子宫内膜息肉发病机制的研究进展
Research Progress on the Pathogenesis of Endometrial Polyps
DOI: 10.12677/acm.2025.1592643, PDF, HTML, XML,   
作者: 李 成, 张梦维:绍兴文理学院医学院,浙江 绍兴;陈君霞*:绍兴市人民医院妇产科(绍兴文理学院附属第一医院),浙江 绍兴
关键词: 子宫内膜息肉发病机制复发综述Endometrial Polyps Pathogenesis Recurrence Overview
摘要: 子宫内膜息肉(Endometrial Polyps, EPs)是一种临床上十分常见的妇科良性疾病,其发病被认为是一个涉及多因素的复杂过程,其中慢性炎症是重要的促成因素之一,慢性炎症会导致子宫内膜组织增生,形成息肉状赘生物凸向宫腔内,可呈单发或多发。EPs主要临床症状表现为白带异常、异常子宫出血、流产甚至不孕等,并且EPs经治疗后易复发,因此明确其发病机制对于该疾病的治疗及预防复发具有重大意义。本文系统梳理近年来子宫内膜息肉(EPs)发病机制的多因素研究进展,重点分析激素失衡、细胞增殖/凋亡、免疫炎症、代谢及环境因素等关键机制的相互作用,为临床预防、诊断及复发干预提供理论依据。
Abstract: Endometrial Polyps (EPs) are a highly prevalent benign gynecological condition. Their pathogenesis is considered a multifactorial process, with chronic inflammation serving as a significant contributing factor. This chronic inflammatory state can induce endometrial tissue hyperplasia, leading to the formation of polypoid masses projecting into the uterine cavity, which may present as solitary or multiple lesions. The primary clinical manifestations of EPs include abnormal vaginal discharge (leukorrhea), abnormal uterine bleeding (AUB), spontaneous abortion (miscarriage), and even infertility. Furthermore, EPs exhibit a high recurrence rate following treatment. Consequently, elucidating their pathogenesis is of paramount significance for developing effective therapeutic strategies and preventing recurrence. This article systematically reviews recent advances in understanding the multifactorial pathogenesis of EPs. It focuses on analyzing the interplay among key mechanisms, including: Hormonal dysregulation, Alterations in cellular proliferation and apoptosis, Immune-inflammatory responses, Metabolic factors, Environmental factors. The aim is to provide a theoretical foundation for improved clinical prevention, diagnosis, and recurrence intervention strategies.
文章引用:李成, 张梦维, 陈君霞. 子宫内膜息肉发病机制的研究进展[J]. 临床医学进展, 2025, 15(9): 1443-1450. https://doi.org/10.12677/acm.2025.1592643

1. 引言

子宫内膜息肉是一种常见的妇科良性疾病,发病率高达25% [1],临床表现为白带异常如白带增多、血性白带,异常子宫出血如经期延长、绝经后阴道出血等,对于育龄期女性有致流产、不孕的风险。经阴道超声(TVS)是检测EPs的常用方法,彩色多普勒可提高准确性,宫腔镜检查诊断价值高,可用于组织学诊断和有效治疗[2]。宫腔镜子宫内膜息肉切除术是子宫内膜息肉的金标准术式,疗效确切,但EPs经治疗后复发率高,目前其发病机制尚不明确,了解Eps发病机制对于降低EPs发病率及预防治疗后复发具有重大意义。

本研究通过系统检索PubMed、Web of Science和中国知网数据库,采用“endometrial polyps”、 “inflammation”、“pathogenesis”、“recurrence”等组合检索词,筛选2000~2025年发表的英文和中文文献。纳入标准包括:机制研究论文、临床对照研究、样本量 ≥ 50的病例系列。最终纳入50篇文献进行分析。

2. 激素及其受体表达失衡因素

现有研究指出EPs发病与雌激素依赖相关,内膜息肉腺上皮中雌激素受体(ER)、孕激素受体(PR)表达与邻近内膜之间可能存在差异。Yan等[3]研究发现腺上皮ER高表达、腺上皮及间质PR低表达与EPs发病率显著相关。ER与PR的失衡(ER高表达/PR低表达)是EPs发生的关键机制,ER通过促进子宫内膜细胞增殖,PR通过抑制增殖发挥保护作用,失衡状态下子宫内膜异常增生,最终形成息肉。ERα是关键雌激素受体,其高表达可能增强雌激素敏感性,促进细胞增殖。Jiang等[4]研究表明ERα异常高表达导致的凋亡失衡是子宫内膜异位症患者息肉高发的重要原因。在绝经前女性中,息肉基质细胞中雌激素受体和孕激素受体水平的降低可能会使息肉对周期性激素变化的敏感性降低。另有研究指出,子宫内膜息肉表达芳香化酶p450酶,该酶刺激游离睾酮转化为雌二醇,从而诱导息肉的增殖[6]。这一过程体现了雄激素通过转化为雌激素间接影响子宫内膜息肉生长的作用机制。他莫昔芬作为ER阳性乳腺癌内分泌治疗的常用辅助药物,在乳腺组织中起抗雌激素作用,但对子宫内膜和其他妇科器官具有雌激素样作用。他莫昔芬在子宫内膜中可激活雌激素受体α (ERα),上调局部雌激素合成酶(如芳香化酶)的表达,同时抑制孕激素受体(PR)功能,导致增殖/凋亡失衡。研究表明,绝经前接受他莫昔芬治疗时会发生子宫内膜增殖和增生,增加患子宫内膜息肉、增生(伴或不伴子宫内膜增生)和癌的风险[7]-[9]。雌激素合成或代谢相关基因(如CYP1B1、COMT、ESR1等)的多态性可能影响激素水平,进而关联EPs的发生。但Tcherniakovsky等[10]研究得出COMT2、COMT3、CYP1B1、ESR1基因多态性与EPs的发病无关联。未来需更多的研究去进一步探索。子宫内膜异位症是指在子宫腔外出现子宫内膜样组织,Gu等[11]研究表明子宫内膜异位症是子宫内膜息肉复发的独立危险因素。子宫内膜异位症患者常伴随局部雌激素水平升高及孕激素抵抗,可能与异位内膜组织自分泌雌激素有关,进一步加剧激素失衡状态。研究发现,子宫内膜异位症和子宫内膜息肉都与炎症[12] [13]、持续的雌激素刺激[14] [15]、以及有丝分裂和细胞凋亡的不平衡有关[5] [16]

3. 细胞增殖、凋亡失衡因素

先前的研究认为EPs的发生与细胞增殖、凋亡之间的调节失衡有关,其中涉及的分子机制较为复杂,具体机制仍需继续深入探讨。

LIN28B作为保守的RNA结合蛋白,通过调控let-7家族pre-miRNA的加工影响细胞增殖,其多态性与多种增生性疾病的复发相关。Lu等[17]研究结果指出LIN28B基因rs369065 TT基因型与育龄期EPs患者术后复发风险增加相关,且复发时间更短,尤其在年龄 > 33岁、单发息肉、息肉 < 1.2 cm的患者中,rs369065可能通过影响LIN28B表达或与rs221634 (影响miR-548结合)连锁,促进EPs复发。

ADAMTS家族是一组分泌型锌依赖性金属蛋白酶,参与细胞外基质调节及信号传导,与多种疾病相关。Nian等[18]研究表明ADAMTS12血清水平在EPs患者中升高,尤其在复发患者中更显著,推测ADAMTS12可能通过促进炎症反应或血管生成参与EPs的发生和复发。

MCL1、Bcl-2作为抗凋亡基因,其表达水平会影响细胞的存活、增殖及凋亡。Su等[19]研究表明孕激素通过调控miR-320b及其靶基因MCL1的表达,在EPs发展中发挥抑制增殖的作用,miR-320b通过靶向结合MCL1的3’UTR抑制其表达,孕激素会上调miR-320b的表达,因而减弱EPs的增殖并促进其凋亡。Giordano等[20]研究发现直径 > 2 cm的EPs基质中Bcl-2存在高表达,可能增加异常增殖及恶变风险。

Wnt信号通路在协调细胞增殖分化与修复再生发挥重要作用,其功能失调与多种疾病的发生有关。Chiu等[21]研究表明EPs中Wnt信号通路相关基因存在显著异常,其中抑制Wnt通路的基因(如SFRP5、GPC3)下调,而可能激活通路的基因(如DKK1、DKKL1)上调。SFRP5通过竞争性结合Wnt蛋白抑制通路,其下调会解除抑制;GPC3可抑制经典Wnt通路,其下调可能增强通路活性。这些异常导致Wnt信号通路过度激活,引发细胞失控增殖,从而促进EPs形成。

胰岛素抵抗(IR)是因细胞对胰岛素反应降低引发高胰岛素血症的病理状态,可激活PI3K/AKT等下游信号通路,导致子宫内膜细胞异常增殖和凋亡。Li等[22]研究表明胰岛素抵抗及PI3K/AKT信号通路的异常激活可能是子宫内膜息肉发生的潜在致病机制。

Pathare等[23]研究通过大规模全基因组关联研究(GWAS)元分析发现了与女性生殖道息肉相关的核心生物学通路,包括DNA修复、细胞增殖和细胞生长,涉及的关键基因有EEFSEC (潜在子宫内膜癌易感基因)、PRIM1 (DNA复制与雌激素调控相关)、EXO1 (DNA修复,关联多种癌症)、CHEK2 (细胞周期与DNA修复)、LRRC34/MYNN(DNA修复与转录调控,关联子宫肌瘤)等,这些基因的异常可能驱动息肉的良性增生及与癌症的共享机制。TGF-β1 (转化生长因子β1)作为一种细胞因子,参与纤维化、细胞增殖及细胞表型改变,可能在EPs发病中起作用。Li等[24]研究得出PKM2 (糖酵解关键酶)/HIF-1α (缺氧诱导因子)轴依赖的糖酵解通过介导TGF-β1信号,促进EPs合并子宫内膜异位症的发生发展,这为临床诊断和治疗提供了辅助作用。

4. 蛋白酶表达异常因素

基质金属蛋白酶-9/组织金属蛋白酶抑制剂-1 (MMP-9/TIMP-1)主要参与细胞外基质降解与重塑,缺氧诱导因子-1α (HIF-1α)调控缺氧条件下细胞增殖分化,血小板衍生生长因子(PDGF)可促进细胞增殖,推测三者异常表达可能通过促进息肉组织生长、血管生成从而参与EPs复发。Wang等[25]研究结果明确MMP-9/TIMP-1、(HIF-1α)和(PDGF)为EPs复发独立因素。Paltacı等[26]研究表明EPs组免疫组化表达(IHCH)评分显著降低,支持吻肽素(KP)可能通过抑制基质金属蛋白酶(MMP)和血管内皮生长因子(VEGF) (减少细胞侵袭和血管生成)参与EPs形成的假设。自噬是细胞维持稳态的关键过程,该过程涉及多种信号通路调控及蛋白表达,Sezgi̇n等[27]研究表明子宫内膜息肉中自噬相关蛋白(LC3A/B, p62, Beclin-1)水平降低,提示自噬障碍可能促进息肉形成。这些蛋白水平降低提示自噬功能受损,可能导致细胞无法及时清除受损成分,引发异常增殖,进而促进息肉形成。

5. 免疫与炎症刺激因素

近些年的研究揭示EPs的发生可能与免疫及炎症相关。子宫内膜炎是子宫内膜的持续性炎症,以浆细胞浸润为特征,CD138免疫组化是最可靠诊断方法,常无症状或症状轻微(如异常子宫出血、盆腔痛等),既往部分研究推测其可能与EPs发生相关。Peng等[28]研究表明EPs (无论单发性或多发性)与慢性子宫内膜炎(CE)呈正相关,且单发性与多发性子宫内膜息肉患者的CE患病率无显著差异;机制可能为CE通过激活炎症因子(如IL-6、TNF-α)促进EPs发展,子宫内膜局部炎症环境与EPs复发相关,且现有研究表明EPs复发性病例中TNF-α持续高表达更为常见。Qu等[29]研究表明慢性子宫内膜炎和多发性子宫内膜息肉是绝经前妇女宫腔镜EPs切除术后复发的风险因素。但Wei等[30]研究结果显示子宫内膜炎与EPs无因果关联,提示子宫内膜炎并非EPs的遗传相关病因。造成该种差异的可能原因为子宫内膜息肉类型及数量差异,未来研究可以加以补充息肉病理分型(如单发/多发、大小)和相关机制研究,进一步明确EPs的具体发病路径。平均血小板体积(MPV)反映血小板激活和血管炎症,血小板–淋巴细胞比值(PLR)反映全身性炎症反应及免疫状态。Keyif等[31]研究发现MPV和PLR与EPs显著相关,可能参与其发病,或可作为潜在血液学生物标志物,但其在EPs发病机制中的作用并未明确。子宫内膜成纤维细胞(EPFs)是子宫内膜周期性变化的关键调节者,其功能异常推测可能是EPs发生的重要原因。脂肪源性间充质基质细胞(ASCs)是从脂肪组织中分离获得的一类多功能基质细胞,可扩增并多向分化,能调节炎症、促进组织修复,在细胞治疗中具有潜力。Fadoul等[32]研究表明ASCs可通过分泌因子调节EPFs的迁移、侵袭及细胞外基质沉积,从而参与EPs形成的调控。肥大细胞作为参与多种炎症疾病的免疫调节细胞,推测可能通过细胞因子和生长因子参与炎症调控并在EPs的发生发展过程发挥作用。Lin等[33]研究揭示肥大细胞的增加和激活是EPs的关键特征,进一步分析发现WT1作为关键转录调节因子通过调控下游靶基因抑制肥大细胞增殖,其表达下调可能导致EPs中肥大细胞异常增殖,肥大细胞通过释放组胺、类胰蛋白酶等因子,激活局部炎症反应及血管生成,进而促进EPs的发生发展。该研究为理解EPs的病理机制提供了新方向。

6. 氧化应激因素

氧化应激(OS)是活性氧(ROS)过多或抗氧化系统失衡导致,可能与细胞异常增殖相关。Tas等[34]研究表明血清氧化应激(OS)可能在EPs的发生中起作用,尤其是在绝经后女性。重金属是广泛关注的环境污染物,部分为人体必需元素,但过量或缺乏均对人体有害,工业化、城市化的发展及空气污染加剧导致人们与重金属的接触增加。Li等[35]研究得出女性血清中低硒(Se)、低锌(Zn),高铜(Cu)、高钼(Mo)及高铜锌比(Cu/Zn ratio)与子宫内膜疾病风险增加显著相关,必需微量元素可能通过调节氧化应激、炎症及类雌激素作用对子宫内膜造成影响。由于该研究的局限性,微量元素影响子宫内膜的分子机制仍需深入研究。另外,Tomczyk等[36]通过对女性的子宫内膜组织进行分析检测,发现不同病理状态的子宫内膜金属浓度分布具有特征性,可能为子宫内膜疾病诊断提供辅助作用。

7. 女性生殖道微生物群因素

广泛存在于人体,其动态平衡受年龄、激素等因素影响。阴道微生物群以乳杆菌为主,通过产乳酸、竞争黏附等维持生殖健康,其失调与早产、细菌性阴道炎等相关。Tian等[37]的研究表明子宫内膜息肉样病变患者阴道微生物群中卷曲乳杆菌减少、致病菌增加,微生物网络更复杂,阴道微生态失调可能与子宫内膜息肉样病变相关。推测可能的机制是卷曲乳杆菌通过产乳酸抑制致病菌,其减少可能破坏阴道微生态平衡,促进息肉发生。另外,Wei等[38]研究表明术前阴道菌群失调是宫腔镜下息肉切除术后EPs复发的独立危险因素(OR = 3.286),由此推断术前监测阴道微生态指标(如乳酸杆菌、病原体)并干预可减少EPs复发,推测机制可能为乳酸杆菌通过产生乳酸维持酸性环境、增强上皮屏障、调节炎症,其减少导致感染和炎症风险升高,促进息肉复发;而加德纳菌、念珠菌等病原体破坏微生态平衡,加剧炎症。这为解析子宫内膜息肉的发病机制提供了新线索。未来可能通过调节阴道微生物群(如补充卷曲乳杆菌等益生菌)预防或辅助治疗子宫内膜息肉。

8. 机体代谢因素

近些年的研究发现,机体代谢相关物质与EPs的发病有着紧密联系。Fu等[39]的研究发现潜在风险饮料(PRB)如含糖饮料(p = 0.020)和奶茶(p = 0.047)与EPs发生显著相关,推测发生机制为PRB可能通过高糖、饱和脂肪等成分导致肥胖、炎症反应或激素失衡,进而增加EPs风险,该研究证实PRB摄入与EPs的关联,提示控制PRB摄入可能降低EPs风险。另外,Ren等[40]研究表明低密度脂蛋白胆固醇(LDL-C)是EPs最显著的独立危险因素,可能通过胆固醇代谢产物(如27-羟胆固醇)激活雌激素受体通路,促进EPs增生。Zhou等[41]研究表明维生素D缺乏是不孕患者EPs发生的独立危险因素,其水平与EPs风险存在非线性关联,这为EPs的预防和治疗提供了思路。

9. 化学物质因素

微塑料广泛污染环境,可通过饮食、呼吸等途径进入人体,从而对人体健康造成影响。邻苯二甲酸酯是一类高产率的内分泌干扰物,广泛用于许多产品,包括化妆品、食品包装、玩具和绘画等。邻苯二甲酸酯(Phthalic Acid Esters, PAEs)具有雌激素/抗雄激素活性[42] [43],PAEs可通过结合ERα,模拟雌激素作用,上调局部雌激素响应基因(如c-fos、Cyclin D1),同时抑制雄激素受体(AR)功能,打破激素平衡,改变子宫内膜细胞增殖模式、类固醇激素受体位置,增加子宫腺体数量,降低子宫内膜容受性[44]-[46],可能促进息肉形成。Zhang等[47]的一项研究表明邻苯二甲酸酯个体暴露及邻苯二甲酸酯混合物暴露与子宫内膜息肉风险增加相关。Park等[48]研究同样表明高邻苯二甲酸酯暴露与子宫内膜息肉的发生相关,但与子宫肌瘤、子宫腺肌症、卵巢子宫内膜异位症等其他雌激素依赖性疾病无显著关联。He等[49]研究发现子宫内膜息肉中微塑料(MPs),尤其是聚苯乙烯(PS)、聚乙烯(PE)、聚氯乙烯(PVC)含量显著高于正常子宫内膜,聚甲基丙烯酸甲酯(PMMA)为最常见类型。推测机制为PS可通过PI3K/AKT通路促进子宫内膜基质细胞(ESCs)增殖迁移,从而参与息肉形成。

10. 结语

EPs是妇科常见的良性疾病,其发病率及复发率均处于较高水平,影响着广大女性的生殖健康及生活质量。尽管现有研究已揭示多因素参与EPs的发病,但部分机制仍存在争议,如基因多态性(如CYP1B1、COMT、ESR1等)与EPs的关联性需深入探索。未来研究需要进一步明确不同临床亚型EPs的分子特征差异,结合多组学技术(如基因组、代谢组、微生物组)整合分析,明确关键调控节点及交互作用,同时关注个体差异(如年龄、绝经状态、合并症),为个性化预防及干预、开发靶向预防策略提供理论依据。

NOTES

*通讯作者。

参考文献

[1] Berceanu, C., Cernea, N., Căpitănescu, R.G., et al. (2022) Endometrial Polyps. Romanian Journal of Morphology and Embryology, 63, 323-334.
[2] Raz, N., Feinmesser, L., Moore, O. and Haimovich, S. (2021) Endometrial Polyps: Diagnosis and Treatment Options—A Review of Literature. Minimally Invasive Therapy & Allied Technologies, 30, 278-287.
https://doi.org/10.1080/13645706.2021.1948867
[3] Yan, C., Xing, C., Wei, T., Zhou, H., Wang, H., Liu, T., et al. (2023) Impact of Estrogen and Progesterone Receptor Expression on the Incidence of Endometrial Polyps. Biomarkers in Medicine, 17, 881-887.
https://doi.org/10.2217/bmm-2023-0411
[4] Jiang, R., Yang, Y., Huang, Q., Jin, Y., Feng, Y., Huang, X., et al. (2020) Immunohistochemical Expression of Estrogen Receptor Α, BCL‐2 and NF‐κB P65 in the Polyps of Patients with and without Endometriosis. Journal of Obstetrics and Gynaecology Research, 46, 1819-1826.
https://doi.org/10.1111/jog.14370
[5] Taylor, L.J., Jackson, T.L., Reid, J.G. and Duffy, S.R.G. (2003) The Differential Expression of Oestrogen Receptors, Progesterone Receptors, BCL-2 and KI67 in Endometrial Polyps. BJOG: An International Journal of Obstetrics & Gynaecology, 110, 794-798.
https://doi.org/10.1111/j.1471-0528.2003.02098.x
[6] Maia, H., Pimentel, K., Correia Silva, T.M., Freitas, L.A.R., Zausner, B., Athayde, C., et al. (2006) Aromatase and Cyclooxygenase-2 Expression in Endometrial Polyps during the Menstrual Cycle. Gynecological Endocrinology, 22, 219-224.
https://doi.org/10.1080/09513590600585955
[7] Lee, M., Piao, J. and Jeon, M.J. (2020) Risk Factors Associated with Endometrial Pathology in Premenopausal Breast Cancer Patients Treated with Tamoxifen. Yonsei Medical Journal, 61, 317-322.
https://doi.org/10.3349/ymj.2020.61.4.317
[8] Chalas, E., Costantino, J.P., Wickerham, D.L., Wolmark, N., Lewis, G.C., Bergman, C., et al. (2005) Benign Gynecologic Conditions among Participants in the Breast Cancer Prevention Trial. American Journal of Obstetrics and Gynecology, 192, 1230-1237.
https://doi.org/10.1016/j.ajog.2004.12.083
[9] Ryu, K., Kim, M.S., Lee, J.Y., Nam, S., Jeong, H.G., Kim, T., et al. (2022) Risk of Endometrial Polyps, Hyperplasia, Carcinoma, and Uterine Cancer after Tamoxifen Treatment in Premenopausal Women with Breast Cancer. JAMA Network Open, 5, e2243951.
https://doi.org/10.1001/jamanetworkopen.2022.43951
[10] Tcherniakovsky, M., de Oliveira, E., Martinelli Sonnenfeld, M., Arcoverde Cavalcanti Meniconi, M.M., Franco de Oliveira, M., Tcherniakovsky, I., et al. (2023) Evaluation of Comt2, Comt3, Cyp1b1, and esr1 Gene Polymorphisms as Risk Factor for Endometrial Polyp. Women & Health, 63, 818-827.
https://doi.org/10.1080/03630242.2023.2272206
[11] Gu, F., Zhang, H., Ruan, S., Li, J., Liu, X., Xu, Y., et al. (2018) High Number of Endometrial Polyps Is a Strong Predictor of Recurrence: Findings of a Prospective Cohort Study in Reproductive-Age Women. Fertility and Sterility, 109, 493-500.
https://doi.org/10.1016/j.fertnstert.2017.11.029
[12] Takebayashi, A., Kimura, F., Kishi, Y., Ishida, M., Takahashi, A., Yamanaka, A., et al. (2014) The Association between Endometriosis and Chronic Endometritis. PLOS ONE, 9, e88354.
https://doi.org/10.1371/journal.pone.0088354
[13] Carvalho, F.M., Aguiar, F.N., Tomioka, R., de Oliveira, R.M., Frantz, N. and Ueno, J. (2013) Functional Endometrial Polyps in Infertile Asymptomatic Patients: A Possible Evolution of Vascular Changes Secondary to Endometritis. European Journal of Obstetrics & Gynecology and Reproductive Biology, 170, 152-156.
https://doi.org/10.1016/j.ejogrb.2013.05.012
[14] Mori, T., Ito, F., Koshiba, A., Kataoka, H., Tanaka, Y., Okimura, H., et al. (2018) Aromatase as a Target for Treating Endometriosis. Journal of Obstetrics and Gynaecology Research, 44, 1673-1681.
https://doi.org/10.1111/jog.13743
[15] Baskin, G.B., Smith, S.M. and Marx, P.A. (2002) Endometrial Hyperplasia, Polyps, and Adenomyosis Associated with Unopposed Estrogen in Rhesus Monkeys (Macaca mulatta). Veterinary Pathology, 39, 572-575.
https://doi.org/10.1354/vp.39-5-572
[16] Park, J.S., Lee, J.H., Kim, M., Chang, H.J., Hwang, K.J. and Chang, K.H. (2009) Endometrium from Women with Endometriosis Shows Increased Proliferation Activity. Fertility and Sterility, 92, 1246-1249.
https://doi.org/10.1016/j.fertnstert.2009.04.025
[17] Lu, M., Li, X., Niu, J. and Liu, B. (2022) LIN28B Polymorphisms Confer a Higher Postoperative Recurrence Risk in Reproductive-Age Women with Endometrial Polyps. Disease Markers, 2022, Article ID: 4824357.
https://doi.org/10.1155/2022/4824357
[18] Nian, J., Zhu, Y., Lv, X., Zhang, Y., Xue, Z., Wu, Z., et al. (2024) Expression Levels of ADAMTS 5, 9, and 12 in Endometrial Polyps and Their Predictive Value for the Diagnosis and Recurrence of Endometrial Polyps. European Journal of Obstetrics & Gynecology and Reproductive Biology, 295, 86-91.
https://doi.org/10.1016/j.ejogrb.2024.02.008
[19] Su, Y., Feng, W. and Shi, H. (2023) Treatment with Progesterone Attenuates Proliferation of Endometrial Polyps (EP) via Regulation of Expression of miR-320b and Its Target Gene, MCL1. Archives of Medical Science, 19, 1934-1939.
https://doi.org/10.5114/aoms/171308
[20] Giordano, M., Lucas, H., Fiorelli, R., Giordano, L., Giordano, M., Baracat, E., et al. (2020) Expression Levels of BCL2 and MKI67 in Endometrial Polyps in Postmenopausal Women and Their Correlation with Obesity. Molecular and Clinical Oncology, 13, Article No. 69.
https://doi.org/10.3892/mco.2020.2139
[21] Chiu, C.S., Yeh, L., Pan, S. and Li, S. (2024) Transcriptomic Analysis Reveals Intrinsic Abnormalities in Endometrial Polyps. International Journal of Molecular Sciences, 25, Article 2557.
https://doi.org/10.3390/ijms25052557
[22] Li, X., Wang, F., Chen, M., Ling, L., Zhao, F. and Peng, D. (2024) The Association between Endometrial Polyps and Insulin Resistance from the Expression of PI3K and AKT Proteins Perspective. BMC Womens Health, 24, Article No. 366.
https://doi.org/10.1186/s12905-024-03218-5
[23] Pathare, A.D.S., Džigurski, J., Pujol-Gualdo, N., Rukins, V., Peters, M., Metspalu, A., et al. (2025) A Large-Scale Genome-Wide Association Study on Female Genital Tract Polyps Highlights Role of DNA Repair, Cell Proliferation, and Cell Growth. Human Reproduction, 40, 750-763.
https://doi.org/10.1093/humrep/deaf025
[24] Li, J., Liu, L. and Fan, R. (2024) The Pkm2/Hif-1α Axis Is Involved in the Pathogenesis of Endometriosis via TGF-Β1 under Endometrial Polyps. Frontiers in Bioscience-Landmark, 29, Article No. 417.
https://doi.org/10.31083/j.fbl2912417
[25] Wang, Z., Sun, T. and Xu, J. (2025) A Study on Endometrial Polyps Recurrence Post-Hysteroscopic Resection: Identification of Influencing Factors and Development of a Predictive Model. Annali Italiani di Chirurgia, 96, 40-46.
https://doi.org/10.62713/aic.3622
[26] Paltacı, Ş.İ., Günday, Ö.K., Erdoğan, M.Ö., Fırat, F., Yalçın, G.Ş. and Akçalı, N. (2024) Analysis of the Immunohistochemical and Genetic Expression Pattern of Kisspeptin in Endometrial Polyps. Česká gynekologie, 89, 269-277.
https://doi.org/10.48095/cccg2024269
[27] Sezgi̇n, B., Edgünlü, T., Çeli̇k, Ö.i., Can, N. and Bi̇lgi̇ç, A.D. (2025) Autophagic Impairment in Endometrial Polyps: A Potential Biomarker and Therapeutic Target. Tissue and Cell, 96, Article 102978.
https://doi.org/10.1016/j.tice.2025.102978
[28] Peng, J., Guo, J., Zeng, Z., Liang, X., Zeng, H. and Li, M. (2022) Endometrial Polyp Is Associated with a Higher Prevalence of Chronic Endometritis in Infertile Women. International Journal of Gynecology & Obstetrics, 159, 563-567.
https://doi.org/10.1002/ijgo.14207
[29] Qu, D., Liu, Y., Zhou, H. and Wang, Z. (2023) Chronic Endometritis Increases the Recurrence of Endometrial Polyps in Premenopausal Women after Hysteroscopic Polypectomy. BMC Womens Health, 23, Article No. 88.
https://doi.org/10.1186/s12905-023-02232-3
[30] Wei, L., Zhao, Y., Xu, S. and Zhang, C. (2023) Association between Endometritis and Endometrial Polyp: A Mendelian Randomization Study. International Journal of Womens Health, 15, 1963-1970.
https://doi.org/10.2147/ijwh.s434299
[31] Keyif, B., Yavuzcan, A., Yurtçu, E., Başbuğ, A., Düzenli, F., Keyif, E., et al. (2025) Exploring the Inflammatory Basis of Endometrial Polyps: Clinical Implications of Hematological Biomarkers in a Retrospective Study. Journal of Clinical Medicine, 14, Article 2754.
https://doi.org/10.3390/jcm14082754
[32] Fadoul, R., Haj Khalil, T., Redenski, I., Oren, D., Zigron, A., Sharon, A., et al. (2022) The Modulatory Effect of Adipose-Derived Stem Cells on Endometrial Polyp Fibroblasts. Stem Cells and Development, 31, 311-321.
https://doi.org/10.1089/scd.2021.0273
[33] Lin, Y., Qi, Y., Yao, Y., Tong, H., Chen, L., Song, W., et al. (2025) Single-Cell Sequencing Reveals a Regulatory Role of WT1 in Mast Cell Proliferation in Endometrial Polyps. The FASEB Journal, 39, e70512.
https://doi.org/10.1096/fj.202500116r
[34] Tas, E.E., Ozgen, E., Yilmaz, G. and Senat, A. (2024) Relationship between Oxidative Stress and Endometrial Polyps in Pre-and Postmenopausal Women. Pakistan Journal of Medical Sciences, 41, 130-135.
https://doi.org/10.12669/pjms.41.1.10170
[35] Li, D., Jiang, T., Wang, X., Yin, T., Shen, L., Zhang, Z., et al. (2022) Serum Essential Trace Element Status in Women and the Risk of Endometrial Diseases: A Case-Control Study. Biological Trace Element Research, 201, 2151-2161.
https://doi.org/10.1007/s12011-022-03328-x
[36] Tomczyk, K.M., Rzymski, P. and Wilczak, M. (2022) Canonical Analysis of Concentrations of Toxic Metals in Endometrium of Women with Gynecological Disorders. Ginekologia Polska, 93, 806-810.
https://doi.org/10.5603/gp.a2022.0088
[37] Tian, Z., Zhao, M., Sui, X., Li, X., Qin, L., Chen, Z., et al. (2024) Associations between Vaginal Microbiota and Endometrial Polypoid Lesions in Women of Reproductive Age: A Cross-Sectional Study. Reproductive BioMedicine Online, 48, Article 103602.
https://doi.org/10.1016/j.rbmo.2023.103602
[38] Wei, C., Ye, L., Tang, S., Chen, P., Huang, J. and Zhi, Z. (2025) The Association between Preoperative Vaginal Dysbiosis and Endometrial Polyp Recurrence after Hysteroscopic Polypectomy: A Retrospective-Prospective Cohort Study. European Journal of Obstetrics & Gynecology and Reproductive Biology, 307, 148-153.
https://doi.org/10.1016/j.ejogrb.2025.02.002
[39] Fu, R., Zhang, S., Cai, C., Wang, X., Jiang, Y., Zhuang, X., et al. (2025) Association between the Intake of Potentially Risky Beverages and the Occurrence of Endometrial Polyps: A Case-Control Study. Frontiers in Nutrition, 12, Article ID: 1538405.
https://doi.org/10.3389/fnut.2025.1538405
[40] Ren, J., Zhou, Q., Jiang, Z., Li, T. and Hao, Y. (2023) Study on Lipid Metabolism and Related Risk Factors in Endometrial Polyps. Clinical Laboratory, 69, 1-3.
https://doi.org/10.7754/clin.lab.2022.220415
[41] Zhou, R., Zhu, Z., Dong, M., Wang, Z., Huang, L., Wang, S., et al. (2024) Nonlinear Correlation between Serum Vitamin D Levels and the Incidence of Endometrial Polyps in Infertile Women. Human Reproduction, 39, 2685-2692.
https://doi.org/10.1093/humrep/deae241
[42] Engel, A., Buhrke, T., Imber, F., Jessel, S., Seidel, A., Völkel, W., et al. (2017) Agonistic and Antagonistic Effects of Phthalates and Their Urinary Metabolites on the Steroid Hormone Receptors Erα, Erβ, and Ar. Toxicology Letters, 277, 54-63.
https://doi.org/10.1016/j.toxlet.2017.05.028
[43] Harris, C.A., Henttu, P., Parker, M.G. and Sumpter, J.P. (1997) The Estrogenic Activity of Phthalate Esters in Vitro. Environmental Health Perspectives, 105, 802-811.
https://doi.org/10.1289/ehp.97105802
[44] Cheon, Y. (2020) Di-(2-Ethylhexyl) Phthalate (DEHP) and Uterine Histological Characteristics. Development & Reproduction, 24, 1-17.
https://doi.org/10.12717/dr.2020.24.1.1
[45] Li, R., Yu, C., Gao, R., Liu, X., Lu, J., Zhao, L., et al. (2012) Effects of DEHP on Endometrial Receptivity and Embryo Implantation in Pregnant Mice. Journal of Hazardous Materials, 241, 231-240.
https://doi.org/10.1016/j.jhazmat.2012.09.038
[46] Richardson, K.A., Hannon, P.R., Johnson-Walker, Y.J., Myint, M.S., Flaws, J.A. and Nowak, R.A. (2018) Di (2-Ethylhexyl) Phthalate (DEHP) Alters Proliferation and Uterine Gland Numbers in the Uteri of Adult Exposed Mice. Reproductive Toxicology, 77, 70-79.
https://doi.org/10.1016/j.reprotox.2018.01.006
[47] Zhang, M., Liu, C., Yuan, X., Yao, W., Yao, Q., Huang, Y., et al. (2023) Urinary Phthalate Metabolites and the Risk of Endometrial Polyp: A Pilot Study from the TREE Cohort. Environmental Pollution, 317, Article 120711.
https://doi.org/10.1016/j.envpol.2022.120711
[48] Park, S.Y., Jeon, J.H., Jeong, K., Chung, H.W., Lee, H., Sung, Y., et al. (2021) The Association of Ovarian Reserve with Exposure to Bisphenol a and Phthalate in Reproductive-Aged Women. Journal of Korean Medical Science, 36, e1.
https://doi.org/10.3346/jkms.2021.36.e1
[49] He, S. and Zhang, Y. (2025) Detection and Quantification of Microplastics in Endometrial Polyps and Their Role in Polyp Formation. Reproductive Toxicology, 132, Article 108757.
https://doi.org/10.1016/j.reprotox.2024.108757