, pH 5; (B) Group B: Sodium formate, microaerophilic conditions, Pd(II) concentration 50 mg/L, pH 7; (E) Group E: Hydrogen gas, aerobic conditions, Pd(II) concentration 100 mg/L, pH 7; (F) Group F: Sodium formate, anaerobic conditions, Pd(II) concentration 100 mg/L, pH 9; (G) Group G: Sodium formate, aerobic, Pd(II) concentration 200 mg/L, pH 7; (I) Group I: Hydrogen gas, microaeric, Pd(II) concentration 200 mg/L, pH 9

2. 生物纳米钯在SEM电镜下的图像。(A) 实验组A,氢气,缺氧,Pd(II)浓度50 mg/L,pH为5;(B) 实验组B,甲酸钠,微氧,Pd(II)浓度50 mg/L,pH为7;(E) 实验组E,氢气,有氧,Pd(II)浓度100 mg/L,pH为7;(F) 实验组F,甲酸钠,缺氧,Pd(II)浓度100 mg/L,pH为9;(G) 实验组G,甲酸钠,有氧,Pd(II)浓度200 mg/L,pH为7;(I) 实验组I,氢气,微氧,Pd(II)浓度200 mg/L,pH为9

图3显示了不同实验组合成生物纳米钯的元素分析结果。在6个实验组中,SEM能谱在约3 keV处观察到光吸收峰,即表面等离子体共振导致金属纳米晶吸收的典型峰,均体现了Pd的存在。其中,G组的Pd峰值最高,而B组中Pd峰值最低。已有研究表明,Pd(II)浓度、电子供体类型、pH、DO四种环境因子均会在不同程度上影响生物纳米钯的合成[32] [33],而图2图3的结果体现出这4种因子在不同水平处理下合成纳米钯的差异性,与已有的研究达成一致。

3.2. 生物纳米钯合成机理分析

本次实验采用的S. oneidensis MR-1具有电活性,在厌氧条件下,主要依赖其外膜的c型细胞色素和细胞内的多种氢化酶展开异化金属还原[23] [34],将Pd(II)转化为纳米钯。合成纳米钯的过程主要经历吸附、生物还原、自催化还原3个部分(图4)。首先,Pd(II)于细胞壁发生生物吸附,该过程中,Pd(II)在离子吸附、静电作用、物理吸附作用下附着于细胞表面[35]。接着,细胞壁上的c-型细胞色素[36] [37]形成电子通道,电子供体通过氢化酶氧化产生的电子通过此方式接触Pd(II)。最后,Pd(II)在自催化还原过程下形成纳米钯颗粒(Pd(0))。有报道表明,在反应过程中,细胞中的氢化酶和电子供体会对生物纳米钯的大小、分布和数量造成一定影响[37]-[40]

Figure 3. SEM energy dispersive spectroscopy of bio-nanopalladium. (A) Group A: Hydrogen gas, anoxic conditions, Pd(II) concentration 50 mg/L, pH 5; (B) Group B: Sodium formate, microaerophilic conditions, Pd(II) concentration 50 mg/L, pH 7; (E) Group E: Hydrogen gas, aerobic conditions, Pd(II) concentration 100 mg/L, pH 7; (F) Group F: Sodium formate, anaerobic conditions, Pd(II) concentration 100 mg/L, pH 9; (G) Group G: Sodium formate, aerobic, Pd(II) concentration 200 mg/L, pH 7; (I) Group I: Hydrogen gas, microaeric, Pd(II) concentration 200 mg/L, pH 9

3. 生物纳米钯的SEM能谱。(A) 实验组A,氢气,缺氧,Pd(II)浓度50 mg/L,pH为5;(B) 实验组B,甲酸钠,微氧,Pd(II)浓度50 mg/L,pH为7;(E) 实验组E,氢气,有氧,Pd(II)浓度100 mg/L,pH为7;(F) 实验组F,甲酸钠,缺氧,Pd(II)浓度100 mg/L,pH为9;(G) 实验组G,甲酸钠,有氧,Pd(II)浓度200 mg/L,pH为7;(I) 实验组I,氢气,微氧,Pd(II)浓度200 mg/L,pH为9

3.3. 不同因素对纳米钯钯催化活性的影响

在分别以氢气、甲酸钠、乳酸钠为电子供体的实验组中,以乳酸钠为电子供体组合中未生成钯颗粒,电子供体为氢气和甲酸钠的实验组中均有钯颗粒的生成,所以只向电子供体是氢气、甲酸钠的组合里分别添加2.4 μL的TCE,通过气相色谱仪定期测定实验组中TCE的降解情况,以分析钯颗粒对TCE是否有催化活性。

四种因素的三种水平下生成的钯颗粒的催化活性如图4所示。当电子供体为甲酸钠时,所生成的钯颗粒都能降解TCE。当电子供体为氢气时,除了C处理组(条件为好氧,100 mg/L Pd(II),氢气,pH值

Figure 4. Schematic diagram illustrating the conversion process of palladium from its initial free state to nanopalladium via S. oneidensis MR-1, inspired by [23]

4. 钯通过S. oneidensis MR-1由初始游离态转化为纳米钯的过程原理图,该图受[23]启发绘制

Figure 5. Concentration changes of TCE and ethane over 100 hours, with error bars indicating standard deviation. (a) shows TCE changes, (b) shows ethane changes. Experimental group setup: (A) Group A: Hydrogen gas, anoxic conditions, Pd(II) concentration 50 mg/L, pH 5; (B) Group B: Sodium formate, microaerophilic conditions, Pd(II) concentration 50 mg/L, pH 7; (E) Group E: Hydrogen gas, aerobic conditions, Pd(II) concentration 100 mg/L, pH 7; (F) Group F: Sodium formate, anaerobic conditions, Pd(II) concentration 100 mg/L, pH 9; (G) Group G: Sodium formate, aerobic, Pd(II) concentration 200 mg/L, pH 7; (I) Group I: Hydrogen gas, microaeric, Pd(II) concentration 200 mg/L, pH 9

5. TCE和乙烷在100 h内的浓度变化,误差线表示标准差,(a) 表示TCE的变化,(b) 表示乙烷的变化。实验组设置:A组,氢气,缺氧,Pd(II)浓度50 mg/L,pH为5;B组,甲酸钠,微氧,Pd(II)浓度50 mg/L,pH为7;E组,氢气,有氧,Pd(II)浓度100 mg/L,pH为7;F组,甲酸钠,缺氧,Pd(II)浓度100 mg/L,pH为9;G组,甲酸钠,有氧,Pd(II)浓度200 mg/L,pH为7;I组,氢气,微氧,Pd(II)浓度200 mg/L,pH为9

为7),其他处理组生成的钯颗粒都有降解TCE的能力。

图5(a)图5(b)分别可知TCE降解和乙烷生成的情况,即分别体现了脱氯过程中反应速率和反应的彻底程度。由图可见,E组TCE未发生脱氯也未生成乙烷,推测此处理可以合成纳米钯但对于TCE脱氯过程暂不具有催化活性。在其他发生脱氯的5组中,I组反应最快,TCE降解率最高,其次是G组和F组,由此可推测Pd(II)浓度越高,TCE脱氯速率越快,且氢气与甲酸钠在作为电子供体合成纳米钯时均能对TCE脱氯展现出高效性。与Wim De Windt团队论证纳米钯合成效果与Pd(II)浓度和电子供体相关[41]的结果保持一致。A组在5个脱氯的处理中展现出相对较慢的脱氯速率,同时反应终产物乙烷的生成量不及TCE初始产物的1/3,推测溶解氧、pH两种因子可能对另两种因素产生了影响,进而影响了本组中纳米钯的催化活性。

以TCE脱氯的反应速率常数为因变量,以Pd(II)浓度、pH为因变量,溶解氧DO、电子供体类型为协变量,采用一般线性模型单因素分析,计算主体间效应,结果如表3所示。

Table 3. General linear model single-factor analysis of subject-interaction effects (including sodium lactate)

3. 一般线性模型单因素分析主体间效应(包含乳酸钠)

因变量

环境因子

F

显著性(P)

偏Eta平方(η2)

反应速率常数k

溶解氧DO

2.367

0.140ns

0.301

电子供体类型

22.729

0.000***

0.805

Pd(II)浓度

2.877

0.118ns

0.207

pH

0.046

0.834ns

0.004

注:ns表示P > 0.05,*表示P ≤ 0.05,**表示P ≤ 0.01,***表示P ≤ 0.001。

上述计算表格电子供体类型的偏Eta平方值最高,说明电子供体类型解释了80.5%的反应速率常数差异。综合这几组样品的电子供体均为乳酸钠,可以推断乳酸钠作为电子供体时,S. oneidensis MR-1不能将Pd(II)转化为纳米钯。为了保证后续数据分析的精确性,将这三组数据予以剔除,对其余6组重新采用一般线性模型单因素分析,展开计算结果如表4

Table 4. General linear model single-factor analysis of subject-interaction effects (excluding sodium lactate)

4. 一般线性模型单因素分析主体间效应(排除乳酸钠)

因变量

环境因子

F

显著性(P)

偏Eta平方(η2)

反应速率常数k

溶解氧DO

26.127

0.001***

0.897

电子供体类型

46.441

0.000***

0.886

Pd(II)浓度

35.149

0.001***

0.854

pH

13.913

0.010**

0.699

注:*表示P ≤ 0.05,**表示P ≤ 0.01,***表示P ≤ 0.001。

反应速率常数k间接反映了合成生物纳米钯的催化活性,也能间接反映生物纳米钯合成的效果,由计算结果得知,溶解氧、电子供体类型、Pd(II)浓度、pH的F值均大于1,实验组间差异较为明显,说明不同溶解氧、电子供体类型、Pd(II)浓度、pH对生物纳米钯的合成均具有显著影响。显著性的计算中,所有因子的P值均小于0.05,推出溶解氧、电子供体类型、Pd(II)浓度、pH均对合成生物纳米钯影响显著。最后,根据偏Eta平方,得到不同因子对反应速率常数差异的解释,对反应速率常数差异的解释力度从大到小依次为:溶解氧DO,电子供体类型,Pd(II)浓度,pH。

3.4. 不同环境因子合成生物纳米钯对TCE降解相关性分析

综合讨论分析结果,对Pd(II)浓度、pH、溶解氧、电子供体类型、TCE降解率、乙烷生成量、反应速率常数这几个量绘制相关性分析热图。如图6,热图中,溶解氧与电子供体类型为固定因子,在计算时予以赋值如下:缺氧 = 1,微氧 = 2,有氧 = 3;氢气 = 1,甲酸钠 = 2。由一般线性模型单因素分析已知,4种环境因子与反应速率常数均显著相关。热图则进一步揭示了这些因子的协同表达模式及其在不同组中的分层结构。通过相关性分析可以发现,Pd(II)浓度、pH对TCE降解率、乙烷生成量、反应速率常数体现出正相关性,而溶解氧对这三个参数体现出负相关性。目前的研究中,已有对pH因素的评估,论证了pH在7及以上时有利于生物纳米钯的合成[42]-[44],与本次分析结果一致。另外,Pd(II)浓度、pH、溶解氧之间存在着协同关系。综上可推测,高效合成具有更高催化活性的生物纳米钯,最佳条件为200 mg/L Pd(II),采用氢气作为电子供体,控制较低的溶解氧。

Figure 6. Heatmap of correlation analysis among different environmental factors

6. 不同环境因子相关性分析热图

4. 结论

本文利用正交试验法对Pd(II)浓度、电子供体的种类、溶解氧DO、pH这四种环境因子合成生物纳米钯的效果进行评估,得到结论如下:(1) Pd(II)浓度、电子供体的种类、溶解氧DO、pH这四种环境因子对生物纳米钯合成影响均体现为显著,Pd(II)浓度、pH对生物纳米钯的影响为正相关,而溶解氧对其的影响为负相关;(2) 在电子供体的选择上,氢气效果优于甲酸钠,乳酸钠作为电子供体时,不合成生物纳米钯,Pd(II)浓度可能对生物纳米钯的粒径和分布造成影响,200 mg/L时,粒径最小,分布最密集,比表面积最大;(3) 以上四种环境因子之间存在一定协同性,在较高的Pd(II)浓度和偏碱性条件下的pH、较低溶解氧和以氢气作为电子供体可合成高催化活性的生物纳米钯。

基金项目

《环境实验设计与数据处理教学模式改革》项目资助。

NOTES

*通讯作者。

参考文献

[1] Chen, H.-M. and Wu, M.-T. (2017) Residential Exposure to Chlorinated Hydrocarbons from Groundwater Contamination and the Impairment of Renal Function—An Ecological Study. Scientific Reports, 7, Article No. 40283.
https://doi.org/10.1038/srep40283
[2] Arjoon, A., Olaniran, A.O. and Pillay, B. (2012) Co-Contamination of Water with Chlorinated Hydrocarbons and Heavy Metals: Challenges and Current Bioremediation Strategies. International Journal of Environmental Science and Technology, 10, 395-412.
https://doi.org/10.1007/s13762-012-0122-y
[3] Fahmy, S., Preis, E., Bakowsky, U. and Azzazy, H.M. (2020) Palladium Nanoparticles Fabricated by Green Chemistry: Promising Chemotherapeutic, Antioxidant and Antimicrobial Agents. Materials, 13, Article No. 3661.
https://doi.org/10.3390/ma13173661
[4] Yaduvanshi, N., Jaiswal, S., Tewari, S., Shukla, S., Wabaidur, S.M., Dwivedi, J., et al. (2023) Palladium Nanoparticles and Their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. Inorganic Chemistry Communications, 151, Article ID: 110600.
https://doi.org/10.1016/j.inoche.2023.110600
[5] Ali, I., Peng, C., Khan, Z.M., Naz, I., Sultan, M., Ali, M., et al. (2019) Overview of Microbes Based Fabricated Biogenic Nanoparticles for Water and Wastewater Treatment. Journal of Environmental Management, 230, 128-150.
https://doi.org/10.1016/j.jenvman.2018.09.073
[6] Hou, Y., Zhang, B., Yun, H., Yang, Z., Han, J., Zhou, J., et al. (2017) Palladized Cells as Suspension Catalyst and Electrochemical Catalyst for Reductively Degrading Aromatics Contaminants: Roles of Pd Size and Distribution. Water Research, 125, 288-297.
https://doi.org/10.1016/j.watres.2017.08.055
[7] Xiao, Z., Jiang, W., Chen, D. and Xu, Y. (2020) Bioremediation of Typical Chlorinated Hydrocarbons by Microbial Reductive Dechlorination and Its Key Players: A Review. Ecotoxicology and Environmental Safety, 202, Article ID: 110925.
https://doi.org/10.1016/j.ecoenv.2020.110925
[8] Joudeh, N., Saragliadis, A., Koster, G., Mikheenko, P. and Linke, D. (2022) Synthesis Methods and Applications of Palladium Nanoparticles: A Review. Frontiers in Nanotechnology, 4, Article ID: 1062608.
https://doi.org/10.3389/fnano.2022.1062608
[9] Zhang, Z., Shen, Q., Cissoko, N., Wo, J. and Xu, X. (2010) Catalytic Dechlorination of 2,4-Dichlorophenol by Pd/Fe Bimetallic Nanoparticles in the Presence of Humic Acid. Journal of Hazardous Materials, 182, 252-258.
https://doi.org/10.1016/j.jhazmat.2010.06.022
[10] Tahri, N., Bahafid, W., Sayel, H. and El Ghachtouli, N. (2013) Biodegradation: Involved Microorganisms and Genetically Engineered Microorganisms. In: BiodegradationLife of Science, InTech.
https://doi.org/10.5772/56194
[11] Luo, Y., Long, M., Zhou, Y., Zhou, C., Zheng, X. and Rittmann, B.E. (2022) Hydrodehalogenation of Trichlorofluoromethane over Biogenic Palladium Nanoparticles in Ambient Conditions. Environmental Science & Technology, 56, 13357-13367.
https://doi.org/10.1021/acs.est.2c03532
[12] Law, C.K.Y., Kundu, K., Bonin, L., Peñacoba-Antona, L., Bolea-Fernandez, E., Vanhaecke, F., et al. (2023) Electrochemically Assisted Production of Biogenic Palladium Nanoparticles for the Catalytic Removal of Micropollutants in Wastewater Treatment Plants Effluent. Journal of Environmental Sciences, 128, 203-212.
https://doi.org/10.1016/j.jes.2022.08.018
[13] Hemalatha, K., Madhumitha, G., Kajbafvala, A., Anupama, N., Sompalle, R. and Mohana Roopan, S. (2013) Function of Nanocatalyst in Chemistry of Organic Compounds Revolution: An Overview. Journal of Nanomaterials, 2013, Article ID: 341015.
https://doi.org/10.1155/2013/341015
[14] Hazarika, M., Borah, D., Bora, P., Silva, A.R. and Das, P. (2017) Biogenic Synthesis of Palladium Nanoparticles and Their Applications as Catalyst and Antimicrobial Agent. PLOS ONE, 12, e0184936.
https://doi.org/10.1371/journal.pone.0184936
[15] Palem, R.R., Shimoga, G., Kim, S., Bathula, C., Ghodake, G.S. and Lee, S. (2022) Biogenic Palladium Nanoparticles: An Effectual Environmental Benign Catalyst for Organic Coupling Reactions. Journal of Industrial and Engineering Chemistry, 106, 52-68.
https://doi.org/10.1016/j.jiec.2021.11.020
[16] Joudeh, N., Saragliadis, A., Schulz, C., Voigt, A., Almaas, E. and Linke, D. (2021) Transcriptomic Response Analysis of Escherichia coli to Palladium Stress. Frontiers in Microbiology, 12, Article ID: 741836.
https://doi.org/10.3389/fmicb.2021.741836
[17] Windt, W.D., Aelterman, P. and Verstraete, W. (2005) Bioreductive Deposition of Palladium (0) Nanoparticles on Shewanella oneidensis with Catalytic Activity towards Reductive Dechlorination of Polychlorinated Biphenyls. Environmental Microbiology, 7, 314-325.
https://doi.org/10.1111/j.1462-2920.2005.00696.x
[18] Hosseinkhani, B., Hennebel, T., Van Nevel, S., Verschuere, S., Yakimov, M.M., Cappello, S., et al. (2013) Biogenic Nanopalladium Based Remediation of Chlorinated Hydrocarbons in Marine Environments. Environmental Science & Technology, 48, 550-557.
https://doi.org/10.1021/es403047u
[19] Hosseinkhani, B., Nuzzo, A., Zanaroli, G., Fava, F. and Boon, N. (2015) Assessment of Catalytic Dechlorination Activity of Suspended and Immobilized Bio-Pd NPs in Different Marine Conditions. Applied Catalysis B: Environmental, 168, 62-67.
https://doi.org/10.1016/j.apcatb.2014.12.014
[20] Nuzzo, A., Hosseinkhani, B., Boon, N., Zanaroli, G. and Fava, F. (2017) Impact of Bio-Palladium Nanoparticles (Bio-Pd Nps) on the Activity and Structure of a Marine Microbial Community. Environmental Pollution, 220, 1068-1078.
https://doi.org/10.1016/j.envpol.2016.11.036
[21] Song, X., Shi, X. and Yang, M. (2018) Dual Application of Shewanella oneidensis MR‐1 in Green Biosynthesis of Pd Nanoparticles Supported on TiO2 Nanotubes and Assisted Photocatalytic Degradation of Methylene Blue. IET Nanobiotechnology, 12, 441-445.
https://doi.org/10.1049/iet-nbt.2017.0130
[22] Hosseinkhani, B., Søbjerg, L.S., Rotaru, A., Emtiazi, G., Skrydstrup, T. and Meyer, R.L. (2011) Microbially Supported Synthesis of Catalytically Active Bimetallic Pd‐Au Nanoparticles. Biotechnology and Bioengineering, 109, 45-52.
https://doi.org/10.1002/bit.23293
[23] Law, C.K.Y., Bonin, L., De Gusseme, B., Boon, N. and Kundu, K. (2022) Biogenic Synthesis of Palladium Nanoparticles: New Production Methods and Applications. Nanotechnology Reviews, 11, 3104-3124.
https://doi.org/10.1515/ntrev-2022-0482
[24] Hennebel, T., Simoen, H., De Windt, W., Verloo, M., Boon, N. and Verstraete, W. (2008) Biocatalytic Dechlorination of Trichloroethylene with Bio‐Palladium in a Pilot‐Scale Membrane Reactor. Biotechnology and Bioengineering, 102, 995-1002.
https://doi.org/10.1002/bit.22138
[25] Suja, E., Nancharaiah, Y.V. and Venugopalan, V.P. (2014) Biogenic Nanopalladium Production by Self-Immobilized Granular Biomass: Application for Contaminant Remediation. Water Research, 65, 395-401.
https://doi.org/10.1016/j.watres.2014.08.005
[26] Wang, Z., Zhang, L., Zhao, J. and Xing, B. (2016) Environmental Processes and Toxicity of Metallic Nanoparticles in Aquatic Systems as Affected by Natural Organic Matter. Environmental Science: Nano, 3, 240-255.
https://doi.org/10.1039/c5en00230c
[27] Wang, W., Zhang, B., Liu, Q., Du, P., Liu, W. and He, Z. (2018) Biosynthesis of Palladium Nanoparticles Using Shewanella loihica PV-4 for Excellent Catalytic Reduction of Chromium(VI). Environmental Science: Nano, 5, 730-739.
https://doi.org/10.1039/c7en01167a
[28] Zhou, C., Wang, Z., Ontiveros-Valencia, A., Long, M., Lai, C., Zhao, H., et al. (2017) Coupling of Pd Nanoparticles and Denitrifying Biofilm Promotes H2-Based Nitrate Removal with Greater Selectivity towards N2. Applied Catalysis B: Environmental, 206, 461-470.
https://doi.org/10.1016/j.apcatb.2017.01.068
[29] Armendariz, V., Herrera, I., Peralta-Videa, J.R., Jose-Yacaman, M., Troiani, H., Santiago, P., et al. (2004) Size Controlled Gold Nanoparticle Formation by Avena Sativa Biomass: Use of Plants in Nanobiotechnology. Journal of Nanoparticle Research, 6, 377-382.
https://doi.org/10.1007/s11051-004-0741-4
[30] Qazi, F., Hussain, Z. and Tahir, M.N. (2016) Advances in Biogenic Synthesis of Palladium Nanoparticles. RSC Advances, 6, 60277-60286.
https://doi.org/10.1039/c6ra11695g
[31] Liu, Y., Yang, F., Yue, P.L. and Chen, G. (2001) Catalytic Dechlorination of Chlorophenols in Water by Palladium/Iron. Water Research, 35, 1887-1890.
https://doi.org/10.1016/s0043-1354(00)00463-2
[32] Tuo, Y., Liu, G., Zhou, J., Wang, A., Wang, J., Jin, R., et al. (2013) Microbial Formation of Palladium Nanoparticles by Geobacter Sulfurreducens for Chromate Reduction. Bioresource Technology, 133, 606-611.
https://doi.org/10.1016/j.biortech.2013.02.016
[33] Hazra, C., Kundu, D., Chaudhari, A. and Jana, T. (2012) Biogenic Synthesis, Characterization, Toxicity and Photocatalysis of Zinc Sulfide Nanoparticles Using Rhamnolipids from Pseudomonas aeruginosa bs01 as Capping and Stabilizing Agent. Journal of Chemical Technology & Biotechnology, 88, 1039-1048.
https://doi.org/10.1002/jctb.3934
[34] Fredrickson, J.K., Romine, M.F., Beliaev, A.S., Auchtung, J.M., Driscoll, M.E., Gardner, T.S., et al. (2008) Towards Environmental Systems Biology of Shewanella. Nature Reviews Microbiology, 6, 592-603.
https://doi.org/10.1038/nrmicro1947
[35] Xu, H., Tan, L., Cui, H., Xu, M., Xiao, Y., Wu, H., et al. (2018) Characterization of Pd(II) Biosorption in Aqueous Solution by Shewanella oneidensis Mr-1. Journal of Molecular Liquids, 255, 333-340.
https://doi.org/10.1016/j.molliq.2018.01.168
[36] Wu, X., Zhao, F., Rahunen, N., Varcoe, J.R., Avignone‐Rossa, C., Thumser, A.E., et al. (2010) A Role for Microbial Palladium Nanoparticles in Extracellular Electron Transfer. Angewandte Chemie International Edition, 50, 427-430.
https://doi.org/10.1002/anie.201002951
[37] Yang, Z., Hou, Y., Zhang, B., Cheng, H., Yong, Y., Liu, W., et al. (2020) Insights into Palladium Nanoparticles Produced by Shewanella oneidensis MR-1: Roles of NADH Dehydrogenases and Hydrogenases. Environmental Research, 191, Article ID: 110196.
https://doi.org/10.1016/j.envres.2020.110196
[38] Ng, C.K., Cai Tan, T.K., Song, H. and Cao, B. (2013) Reductive Formation of Palladium Nanoparticles by Shewanella oneidensis: Role of Outer Membrane Cytochromes and Hydrogenases. RSC Advances, 3, 22498-22503.
https://doi.org/10.1039/c3ra44143a
[39] Quan, X., Zhang, X. and Xu, H. (2015) In-Situ Formation and Immobilization of Biogenic Nanopalladium into Anaerobic Granular Sludge Enhances Azo Dyes Degradation. Water Research, 78, 74-83.
https://doi.org/10.1016/j.watres.2015.03.024
[40] Dundas, C.M., Graham, A.J., Romanovicz, D.K. and Keitz, B.K. (2018) Extracellular Electron Transfer by Shewanella oneidensis Controls Palladium Nanoparticle Phenotype. ACS Synthetic Biology, 7, 2726-2736.
https://doi.org/10.1021/acssynbio.8b00218
[41] De Windt, W., Boon, N., Van den Bulcke, J., Rubberecht, L., Prata, F., Mast, J., et al. (2006) Biological Control of the Size and Reactivity of Catalytic Pd(0) Produced by Shewanella oneidensis. Antonie van Leeuwenhoek, 90, 377-389.
https://doi.org/10.1007/s10482-006-9088-4
[42] Yong, P., Rowson, N.A., Farr, J.P.G., Harris, I.R. and Macaskie, L.E. (2002) Bioreduction and Biocrystallization of Palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnology and Bioengineering, 80, 369-379.
https://doi.org/10.1002/bit.10369
[43] Sathishkumar, M., Sneha, K., Kwak, I.S., Mao, J., Tripathy, S.J. and Yun, Y. (2009) Phyto-Crystallization of Palladium through Reduction Process Using Cinnamom Zeylanicum Bark Extract. Journal of Hazardous Materials, 171, 400-404.
https://doi.org/10.1016/j.jhazmat.2009.06.014
[44] Singh, A., Gautam, P.K., Verma, A., Singh, V., Shivapriya, P.M., Shivalkar, S., et al. (2020) Green Synthesis of Metallic Nanoparticles as Effective Alternatives to Treat Antibiotics Resistant Bacterial Infections: A Review. Biotechnology Reports, 25, e00427.
https://doi.org/10.1016/j.btre.2020.e00427