眼肌型重症肌无力全身型转化的影响因素分析
Analysis of Risk Factor for Progression from Ocular Myasthenia Gravis to Generalized Myasthenia Gravis
DOI: 10.12677/jcpm.2025.45469, PDF, HTML, XML,    科研立项经费支持
作者: 林清睿*:济宁医学院临床医学院(附属医院),山东 济宁;宋 艳#:济宁医学院附属医院神经内科,山东 济宁
关键词: 眼肌型重症肌无力全身型重症肌无力转化影响因素Ocular Myasthenia Gravis Generalized Myasthenia Gravis Conversion Risk Factor
摘要: 重症肌无力是一种由自身抗体介导的累及神经肌肉接头导致传递功能障碍的自身免疫性疾病。眼肌型重症肌无力作为重症肌无力的一种重要的临床亚型,其特征是症状仅局限于眼部肌群,虽然较全身型重症肌无力症状轻且预后较好,但约半数的患者在疾病发展过程中会进展为全身型重症肌无力。眼肌型重症肌无力全身型转化受到性别、年龄、抗体类型、首发症状、合并疾病、生活习惯、机体免疫状态及免疫治疗等的影响,在不同的人群中表现出不同的转化率。这些因素通过各自的途径影响眼肌型重症肌无力向全身型重症肌无力转化。因此,识别能够影响眼肌型重症肌无力全身型转化的因素,对于高危患者早期诊断并进行干预,以争取良好预后具有重要的临床意义。
Abstract: Myasthenia gravis (MG) is an antibody-mediated autoimmune disorder affecting the neuromuscular junction, leading to impaired synaptic transmission. Ocular myasthenia gravis (OMG), a significant clinical subtype of MG, is characterized by symptoms confined exclusively to the ocular muscles. Although OMG typically presents with milder symptoms and a more favorable prognosis compared to generalized myasthenia gravis (GMG), approximately half of OMG patients will progress to GMG during the disease course. The progression from OMG to GMG is influenced by factors including sex, age, antibody profile, initial symptoms, comorbidities, lifestyle habits, immune status, and immunotherapy, resulting in variable conversion rates across different populations. These factors contribute to the progression from OMG to GMG through distinct mechanisms. Consequently, identifying factors that influence the progression from OMG to GMG is of significant clinical importance for early diagnosis and intervention in high-risk patients, aiming to achieve favorable outcomes.
文章引用:林清睿, 宋艳. 眼肌型重症肌无力全身型转化的影响因素分析[J]. 临床个性化医学, 2025, 4(5): 121-129. https://doi.org/10.12677/jcpm.2025.45469

1. 引言

重症肌无力(myasthenia gravis, MG)是一种主要由乙酰胆碱受体(acetylcholine receptor, AChR)抗体、肌肉特异性酪氨酸激酶(muscle-specific kinase, MuSK)抗体和低密度脂蛋白受体相关蛋白4 (low-density lipoprotein receptor-related protein 4, LRP4)抗体介导,导致神经肌肉接头(neuromuscular junction, NMJ)传递障碍的自身免疫性疾病[1]-[3],其主要临床表现为受累骨骼肌无力和易疲劳,休息后症状减轻。眼肌受累是85%的MG患者的首发症状之一,同时也是50%的MG患者发病时的唯一症状[4] [5],表现为波动性、易疲劳性复视和/或上睑下垂[6]。临床上定义病变局限于眼部肌群,包括眼外肌、提上睑肌和眼轮匝肌[7]的MG为眼肌型重症肌无力(ocular myasthenia gravis, OMG),美国重症肌无力基金会(Myasthenia Gravis Foundation of America, MGFA)分型I型。虽然OMG较全身型重症肌无力(generalized myasthenia gravis, GMG)症状轻且预后较好,但50%~60%的OMG患者在2年内进展为GMG [8]-[10],出现肢体无力、吞咽困难等症状,甚至呼吸肌受累导致呼吸衰竭危及生命,严重威胁患者生命健康,给患者的家庭和社会带来沉重负担。因此,明确OMG向GMG转化的影响因素,早期识别高危OMG患者并积极进行干预对OMG的诊治具有重大的临床意义。

2. 资料方法

2.1. 检索方法

计算机检索中国知网、维普、万方、SinoMed、PubMed、Embase和Web of Science,检索的时间范围是从2000年至2025年6月,采用主题词与自由词结合的形式进行检索。中文检索词:重症肌无力、眼肌型重症肌无力、全身型重症肌无力、转化、影响因素、危险因素。英文检索词:myasthenia gravis、ocular myasthenia gravis、generalized myasthenia gravis、conversion、risk factors。

2.2. 文献质量评价

运用纽卡斯尔–渥太华量表(Newcastle-Ottawa Scale, NOS)来评价纳入文献的质量,具体评估项为研究对象的选取、组间可比性、暴露因素和结果测量等。每个评估项都有相应的评分标准,总分为9分,得分越高表示研究质量越高,获得7~9分被认为是高质量研究,4~6分是中等质量研究,小于4分被认为是低质量研究。如果在评估过程中出现意见不合,则由2名研究者共同进行讨论,或交由第3人裁定。

3. 影响因素

3.1. 性别

研究表明,女性OMG患者向全身型转化的平均时间短于整体OMG患者全身型转化的平均时间,性别差异影响OMG向GMG转化[11] [12]。自身免疫性疾病与雌激素之间的联系已被实验模型所证实,雌激素通过参与CD4+ Th2细胞和B淋巴细胞的增殖、分化、成熟过程,促进B淋巴细胞介导的自身免疫性疾病发生与发展[13]-[15]。同时,雌激素可影响胸腺微环境,较男性患者而言,女性患者更容易合并胸腺增生等胸腺异常病变,女性MG患者血清抗体水平也较高[4] [16],增加了全身型转化风险。临床研究表明,女性在生育期(尤其是妊娠和产后阶段)和围绝经期等激素波动时期,病情加重和全身型转化的风险显著增加[17]。然而,目前部分学者认为关于女性是否是OMG全身型转化的影响因素仍需要更多研究数据加以验证[18] [19]

3.2. 年龄

根据发病年龄,OMG可分为早发型OMG和晚发型OMG,前者发病于50岁之前,后者发病于50岁之后。研究表明,晚发型OMG患者向GMG转化的风险更高[12]。临床发现,近数十年来晚发型OMG的患病率在逐年上升[20],其原因考虑为老化的胸腺与胸腺瘤的免疫状态相似。老化的胸腺缺乏肌样细胞和自身免疫调节上皮细胞,导致自身反应性T细胞的产生和激活,从而引起MG的发病和加重[14] [15]。因此,发病年龄影响了OMG全身型转化。

3.3. 吸烟

研究表明,吸烟不仅会使MG的病情恶化,还会增加AChR-Ab血清阳性患者从OMG向GMG转化的风险[11],其机制可能与吸烟诱导的免疫细胞浸润及炎性细胞因子活化,增强了其免疫应答活性[21],如吸烟可增加甲状腺眼病患病的风险,还会加重病情严重程度[22]。鉴于甲状腺眼病与MG存在共病现象,推测吸烟可能通过相似途径影响MG病程。另一种解释是,血液中的尼古丁长期与全身AChR接触,可能导致这些受体发生脱敏或失活[21]。因此,吸烟是促进OMG全身型转化的影响因素。为了改善症状并降低转化风险,应建议MG患者戒烟。

3.4. 血清MG相关抗体

MG抗体中AChR-Ab血清阳性已被充分证实与OMG向GMG转化显著相关[10] [23]。另有研究结果显示,MuSK-Ab血清阳性相较于血清阴性者更易发生全身型转化[24]。这些发现进一步增加了抗体检测在临床中的价值。Peeler等人认为,由于抗体对神经肌肉接头处终板AChR的高亲和力导致一些OMG患者在病程早期血清检测结果为阴性,直到个体达到一定水平的受体结合饱和度,抗体才开始在外周血中自由循环,从而发生血清转化[19],这也提示了OMG患者病情的进一步恶化。研究中未发现抗体水平滴度对于OMG全身型转化的影响。因此,AChR-Ab血清阳性或MuSK-Ab血清阳性是促进OMG全身型转化的影响因素。

3.5. 胸腺

作为免疫器官,胸腺在MG的发病机制中发挥着关键作用。研究表明,胸腺瘤与OMG向GMG转化呈正相关,而目前仅有少量文献报道胸腺增生与OMG向GMG转化之间的关联,因此尚无法证实胸腺增生与OMG全身型转化之间存在相关性[25]。在AChR-Ab血清阳性的OMG患者中,胸腺组织含有启动AChR-Ab免疫应答所需的分子组分[26]。多项临床研究证实,胸腺切除术可有效降低伴或不伴胸腺瘤的OMG患者的全身型转化风险[27]。综上,胸腺瘤是明确促进OMG全身型转化的影响因素,但胸腺增生是否具有类似作用仍需进一步的研究。

3.6. 首发症状

研究表明,OMG患者以双侧上睑下垂为首发症状时其全身型转化的时间短于平均时间[28]。另外也有研究表明,OMG患者的首发症状对于OMG向GMG转化并无显著影响,但在OMG全身型转化的患者中,双侧上睑下垂的存在更普遍[29]。因此,现有的研究中对首发症状是否是OMG全身型转化的影响因素尚未达成共识,仍需更多的实验数据对此进一步验证。

3.7. 自身免疫性疾病共患病

共患其他自身免疫性疾病在MG患者中并不少见,最常见的是自身免疫性甲状腺疾病,其次是系统性红斑狼疮和类风湿性关节炎[30]。与其他自身免疫性疾病相似,遗传因素可导致MG的易感性[31]。越来越多的证据表明,在众多自身免疫性疾病中存在共享的遗传易感位点,这表明可能存在共同的发病机制[32]。研究表明,共患其他自身免疫性疾病的OMG患者更容易发生全身型转化[33]。尽管目前对于OMG患者共患其他自身免疫性疾病会促使OMG向GMG转化的确切机制仍需进一步研究,但现有的研究已证实OMG患者共患其他自身免疫性疾病是促进OMG全身型转化的影响因素。

3.8. 免疫治疗

研究数据表明,早期使用免疫抑制剂(如泼尼松和其他非类固醇药物)能够降低OMG向GMG转化的风险[34]。另外,也有研究发现,缺乏免疫治疗是极晚发型OMG向GMG转化的影响因素[35]。在最近的相关研究当中,将年龄为65岁或以上发病的MG患者归类为极晚发型MG患者,其发病率呈逐年上升趋势,这可能与寿命的显著延长、免疫系统的老化以及诊断性检测的广泛应用密切相关[36]。因此,对于OMG患者也可以早期使用免疫抑制剂以降低OMG向GMG转化的风险。并且值得注意的是,研究发现80%的MG危象发生在免疫治疗开始之前,这也为临床上尽早使用免疫治疗提供了重要依据[35]。同时,老年人免疫治疗的并发症也不容忽视,应注意预防免疫抑制的副作用,将潜在的风险尽可能降低。

3.9. 电生理检测技术

电生理检测技术是神经肌肉接头疾病最常用的检查方法,对神经肌肉疾病、神经肌肉接头疾病的临床诊断具有重要价值,是MG的一种特征性诊断方法。临床上常用于协助诊断MG的电生理检测技术为重复神经电刺激(repetitive nerve stimulation, RNS)及单纤维肌电图(single fiber electromyography, SFEMG)。

RNS作为神经肌肉接头疾病的常规诊断工具,在MG的神经电生理评估中具有重要价值。RNS检测中出现的波幅递减现象(递减幅度 ≥ 10%)是神经肌肉传递障碍的特征性电生理表现。约50%的OMG患者表现出RNS结果异常[37]。研究实验证明,RNS结果的异常,尤其是肢体肌肉的异常结果,是促进OMG全身型转化的影响因素[38]。在此之前的一项研究表明,面部肌肉的RNS结果异常是OMG向GMG转化的影响因素[39]。但该研究仅分析了接受免疫抑制治疗的OMG患者且每个患者接受的RNS并不一致,因此该研究可能存在选择偏倚。

SFEMG被认为是诊断MG最敏感的工具[40]。同时,也有研究表明SFEMG结果异常也是促使OMG全身型转化的影响因素[29]。然而,在一项回顾性研究当中,SFEMG并未显示出对于OMG向GMG转化有其影响[41]。总的来说,目前关于SFEMG对OMG向GMG转化的影响的相关研究仍十分有限。因此,需要更多实验数据和相关研究,以期得出更准确的结论。

3.10. 免疫细胞和免疫分子

3.10.1. 淋巴细胞

研究表明,调节性T细胞(regulatory T cells, Tregs)和调节性B细胞(regulatory B cells, Bregs)的比例降低,同时记忆B细胞的比例升高,可能与OMG向GMG转化有关[42]。Tregs通过抑制Th细胞和B细胞的增殖,来调节对自身抗原和外来抗原的免疫应答。值得注意的是,Tregs的功能缺陷或障碍是许多自身免疫性疾病发生和进展的关键因素[43]。先前的研究已经揭示了MG患者体内Treg的功能缺陷和数量减少[44] [45]。这些发现共同证明,Tregs的免疫稳态失衡在MG发生发展中可能起到重要作用。

Bregs是一种具有免疫抑制功能的B细胞亚群,能够调节Th细胞和树突状细胞等免疫细胞的反应[46]。此外,研究表明,MG患者的Bregs比例低于健康人群,且其下降程度与MG的严重程度呈正相关[47]

记忆B细胞在机体免疫应答中不可或缺,因为它们能够靶向特定抗原,表达特异性抗体,并以足够的亲和力结合其抗原,为宿主提供长期免疫保护[48]。研究数据证明,GMG患者体内的记忆B细胞比例显著高于OMG患者及健康人群[42]。虽然现阶段对MG患者体内Tregs、Bregs及记忆B细胞与OMG发生发展的相关研究较少,具体作用机制仍未阐明。但Tregs、Bregs及记忆B细胞水平的变化仍有可能是影响OMG全身型转化的因素。

3.10.2. 补体系统

补体系统在MG的发生发展中起着重要作用。相关研究指出,MG患者体内的C3、C4等补体分子被大量消耗,致使血清中的含量显著减少[49]。并有研究数据表明,随着MG的治疗,患者血清中的C3、C4水平逐渐升高,然而OMG转化为GMG的患者血清中C3、C4水平明显低于未转变的患者[50]。由此可见,血清中的C3、C4水平与OMG向GMG转化存在相关性。这可能是因为随着MG的治疗,患者的病情逐渐得到控制,补体分子的消耗减少,导致体内C3、C4含量增加。相反,OMG转化为GMG的患者病情未得到有效控制,仍在进展中,体内的C3、C4被进一步消耗,导致血清中的C3、C4含量降低。因此,血清中C3、C4水平的变化参与影响OMG全身型转化。

3.10.3. 白介素-6 (Interleukin-6, IL-6)

研究数据表明,GMG患者血清IL-6水平显著高于健康人群,而OMG患者血清IL-6水平与健康人群之间并无统计学差异[51]。值得注意的是,GMG患者血清中的IL-6水平也高于OMG患者,且IL-6水平与MG严重程度呈正相关[51]。从细胞来源看,IL-6由MG患者体内的多种免疫细胞产生,包括B细胞、T细胞、巨噬细胞和树突状细胞[52]。此外,肌肉细胞在AChR-Ab刺激下亦可产生IL-6 [53]。IL-6可促进B细胞的增殖和抗体的分泌,还可以刺激T细胞的增殖,促进细胞毒性T淋巴细胞的活化,并诱导Th 17和Tfh细胞的分化,这些细胞与MG的发生发展有关[54]。综上,血清IL-6水平的升高可能是促进OMG全身型转化的影响因素。

3.10.4. miR-30e-5p

miR-30e-5p作为一种miRNA,广泛参与基因表达的转录后调控。miR-30e-5p在骨骼肌中特异性调控过氧化物酶体增殖物激活受体γ共激活因子1α (PPARGC1A)——该基因编码的PGC-1α蛋白是线粒体生物合成的核心调控因子[55]。研究证明,miR-30e-5p表达水平升高是促进OMG全身型转化的影响因素[56]。可能机制是,miR-30e-5p表达水平升高可能会降低参与维持骨骼肌稳态和代谢的重要蛋白质的表达,从而参与OMG向GMG的转化。但目前尚未发现miR-30e-5p表达水平与OMG患者病情进展之间的关联,因此其在OMG患者体内升高的原因仍值得进一步探讨。

3.10.5. 巨噬细胞迁移抑制因子(Macrophage Migration Inhibitory Factor, MIF)

MIF作为多效性促炎细胞因子,参与多种自身免疫性疾病的病理进程[57]。现有的证据表明,MIF是由参与免疫应答和生理过程的多种细胞分泌的[58],其通过作为T细胞和B细胞活化的介质参与自身免疫性疾病的发病[59] [60]。研究数据显示,OMG患者血清MIF浓度显著低于GMG患者,且其水平与MG的严重程度呈正相关[61]。尽管目前对MIF在MG中的作用机制尚未完全阐明,但血清MIF水平的升高仍可作为促进OMG全身型转化的影响因素。

3.10.6. 血清淀粉样蛋白A (Serum Amyloid A, SAA)

SAA是一类主要由肝细胞合成并由各种炎症刺激分泌的急性期蛋白[62]。在正常情况下,外周循环的SAA浓度非常低,但在炎症、感染或自身免疫性疾病的应答中,浓度可增加100~1000倍[63]。作为先天性免疫和获得性免疫的重要效应物,SAA表现出显著的免疫活性[64]。研究表明,SAA在自身免疫性或炎性疾病的发病中发挥了促炎和免疫调节作用[62] [65]。对于MG患者,SAA血清浓度的上升促进外周血中CD4+ T细胞和CD19+ B细胞亚群的扩增[66]。研究数据证明,OMG患者血清SAA浓度低于GMG患者,且其水平与MG的严重程度呈正相关[66]。综上,血清SAA水平的变化是影响OMG全身型转化的因素。

4. 小结与展望

OMG是一种局限于影响眼部肌群的MG亚型,表现为波动性、易疲劳性复视和/或眼睑下垂。约有半数的患者在2年内进展为GMG。因此,本文回顾了以往文献中描述的可以影响OMG全身型转化的因素,并进行了总结,为下一步可建立OMG向GMG转化的预测模型,为OMG个体化精准治疗提供依据,在临床实践中优化个体化治疗并改善预后。

基金项目

本文课题受山东省自然科学基金IgG的糖基化修饰在急性运动轴索型神经病治疗中的应用潜能(编号:ZR2024MH219)项目资助。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Berrih-Aknin, S. (2014) Myasthenia Gravis: Paradox versus Paradigm in Autoimmunity. Journal of Autoimmunity, 52, 1-28.
https://doi.org/10.1016/j.jaut.2014.05.001
[2] Uzawa, A., Ozawa, Y., Yasuda, M., Oda, F., Kojima, Y., Kawaguchi, N., et al. (2020) Increased Serum Acetylcholine Receptor Α1 Subunit Protein in Anti-Acetylcholine Receptor Antibody-Positive Myasthenia Gravis. Journal of Neuroimmunology, 339, Article ID: 577125.
https://doi.org/10.1016/j.jneuroim.2019.577125
[3] Rath, J., et al. (2020) Frequency and Clinical Features of Treatment-Refractory Myasthenia Gravis. Journal of Neurology, 267, 1004-1011.
[4] Grob, D., Brunner, N., Namba, T. and Pagala, M. (2007) Lifetime Course of Myasthenia Gravis. Muscle & Nerve, 37, 141-149.
https://doi.org/10.1002/mus.20950
[5] Sieb, J.P. (2014) Myasthenia Gravis: An Update for the Clinician. Clinical and Experimental Immunology, 175, 408-418.
https://doi.org/10.1111/cei.12217
[6] Luchanok, U. and Kaminski, H.J. (2008) Ocular Myasthenia: Diagnostic and Treatment Recommendations and the Evidence Base. Current Opinion in Neurology, 21, 8-15.
https://doi.org/10.1097/wco.0b013e3282f4098e
[7] Patil-Chhablani, P., Nair, A., Venkatramani, D. and Gandhi, R. (2014) Ocular Myasthenia Gravis: A Review. Indian Journal of Ophthalmology, 62, 985-991.
https://doi.org/10.4103/0301-4738.145987
[8] Kupersmith, M.J., Latkany, R. and Homel, P. (2003) Development of Generalized Disease at 2 Years in Patients with Ocular Myasthenia Gravis. Archives of Neurology, 60, 243-248.
https://doi.org/10.1001/archneur.60.2.243
[9] Allen, J.A., Scala, S. and Jones, H.R. (2009) Ocular Myasthenia Gravis in a Senior Population: Diagnosis, Therapy, and Prognosis. Muscle & Nerve, 41, 379-384.
https://doi.org/10.1002/mus.21555
[10] Hendricks, T.M., Bhatti, M.T., Hodge, D.O. and Chen, J.J. (2019) Incidence, Epidemiology, and Transformation of Ocular Myasthenia Gravis: A Population-Based Study. American Journal of Ophthalmology, 205, 99-105.
https://doi.org/10.1016/j.ajo.2019.04.017
[11] Apinyawasisuk, S., Chongpison, Y., Thitisaksakul, C. and Jariyakosol, S. (2020) Factors Affecting Generalization of Ocular Myasthenia Gravis in Patients with Positive Acetylcholine Receptor Antibody. American Journal of Ophthalmology, 209, 10-17.
https://doi.org/10.1016/j.ajo.2019.09.019
[12] Mazzoli, M., Ariatti, A., Valzania, F., Kaleci, S., Tondelli, M., Nichelli, P.F., et al. (2017) Factors Affecting Outcome in Ocular Myasthenia Gravis. International Journal of Neuroscience, 128, 15-24.
https://doi.org/10.1080/00207454.2017.1344237
[13] Delpy, L., Douin-Echinard, V., Garidou, L., Bruand, C., Saoudi, A. and Guéry, J. (2005) Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses. The Journal of Immunology, 175, 5050-5057.
https://doi.org/10.4049/jimmunol.175.8.5050
[14] Melzer, N., Ruck, T., Fuhr, P., Gold, R., Hohlfeld, R., Marx, A., et al. (2016) Clinical Features, Pathogenesis, and Treatment of Myasthenia Gravis: A Supplement to the Guidelines of the German Neurological Society. Journal of Neurology, 263, 1473-1494.
https://doi.org/10.1007/s00415-016-8045-z
[15] Mantegazza, R., Cordiglieri, C., Consonni, A. and Baggi, F. (2016) Animal Models of Myasthenia Gravis: Utility and Limitations. International Journal of General Medicine, 9, 53-64.
https://doi.org/10.2147/ijgm.s88552
[16] Berrih-Aknin, S., Frenkian-Cuvelier, M. and Eymard, B. (2014) Diagnostic and Clinical Classification of Autoimmune Myasthenia Gravis. Journal of Autoimmunity, 48, 143-148.
https://doi.org/10.1016/j.jaut.2014.01.003
[17] Ducci, R.D., Kay, C.S.K., Fustes, O.J.H., Werneck, L.C., Lorenzoni, P.J. and Scola, R.H. (2021) Myasthenia Gravis during Pregnancy: What Care Should Be Taken? Arquivos de Neuro-Psiquiatria, 79, 624-629.
https://doi.org/10.1590/0004-282x-anp-2020-0407
[18] Andersen, J.B., Gilhus, N.E. and Sanders, D.B. (2016) Factors Affecting Outcome in Myasthenia Gravis. Muscle & Nerve, 54, 1041-1049.
https://doi.org/10.1002/mus.25205
[19] Peeler, C.E., De Lott, L.B., Nagia, L., Lemos, J., Eggenberger, E.R. and Cornblath, W.T. (2015) Clinical Utility of Acetylcholine Receptor Antibody Testing in Ocular Myasthenia Gravis. JAMA Neurology, 72, 1170-1174.
https://doi.org/10.1001/jamaneurol.2015.1444
[20] Alkhawajah, N.M. and Oger, J. (2013) Late-Onset Myasthenia Gravis: A Review When Incidence in Older Adults Keeps Increasing: Late-Onset MG. Muscle & Nerve, 48, 705-710.
https://doi.org/10.1002/mus.23964
[21] Gratton, S.M., Herro, A.M., Feuer, W.J. and Lam, B.L. (2016) Cigarette Smoking and Activities of Daily Living in Ocular Myasthenia Gravis. Journal of Neuro-Ophthalmology, 36, 37-40.
https://doi.org/10.1097/wno.0000000000000306
[22] Bojikian, K.D. and Francis, C.E. (2019) Thyroid Eye Disease and Myasthenia Gravis. International Ophthalmology Clinics, 59, 113-124.
https://doi.org/10.1097/iio.0000000000000277
[23] Guo, R., Gao, T., Ruan, Z., Zhou, H., Gao, F., Xu, Q., et al. (2021) Risk Factors for Generalization in Patients with Ocular Myasthenia Gravis: A Multicenter Retrospective Cohort Study. Neurology and Therapy, 11, 73-86.
https://doi.org/10.1007/s40120-021-00292-x
[24] Galassi, G., Mazzoli, M., Ariatti, A., Kaleci, S., Valzania, F. and Nichelli, P.F. (2018) Antibody Profile May Predict Outcome in Ocular Myasthenia Gravis. Acta Neurologica Belgica, 118, 435-443.
https://doi.org/10.1007/s13760-018-0943-7
[25] Wilson, L. and Davis, H. (2023) The Role of Thymoma and Thymic Hyperplasia as Prognostic Risk Factors for Secondary Generalisation in Adults with Ocular Myasthenia Gravis: A Systematic Narrative Review. British and Irish Orthoptic Journal, 19, 108-119.
https://doi.org/10.22599/bioj.315
[26] Cavalcante, P., Le Panse, R., Berrih‐aknin, S., Maggi, L., Antozzi, C., Baggi, F., et al. (2011) The Thymus in Myasthenia Gravis: Site of “Innate Autoimmunity”? Muscle & Nerve, 44, 467-484.
https://doi.org/10.1002/mus.22103
[27] Li, H., Ruan, Z., Gao, F., Zhou, H., Guo, R., Sun, C., et al. (2021) Thymectomy and Risk of Generalization in Patients with Ocular Myasthenia Gravis: A Multicenter Retrospective Cohort Study. Neurotherapeutics, 18, 2449-2457.
https://doi.org/10.1007/s13311-021-01129-z
[28] Kamarajah, S.K., Sadalage, G., Palmer, J., Carley, H., Maddison, P. and Sivaguru, A. (2017) Ocular Presentation of Myasthenia Gravis: A Natural History Cohort. Muscle & Nerve, 57, 622-627.
https://doi.org/10.1002/mus.25971
[29] Kısabay, A., Özdemir, H.N., Gökçay, F. and Çelebisoy, N. (2021) Risk for Generalization in Ocular Onset Myasthenia Gravis: Experience from a Neuro-Ophthalmology Clinic. Acta Neurologica Belgica, 122, 337-344.
https://doi.org/10.1007/s13760-020-01582-1
[30] Gilhus, N.E., Nacu, A., Andersen, J.B. and Owe, J.F. (2014) Myasthenia Gravis and Risks for Comorbidity. European Journal of Neurology, 22, 17-23.
https://doi.org/10.1111/ene.12599
[31] Zhong, H., Zhao, C. and Luo, S. (2019) HLA in Myasthenia Gravis: From Superficial Correlation to Underlying Mechanism. Autoimmunity Reviews, 18, Article ID: 102349.
https://doi.org/10.1016/j.autrev.2019.102349
[32] Voight, B.F. and Cotsapas, C. (2012) Human Genetics Offers an Emerging Picture of Common Pathways and Mechanisms in Autoimmunity. Current Opinion in Immunology, 24, 552-557.
https://doi.org/10.1016/j.coi.2012.07.013
[33] Li, F., Zhang, H., Tao, Y., Stascheit, F., Han, J., Gao, F., et al. (2022) Prediction of the Generalization of Myasthenia Gravis with Purely Ocular Symptoms at Onset: A Multivariable Model Development and Validation. Therapeutic Advances in Neurological Disorders, 15, 1-14.
https://doi.org/10.1177/17562864221104508
[34] Menon, D., Alharbi, M., Katzberg, H.D., Bril, V., Mendoza, M.G. and Barnett-Tapia, C. (2024) Effect of Immunosuppression in Risk of Developing Generalized Symptoms in Ocular Myasthenia Gravis. Neurology, 103, e209722.
https://doi.org/10.1212/wnl.0000000000209722
[35] Zhao, S., Yan, X., Ding, J., Ren, K., Sun, S., Lu, J., et al. (2022) Lack of Immunotherapy as the Only Predictor of Secondary Generalization in Very-Late-Onset Myasthenia Gravis with Pure Ocular Onset. Frontiers in Neurology, 13, Article 857402.
https://doi.org/10.3389/fneur.2022.857402
[36] Barnett, C. and Bril, V. (2020) New Insights into Very-Late-Onset Myasthenia Gravis. Nature Reviews Neurology, 16, 299-300.
https://doi.org/10.1038/s41582-020-0345-3
[37] Al-Haidar, M., Benatar, M. and Kaminski, H.J. (2018) Ocular Myasthenia. Neurologic Clinics, 36, 241-251.
https://doi.org/10.1016/j.ncl.2018.01.003
[38] Kim, K.H., Kim, S.W. and Shin, H.Y. (2021) Initial Repetitive Nerve Stimulation Test Predicts Conversion of Ocular Myasthenia Gravis to Generalized Myasthenia Gravis. Journal of Clinical Neurology, 17, 265-272.
https://doi.org/10.3988/jcn.2021.17.2.265
[39] Teo, K.Y., Tow, S.L., Haaland, B., Gosavi, T.D., et al. (2017) Low Conversion Rate of Ocular to Generalized Myasthenia Gravis in Singapore. Muscle & Nerve, 57, 756-760.
https://doi.org/10.1002/mus.25983
[40] Sarrigiannis, P.G., Kennett, R.P., Read, S. and Farrugia, M.E. (2005) Single‐Fiber EMG with a Concentric Needle Electrode: Validation in Myasthenia Gravis. Muscle & Nerve, 33, 61-65.
https://doi.org/10.1002/mus.20435
[41] Guan, Y., Cui, L., Liu, M. and Niu, J. (2015) Single-Fiber Electromyography in the Extensor Digitorum Communis for the Predictive Prognosis of Ocular Myasthenia Gravis. Chinese Medical Journal, 128, 2783-2786.
https://doi.org/10.4103/0366-6999.167354
[42] Hu, Y., Wang, J., Rao, J., Xu, X., Cheng, Y., Yan, L., et al. (2020) Comparison of Peripheral Blood B Cell Subset Ratios and B Cell-Related Cytokine Levels between Ocular and Generalized Myasthenia Gravis. International Immunopharmacology, 80, Article ID: 106130.
https://doi.org/10.1016/j.intimp.2019.106130
[43] Brusko, T.M., Putnam, A.L. and Bluestone, J.A. (2008) Human Regulatory T Cells: Role in Autoimmune Disease and Therapeutic Opportunities. Immunological Reviews, 223, 371-390.
https://doi.org/10.1111/j.1600-065x.2008.00637.x
[44] Masuda, M., Matsumoto, M., Tanaka, S., Nakajima, K., Yamada, N., Ido, N., et al. (2010) Clinical Implication of Peripheral CD4+CD25+ Regulatory T Cells and Th17 Cells in Myasthenia Gravis Patients. Journal of Neuroimmunology, 225, 123-131.
https://doi.org/10.1016/j.jneuroim.2010.03.016
[45] Zhang, Y., Wang, H., Chi, L. and Wang, W. (2009) The Role of FoxP3+CD4+CD25hi Tregs in the Pathogenesis of Myasthenia Gravis. Immunology Letters, 122, 52-57.
https://doi.org/10.1016/j.imlet.2008.11.015
[46] van de Veen, W., Stanic, B., Wirz, O.F., Jansen, K., Globinska, A. and Akdis, M. (2016) Role of Regulatory B Cells in Immune Tolerance to Allergens and Beyond. Journal of Allergy and Clinical Immunology, 138, 654-665.
https://doi.org/10.1016/j.jaci.2016.07.006
[47] Sun, F., Ladha, S.S., Yang, L., Liu, Q., Shi, S.X., Su, N., et al. (2014) Interleukin‐10 Producing‐B Cells and Their Association with Responsiveness to Rituximab in Myasthenia Gravis. Muscle & Nerve, 49, 487-494.
https://doi.org/10.1002/mus.23951
[48] Kurosaki, T., Kometani, K. and Ise, W. (2015) Memory B Cells. Nature Reviews Immunology, 15, 149-159.
https://doi.org/10.1038/nri3802
[49] Ozawa, Y., Uzawa, A., Yasuda, M., Kojima, Y., Oda, F., Himuro, K., et al. (2020) Changes in Serum Complements and Their Regulators in Generalized Myasthenia Gravis. European Journal of Neurology, 28, 314-322.
https://doi.org/10.1111/ene.14500
[50] 赵庆珠, 吴多池, 黎灵萍. 重症肌无力患者C3、C4、Th1/Th2水平与MG-ADL评分的关系及预测眼肌型向全身型转变的效能[J]. 中国医师杂志, 2022, 24(6): 911-915.
[51] Wei, S., Yang, C., Si, W., Dong, J., Zhao, X., Zhang, P., et al. (2024) Altered Serum Levels of Cytokines in Patients with Myasthenia Gravis. Heliyon, 10, e23745.
https://doi.org/10.1016/j.heliyon.2023.e23745
[52] Uzawa, A., Akamine, H., Kojima, Y., Ozawa, Y., Yasuda, M., Onishi, Y., et al. (2021) High Levels of Serum Interleukin-6 Are Associated with Disease Activity in Myasthenia Gravis. Journal of Neuroimmunology, 358, Article ID: 577634.
https://doi.org/10.1016/j.jneuroim.2021.577634
[53] Maurer, M., Bougoin, S., Feferman, T., Frenkian, M., Bismuth, J., Mouly, V., et al. (2015) IL-6 and Akt Are Involved in Muscular Pathogenesis in Myasthenia Gravis. Acta Neuropathologica Communications, 3, Article No. 1.
https://doi.org/10.1186/s40478-014-0179-6
[54] Wang, Z., Wang, W., Chen, Y. and Wei, D. (2012) T Helper Type 17 Cells Expand in Patients with Myasthenia‐associated Thymoma. Scandinavian Journal of Immunology, 76, 54-61.
https://doi.org/10.1111/j.1365-3083.2012.02703.x
[55] Jing, L., Hou, Y., Wu, H., Miao, Y., Li, X., Cao, J., et al. (2015) Transcriptome Analysis of mRNA and miRNA in Skeletal Muscle Indicates an Important Network for Differential Residual Feed Intake in Pigs. Scientific Reports, 5, Article ID: 11953.
https://doi.org/10.1038/srep11953
[56] Sabre, L., Maddison, P., Wong, S.H., Sadalage, G., Ambrose, P.A., Plant, G.T., et al. (2019) miR‐30e‐5p as Predictor of Generalization in Ocular Myasthenia Gravis. Annals of Clinical and Translational Neurology, 6, 243-251.
https://doi.org/10.1002/acn3.692
[57] Stosic-Grujicic, S., Stojanovic, I. and Nicoletti, F. (2009) MIF in Autoimmunity and Novel Therapeutic Approaches. Autoimmunity Reviews, 8, 244-249.
https://doi.org/10.1016/j.autrev.2008.07.037
[58] Sumaiya, K., Langford, D., Natarajaseenivasan, K. and Shanmughapriya, S. (2022) Macrophage Migration Inhibitory Factor (MIF): A Multifaceted Cytokine Regulated by Genetic and Physiological Strategies. Pharmacology & Therapeutics, 233, Article ID: 108024.
https://doi.org/10.1016/j.pharmthera.2021.108024
[59] Greven, D., Leng, L. and Bucala, R. (2010) Autoimmune Diseases: MIF as a Therapeutic Target. Expert Opinion on Therapeutic Targets, 14, 253-264.
https://doi.org/10.1517/14728220903551304
[60] Bucala, R. (2012) MIF, MIF Alleles, and Prospects for Therapeutic Intervention in Autoimmunity. Journal of Clinical Immunology, 33, 72-78.
https://doi.org/10.1007/s10875-012-9781-1
[61] Huang, X., Li, H., Zhang, Z., Wang, Z., Du, X. and Zhang, Y. (2024) Macrophage Migration Inhibitory Factor: A Noval Biomarker Upregulates in Myasthenia Gravis and Correlates with Disease Severity and Relapse. Cytokine, 175, Article ID: 156485.
https://doi.org/10.1016/j.cyto.2023.156485
[62] Zhang, Y., Zhang, J., Sheng, H., Li, H. and Wang, R. (2019) Acute Phase Reactant Serum Amyloid a in Inflammation and Other Diseases. Advances in Clinical Chemistry, 90, 25-80.
https://doi.org/10.1016/bs.acc.2019.01.002
[63] Sack, G.H. (2018) Serum Amyloid A—A Review. Molecular Medicine, 24, Article No. 46.
https://doi.org/10.1186/s10020-018-0047-0
[64] Buck, M., Gouwy, M., Wang, J., Snick, J., Opdenakker, G., Struyf, S., et al. (2016) Structure and Expression of Different Serum Amyloid a (SAA) Variants and Their Concentration-Dependent Functions during Host Insults. Current Medicinal Chemistry, 23, 1725-1755.
https://doi.org/10.2174/0929867323666160418114600
[65] Sodin-Šemrl, S., Žigon, P., Čučnik, S., Kveder, T., Blinc, A., Tomšič, M., et al. (2006) Serum Amyloid a in Autoimmune Thrombosis. Autoimmunity Reviews, 6, 21-27.
https://doi.org/10.1016/j.autrev.2006.03.006
[66] Huang, X., An, X., Gao, X., Wang, N., Liu, J., Zhang, Y., et al. (2024) Serum Amyloid a Facilitates Expansion of CD4+ T Cell and CD19+ B Cell Subsets Implicated in the Severity of Myasthenia Gravis Patients. Journal of Neurochemistry, 168, 224-237.
https://doi.org/10.1111/jnc.16047