[1]
|
Touraine, P., Chabbert-Buffet, N., Plu-Bureau, G., Duranteau, L., Sinclair, A.H. and Tucker, E.J. (2024) Premature Ovarian Insufficiency. Nature Reviews Disease Primers, 10, Article No. 63. https://doi.org/10.1038/s41572-024-00547-5
|
[2]
|
Huhtaniemi, I., Hovatta, O., La Marca, A., Livera, G., Monniaux, D., Persani, L., et al. (2018) Advances in the Molecular Pathophysiology, Genetics, and Treatment of Primary Ovarian Insufficiency. Trends in Endocrinology & Metabolism, 29, 400-419. https://doi.org/10.1016/j.tem.2018.03.010
|
[3]
|
Warzych, E. and Lipinska, P. (2020) Energy Metabolism of Follicular Environment during Oocyte Growth and Maturation. Journal of Reproduction and Development, 66, 1-7. https://doi.org/10.1262/jrd.2019-102
|
[4]
|
Sugiura, K., Pendola, F.L. and Eppig, J.J. (2005) Oocyte Control of Metabolic Cooperativity between Oocytes and Companion Granulosa Cells: Energy Metabolism. Developmental Biology, 279, 20-30. https://doi.org/10.1016/j.ydbio.2004.11.027
|
[5]
|
Sánchez-Calabuig, M.J., et al. (2021) A High Glucose Concentration during Early Stages of in Vitro Equine Embryo Development Alters Expression of Genes Involved in Glucose Metabolism. Equine Veterinary Journal, 53, 787-795. https://beva.onlinelibrary.wiley.com/doi/10.1111/evj.13342
|
[6]
|
Malyszka, N., Pawlak, P., Cieslak, A., Szkudelska, K. and Lechniak, D. (2023) Distinct Dynamics of Lipid Accumulation by Porcine Cumulus Cells during in Vitro Maturation with Follicular Fluid of Low and High Fatty Acid Contents. Theriogenology, 195, 93-102. https://doi.org/10.1016/j.theriogenology.2022.10.015
|
[7]
|
Fahy, E., Subramaniam, S., Murphy, R.C., Nishijima, M., Raetz, C.R.H., Shimizu, T., et al. (2009) Update of the LIPID MAPS Comprehensive Classification System for Lipids. Journal of Lipid Research, 50, S9-S14. https://doi.org/10.1194/jlr.r800095-jlr200
|
[8]
|
Sturmey, R. and Leese, H. (2003) Energy Metabolism in Pig Oocytes and Early Embryos. Reproduction, 126, 197-204. https://doi.org/10.1530/rep.0.1260197
|
[9]
|
Hou, N., Chen, S., Chen, F., Jiang, M., Zhang, J., Yang, Y., et al. (2016) Association between Premature Ovarian Failure, Polymorphisms in MTHFR and MTRR Genes and Serum Homocysteine Concentration. Reproductive BioMedicine Online, 32, 407-413. https://doi.org/10.1016/j.rbmo.2016.01.009
|
[10]
|
Shi, Q., Liu, R. and Chen, L. (2022) Ferroptosis Inhibitor Ferrostatin-1 Alleviates Homocysteine-Induced Ovarian Granulosa Cell Injury by Regulating TET Activity and DNA Methylation. Molecular Medicine Reports, 25, Article No. 130. https://doi.org/10.3892/mmr.2022.12645
|
[11]
|
Lu, X., Lv, X., Dong, X., Li, Y., Turathum, B., Liu, S., et al. (2023) Increased Serine Synthesis in Cumulus Cells of Young Infertile Women with Diminished Ovarian Reserve. Human Reproduction (Oxford, England), 38, 1723-1732. https://doi.org/10.1093/humrep/dead155
|
[12]
|
Fernstrom, J.D. (2005) Branched-Chain Amino Acids and Brain Function. The Journal of Nutrition, 135, 1539S-1546S. https://doi.org/10.1093/jn/135.6.1539s
|
[13]
|
Kansaku, K., Itami, N., Kawahara-Miki, R., Shirasuna, K., Kuwayama, T. and Iwata, H. (2017) Differential Effects of Mitochondrial Inhibitors on Porcine Granulosa Cells and Oocytes. Theriogenology, 103, 98-103. https://doi.org/10.1016/j.theriogenology.2017.07.049
|
[14]
|
Fontana, J., Martínková, S., Petr, J., Žalmanová, T. and Trnka, J. (2020) Metabolic Cooperation in the Ovarian Follicle. Physiological Research, 69, 33-48. https://doi.org/10.33549/physiolres.934233
|
[15]
|
Munakata, Y., Kawahara-Miki, R., Shiratsuki, S., Tasaki, H., Itami, N., Shirasuna, K., et al. (2016) Gene Expression Patterns in Granulosa Cells and Oocytes at Various Stages of Follicle Development as Well as in in Vitro Grown Oocyte-and-Granulosa Cell Complexes. Journal of Reproduction and Development, 62, 359-366. https://doi.org/10.1262/jrd.2016-022
|
[16]
|
Zhang, X., Zhang, W., Wang, Z., Zheng, N., Yuan, F., Li, B., et al. (2022) Enhanced Glycolysis in Granulosa Cells Promotes the Activation of Primordial Follicles through mTOR Signaling. Cell Death & Disease, 13, Article No. 87. https://doi.org/10.1038/s41419-022-04541-1
|
[17]
|
Shiratsuki, S., Hara, T., Munakata, Y., Shirasuna, K., Kuwayama, T. and Iwata, H. (2016) Low Oxygen Level Increases Proliferation and Metabolic Changes in Bovine Granulosa Cells. Molecular and Cellular Endocrinology, 437, 75-85. https://doi.org/10.1016/j.mce.2016.08.010
|
[18]
|
Zhang, Z., Ren, S., Yang, W., Xu, X., Zhao, S., Fang, K., et al. (2025) AARS2-Catalyzed Lactylation Induces Follicle Development and Premature Ovarian Insufficiency. Cell Death Discovery, 11, Article No. 209. https://doi.org/10.1038/s41420-025-02501-0
|
[19]
|
Shang, Y., Li, Y., Han, D., Deng, K., Gao, W. and Wu, M. (2025) LRRC4 Deficiency Drives Premature Ovarian Insufficiency by Disrupting Metabolic Homeostasis in Granulosa Cells. Advanced Science, 12, Article ID: 2417717. https://doi.org/10.1002/advs.202417717
|
[20]
|
Zhao, S., Liu, H., Liu, Y., Wu, J., Wang, C., Hou, X., et al. (2013) miR-143 Inhibits Glycolysis and Depletes Stemness of Glioblastoma Stem-Like Cells. Cancer Letters, 333, 253-260. https://doi.org/10.1016/j.canlet.2013.01.039
|
[21]
|
Cao, J., Huo, P., Cui, K., Wei, H., Cao, J., Wang, J., et al. (2022) Correction: Follicular Fluid-Derived Exosomal miR-143-3p/miR-155-5p Regulate Follicular Dysplasia by Modulating Glycolysis in Granulosa Cells in Polycystic Ovary Syndrome. Cell Communication and Signaling, 20, Article No. 61. https://doi.org/10.1186/s12964-022-00938-9
|
[22]
|
Li, Z., Zhang, M., Zheng, J., Tian, Y., Zhang, H., Tan, Y., et al. (2021) Human Umbilical Cord Mesenchymal Stem Cell-Derived Exosomes Improve Ovarian Function and Proliferation of Premature Ovarian Insufficiency by Regulating the Hippo Signaling Pathway. Frontiers in Endocrinology, 12, Article ID: 711902. https://doi.org/10.3389/fendo.2021.711902
|
[23]
|
Zhang, S., Zou, X., Feng, X., Shi, S., Zheng, Y., Li, Q., et al. (2025) Exosomes Derived from Hypoxic Mesenchymal Stem Cell Ameliorate Premature Ovarian Insufficiency by Reducing Mitochondrial Oxidative Stress. Scientific Reports, 15, Article No. 8235. https://doi.org/10.1038/s41598-025-90879-3
|
[24]
|
Li, W., Lu, M., Shang, J., Zhou, J., Lin, L., Liu, Y., et al. (2024) Hypoxic Mesenchymal Stem Cell-Derived Exosomal circDennd2a Regulates Granulosa Cell Glycolysis by Interacting with LDHA. Stem Cell Research & Therapy, 15, Article No. 484. https://doi.org/10.1186/s13287-024-04098-0
|
[25]
|
Yin, J.Q., Zhu, J. and Ankrum, J.A. (2019) Manufacturing of Primed Mesenchymal Stromal Cells for Therapy. Nature Biomedical Engineering, 3, 90-104. https://doi.org/10.1038/s41551-018-0325-8
|
[26]
|
Chang, Y., Yang, Y., Tien, C., Yang, C. and Hsiao, M. (2018) Roles of Aldolase Family Genes in Human Cancers and Diseases. Trends in Endocrinology & Metabolism, 29, 549-559. https://doi.org/10.1016/j.tem.2018.05.003
|
[27]
|
Li, D., Wang, X., Li, G., Dang, Y., Zhao, S. and Qin, Y. (2021) LncRNA ZNF674-AS1 Regulates Granulosa Cell Glycolysis and Proliferation by Interacting with ALDOA. Cell Death Discovery, 7, Article No. 107. https://doi.org/10.1038/s41420-021-00493-1
|
[28]
|
Tao, X., Cai, L., Chen, L., Ge, S. and Deng, X. (2019) Effects of Metformin and Exenatide on Insulin Resistance and AMPKα-SIRT1 Molecular Pathway in PCOS Rats. Journal of Ovarian Research, 12, Article No. 86. https://doi.org/10.1186/s13048-019-0555-8
|
[29]
|
Zhang, S., Tu, H., Yao, J., Le, J., Jiang, Z., Tang, Q., et al. (2020) Combined Use of Diane-35 and Metformin Improves the Ovulation in the PCOS Rat Model Possibly via Regulating Glycolysis Pathway. Reproductive Biology and Endocrinology, 18, Article No. 58. https://doi.org/10.1186/s12958-020-00613-z
|
[30]
|
Jalil, A.T., Zair, M.A., Hanthal, Z.R., Naser, S.J., Aslandook, T., Abosaooda, M., et al. (2023) Role of the AMP-Activated Protein Kinase in the Pathogenesis of Polycystic Ovary Syndrome. Indian Journal of Clinical Biochemistry, 39, 450-458. https://doi.org/10.1007/s12291-023-01139-y
|
[31]
|
Huang, L., Liang, A., Li, T., Lei, X., Chen, X., Liao, B., et al. (2022) Mogroside V Improves Follicular Development and Ovulation in Young-Adult PCOS Rats Induced by Letrozole and High-Fat Diet through Promoting Glycolysis. Frontiers in Endocrinology, 13, Article ID: 838204. https://doi.org/10.3389/fendo.2022.838204
|
[32]
|
Dunning, K.R., Cashman, K., Russell, D.L., Thompson, J.G., Norman, R.J. and Robker, R.L. (2010) Beta-Oxidation Is Essential for Mouse Oocyte Developmental Competence and Early Embryo Development. Biology of Reproduction, 83, 909-918. https://doi.org/10.1095/biolreprod.110.084145
|
[33]
|
Zhuan, Q., Ma, H., Chen, J., Luo, Y., Luo, Y., Gao, L., et al. (2020) Cytoplasm Lipids Can Be Modulated through Hormone-Sensitive Lipase and Are Related to Mitochondrial Function in Porcine IVM Oocytes. Reproduction, Fertility and Development, 32, Article No. 667. https://doi.org/10.1071/rd19047
|
[34]
|
Foster, D.W. (2012) Malonyl-CoA: The Regulator of Fatty Acid Synthesis and Oxidation. Journal of Clinical Investigation, 122, 1958-1959. https://doi.org/10.1172/jci63967
|
[35]
|
Gilchrist, R.B., Luciano, A.M., Richani, D., Zeng, H.T., Wang, X., Vos, M.D., et al. (2016) Oocyte Maturation and Quality: Role of Cyclic Nucleotides. Reproduction, 152, R143-R157. https://doi.org/10.1530/rep-15-0606
|
[36]
|
Jaffe, L.A. and Egbert, J.R. (2017) Regulation of Mammalian Oocyte Meiosis by Intercellular Communication within the Ovarian Follicle. Annual Review of Physiology, 79, 237-260. https://doi.org/10.1146/annurev-physiol-022516-034102
|
[37]
|
Downs, S.M., Mosey, J.L. and Klinger, J. (2009) Fatty Acid Oxidation and Meiotic Resumption in Mouse Oocytes. Molecular Reproduction and Development, 76, 844-853. https://doi.org/10.1002/mrd.21047
|
[38]
|
Zhu, H., Wu, Y., Zhuang, Z., Xu, J., Chen, F., Wang, Q., et al. (2024) Ampelopsis Japonica Aqueous Extract Improves Ovulatory Dysfunction in PCOS by Modulating Lipid Metabolism. Biomedicine & Pharmacotherapy, 170, Article ID: 116093. https://doi.org/10.1016/j.biopha.2023.116093
|
[39]
|
CN118948837 Application of Artemisinin to Treatment of Polycystic Ovarian Syndrome by Regulating AMPK to Promote White Fat Browning [Internet]. https://patentscope.wipo.int/search/en/detail.jsf?docId=CN443425594
|
[40]
|
Hashimoto, S. (2009) Application of in Vitro Maturation to Assisted Reproductive Technology. Journal of Reproduction and Development, 55, 1-10. https://doi.org/10.1262/jrd.20127
|
[41]
|
Wu, L.L., Dunning, K.R., Yang, X., Russell, D.L., Lane, M., Norman, R.J., et al. (2010) High-Fat Diet Causes Lipotoxicity Responses in Cumulus-Oocyte Complexes and Decreased Fertilization Rates. Endocrinology, 151, 5438-5445. https://doi.org/10.1210/en.2010-0551
|
[42]
|
Wu, L.L., Russell, D.L., Norman, R.J. and Robker, R.L. (2012) Endoplasmic Reticulum (ER) Stress in Cumulus-Oocyte Complexes Impairs Pentraxin-3 Secretion, Mitochondrial Membrane Potential (δψm), and Embryo Development. Molecular Endocrinology, 26, 562-573. https://doi.org/10.1210/me.2011-1362
|
[43]
|
Hemmings, K.E., Maruthini, D., Vyjayanthi, S., Hogg, J.E., Balen, A.H., Campbell, B.K., et al. (2013) Amino Acid Turnover by Human Oocytes Is Influenced by Gamete Developmental Competence, Patient Characteristics and Gonadotrophin Treatment. Human Reproduction, 28, 1031-1044. https://doi.org/10.1093/humrep/des458
|
[44]
|
Alborzi, P., et al. (2020) Incorporation of Arginine, Glutamine or Leucine in Culture Medium Accelerates in Vitro Activation of Primordial Follicles in 1-Day-Old Mouse Ovary. Zygote (Cambridge, England), 1-8. https://pubmed.ncbi.nlm.nih.gov/32482183/
|
[45]
|
Moslehi, N., Mirmiran, P., Marzbani, R., Rezadoost, H., Mirzaie, M., Azizi, F., et al. (2020) Serum Metabolomics Study of Women with Different Annual Decline Rates of Anti-Müllerian Hormone: An Untargeted Gas Chromatography-Mass Spectrometry-Based Study. Human Reproduction, 36, 721-733. https://doi.org/10.1093/humrep/deaa279
|
[46]
|
Zhenyukh, O., Civantos, E., Ruiz-Ortega, M., Sánchez, M.S., Vázquez, C., Peiró, C., et al. (2017) High Concentration of Branched-Chain Amino Acids Promotes Oxidative Stress, Inflammation and Migration of Human Peripheral Blood Mononuclear Cells via mTORC1 Activation. Free Radical Biology and Medicine, 104, 165-177. https://doi.org/10.1016/j.freeradbiomed.2017.01.009
|
[47]
|
Adhikari, D. and Liu, K. (2010) mTOR Signaling in the Control of Activation of Primordial Follicles. Cell Cycle, 9, 1673-1674. https://doi.org/10.4161/cc.9.9.11626
|
[48]
|
Guo, X., Zhu, Y., Guo, L., Qi, Y., Liu, X., Wang, J., et al. (2023) BCAA Insufficiency Leads to Premature Ovarian Insufficiency via Ceramide‐Induced Elevation of ROS. EMBO Molecular Medicine, 15, e17450. https://doi.org/10.15252/emmm.202317450
|