|
[1]
|
Berrih-Aknin, S. (2014) Myasthenia Gravis: Paradox versus Paradigm in Autoimmunity. Journal of Autoimmunity, 52, 1-28. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Uzawa, A., Ozawa, Y., Yasuda, M., Oda, F., Kojima, Y., Kawaguchi, N., et al. (2020) Increased Serum Acetylcholine Receptor Α1 Subunit Protein in Anti-Acetylcholine Receptor Antibody-Positive Myasthenia Gravis. Journal of Neuroimmunology, 339, Article ID: 577125. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Rath, J., et al. (2020) Frequency and Clinical Features of Treatment-Refractory Myasthenia Gravis. Journal of Neurology, 267, 1004-1011.
|
|
[4]
|
Grob, D., Brunner, N., Namba, T. and Pagala, M. (2007) Lifetime Course of Myasthenia Gravis. Muscle & Nerve, 37, 141-149. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Sieb, J.P. (2014) Myasthenia Gravis: An Update for the Clinician. Clinical and Experimental Immunology, 175, 408-418. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Luchanok, U. and Kaminski, H.J. (2008) Ocular Myasthenia: Diagnostic and Treatment Recommendations and the Evidence Base. Current Opinion in Neurology, 21, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Patil-Chhablani, P., Nair, A., Venkatramani, D. and Gandhi, R. (2014) Ocular Myasthenia Gravis: A Review. Indian Journal of Ophthalmology, 62, 985-991. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kupersmith, M.J., Latkany, R. and Homel, P. (2003) Development of Generalized Disease at 2 Years in Patients with Ocular Myasthenia Gravis. Archives of Neurology, 60, 243-248. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Allen, J.A., Scala, S. and Jones, H.R. (2009) Ocular Myasthenia Gravis in a Senior Population: Diagnosis, Therapy, and Prognosis. Muscle & Nerve, 41, 379-384. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Hendricks, T.M., Bhatti, M.T., Hodge, D.O. and Chen, J.J. (2019) Incidence, Epidemiology, and Transformation of Ocular Myasthenia Gravis: A Population-Based Study. American Journal of Ophthalmology, 205, 99-105. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Apinyawasisuk, S., Chongpison, Y., Thitisaksakul, C. and Jariyakosol, S. (2020) Factors Affecting Generalization of Ocular Myasthenia Gravis in Patients with Positive Acetylcholine Receptor Antibody. American Journal of Ophthalmology, 209, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Mazzoli, M., Ariatti, A., Valzania, F., Kaleci, S., Tondelli, M., Nichelli, P.F., et al. (2017) Factors Affecting Outcome in Ocular Myasthenia Gravis. International Journal of Neuroscience, 128, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Delpy, L., Douin-Echinard, V., Garidou, L., Bruand, C., Saoudi, A. and Guéry, J. (2005) Estrogen Enhances Susceptibility to Experimental Autoimmune Myasthenia Gravis by Promoting Type 1-Polarized Immune Responses. The Journal of Immunology, 175, 5050-5057. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Melzer, N., Ruck, T., Fuhr, P., Gold, R., Hohlfeld, R., Marx, A., et al. (2016) Clinical Features, Pathogenesis, and Treatment of Myasthenia Gravis: A Supplement to the Guidelines of the German Neurological Society. Journal of Neurology, 263, 1473-1494. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mantegazza, R., Cordiglieri, C., Consonni, A. and Baggi, F. (2016) Animal Models of Myasthenia Gravis: Utility and Limitations. International Journal of General Medicine, 9, 53-64. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Berrih-Aknin, S., Frenkian-Cuvelier, M. and Eymard, B. (2014) Diagnostic and Clinical Classification of Autoimmune Myasthenia Gravis. Journal of Autoimmunity, 48, 143-148. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Ducci, R.D., Kay, C.S.K., Fustes, O.J.H., Werneck, L.C., Lorenzoni, P.J. and Scola, R.H. (2021) Myasthenia Gravis during Pregnancy: What Care Should Be Taken? Arquivos de Neuro-Psiquiatria, 79, 624-629. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Andersen, J.B., Gilhus, N.E. and Sanders, D.B. (2016) Factors Affecting Outcome in Myasthenia Gravis. Muscle & Nerve, 54, 1041-1049. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Peeler, C.E., De Lott, L.B., Nagia, L., Lemos, J., Eggenberger, E.R. and Cornblath, W.T. (2015) Clinical Utility of Acetylcholine Receptor Antibody Testing in Ocular Myasthenia Gravis. JAMA Neurology, 72, 1170-1174. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Alkhawajah, N.M. and Oger, J. (2013) Late-Onset Myasthenia Gravis: A Review When Incidence in Older Adults Keeps Increasing: Late-Onset MG. Muscle & Nerve, 48, 705-710. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Gratton, S.M., Herro, A.M., Feuer, W.J. and Lam, B.L. (2016) Cigarette Smoking and Activities of Daily Living in Ocular Myasthenia Gravis. Journal of Neuro-Ophthalmology, 36, 37-40. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Bojikian, K.D. and Francis, C.E. (2019) Thyroid Eye Disease and Myasthenia Gravis. International Ophthalmology Clinics, 59, 113-124. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Guo, R., Gao, T., Ruan, Z., Zhou, H., Gao, F., Xu, Q., et al. (2021) Risk Factors for Generalization in Patients with Ocular Myasthenia Gravis: A Multicenter Retrospective Cohort Study. Neurology and Therapy, 11, 73-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Galassi, G., Mazzoli, M., Ariatti, A., Kaleci, S., Valzania, F. and Nichelli, P.F. (2018) Antibody Profile May Predict Outcome in Ocular Myasthenia Gravis. Acta Neurologica Belgica, 118, 435-443. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Wilson, L. and Davis, H. (2023) The Role of Thymoma and Thymic Hyperplasia as Prognostic Risk Factors for Secondary Generalisation in Adults with Ocular Myasthenia Gravis: A Systematic Narrative Review. British and Irish Orthoptic Journal, 19, 108-119. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Cavalcante, P., Le Panse, R., Berrih‐aknin, S., Maggi, L., Antozzi, C., Baggi, F., et al. (2011) The Thymus in Myasthenia Gravis: Site of “Innate Autoimmunity”? Muscle & Nerve, 44, 467-484. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, H., Ruan, Z., Gao, F., Zhou, H., Guo, R., Sun, C., et al. (2021) Thymectomy and Risk of Generalization in Patients with Ocular Myasthenia Gravis: A Multicenter Retrospective Cohort Study. Neurotherapeutics, 18, 2449-2457. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Kamarajah, S.K., Sadalage, G., Palmer, J., Carley, H., Maddison, P. and Sivaguru, A. (2017) Ocular Presentation of Myasthenia Gravis: A Natural History Cohort. Muscle & Nerve, 57, 622-627. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Kısabay, A., Özdemir, H.N., Gökçay, F. and Çelebisoy, N. (2021) Risk for Generalization in Ocular Onset Myasthenia Gravis: Experience from a Neuro-Ophthalmology Clinic. Acta Neurologica Belgica, 122, 337-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Gilhus, N.E., Nacu, A., Andersen, J.B. and Owe, J.F. (2014) Myasthenia Gravis and Risks for Comorbidity. European Journal of Neurology, 22, 17-23. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Zhong, H., Zhao, C. and Luo, S. (2019) HLA in Myasthenia Gravis: From Superficial Correlation to Underlying Mechanism. Autoimmunity Reviews, 18, Article ID: 102349. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Voight, B.F. and Cotsapas, C. (2012) Human Genetics Offers an Emerging Picture of Common Pathways and Mechanisms in Autoimmunity. Current Opinion in Immunology, 24, 552-557. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Li, F., Zhang, H., Tao, Y., Stascheit, F., Han, J., Gao, F., et al. (2022) Prediction of the Generalization of Myasthenia Gravis with Purely Ocular Symptoms at Onset: A Multivariable Model Development and Validation. Therapeutic Advances in Neurological Disorders, 15, 1-14. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Menon, D., Alharbi, M., Katzberg, H.D., Bril, V., Mendoza, M.G. and Barnett-Tapia, C. (2024) Effect of Immunosuppression in Risk of Developing Generalized Symptoms in Ocular Myasthenia Gravis. Neurology, 103, e209722. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Zhao, S., Yan, X., Ding, J., Ren, K., Sun, S., Lu, J., et al. (2022) Lack of Immunotherapy as the Only Predictor of Secondary Generalization in Very-Late-Onset Myasthenia Gravis with Pure Ocular Onset. Frontiers in Neurology, 13, Article 857402. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Barnett, C. and Bril, V. (2020) New Insights into Very-Late-Onset Myasthenia Gravis. Nature Reviews Neurology, 16, 299-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Al-Haidar, M., Benatar, M. and Kaminski, H.J. (2018) Ocular Myasthenia. Neurologic Clinics, 36, 241-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Kim, K.H., Kim, S.W. and Shin, H.Y. (2021) Initial Repetitive Nerve Stimulation Test Predicts Conversion of Ocular Myasthenia Gravis to Generalized Myasthenia Gravis. Journal of Clinical Neurology, 17, 265-272. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Teo, K.Y., Tow, S.L., Haaland, B., Gosavi, T.D., et al. (2017) Low Conversion Rate of Ocular to Generalized Myasthenia Gravis in Singapore. Muscle & Nerve, 57, 756-760. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Sarrigiannis, P.G., Kennett, R.P., Read, S. and Farrugia, M.E. (2005) Single‐Fiber EMG with a Concentric Needle Electrode: Validation in Myasthenia Gravis. Muscle & Nerve, 33, 61-65. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Guan, Y., Cui, L., Liu, M. and Niu, J. (2015) Single-Fiber Electromyography in the Extensor Digitorum Communis for the Predictive Prognosis of Ocular Myasthenia Gravis. Chinese Medical Journal, 128, 2783-2786. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Hu, Y., Wang, J., Rao, J., Xu, X., Cheng, Y., Yan, L., et al. (2020) Comparison of Peripheral Blood B Cell Subset Ratios and B Cell-Related Cytokine Levels between Ocular and Generalized Myasthenia Gravis. International Immunopharmacology, 80, Article ID: 106130. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Brusko, T.M., Putnam, A.L. and Bluestone, J.A. (2008) Human Regulatory T Cells: Role in Autoimmune Disease and Therapeutic Opportunities. Immunological Reviews, 223, 371-390. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Masuda, M., Matsumoto, M., Tanaka, S., Nakajima, K., Yamada, N., Ido, N., et al. (2010) Clinical Implication of Peripheral CD4+CD25+ Regulatory T Cells and Th17 Cells in Myasthenia Gravis Patients. Journal of Neuroimmunology, 225, 123-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Zhang, Y., Wang, H., Chi, L. and Wang, W. (2009) The Role of FoxP3+CD4+CD25hi Tregs in the Pathogenesis of Myasthenia Gravis. Immunology Letters, 122, 52-57. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
van de Veen, W., Stanic, B., Wirz, O.F., Jansen, K., Globinska, A. and Akdis, M. (2016) Role of Regulatory B Cells in Immune Tolerance to Allergens and Beyond. Journal of Allergy and Clinical Immunology, 138, 654-665. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Sun, F., Ladha, S.S., Yang, L., Liu, Q., Shi, S.X., Su, N., et al. (2014) Interleukin‐10 Producing‐B Cells and Their Association with Responsiveness to Rituximab in Myasthenia Gravis. Muscle & Nerve, 49, 487-494. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Kurosaki, T., Kometani, K. and Ise, W. (2015) Memory B Cells. Nature Reviews Immunology, 15, 149-159. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Ozawa, Y., Uzawa, A., Yasuda, M., Kojima, Y., Oda, F., Himuro, K., et al. (2020) Changes in Serum Complements and Their Regulators in Generalized Myasthenia Gravis. European Journal of Neurology, 28, 314-322. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
赵庆珠, 吴多池, 黎灵萍. 重症肌无力患者C3、C4、Th1/Th2水平与MG-ADL评分的关系及预测眼肌型向全身型转变的效能[J]. 中国医师杂志, 2022, 24(6): 911-915.
|
|
[51]
|
Wei, S., Yang, C., Si, W., Dong, J., Zhao, X., Zhang, P., et al. (2024) Altered Serum Levels of Cytokines in Patients with Myasthenia Gravis. Heliyon, 10, e23745. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Uzawa, A., Akamine, H., Kojima, Y., Ozawa, Y., Yasuda, M., Onishi, Y., et al. (2021) High Levels of Serum Interleukin-6 Are Associated with Disease Activity in Myasthenia Gravis. Journal of Neuroimmunology, 358, Article ID: 577634. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Maurer, M., Bougoin, S., Feferman, T., Frenkian, M., Bismuth, J., Mouly, V., et al. (2015) IL-6 and Akt Are Involved in Muscular Pathogenesis in Myasthenia Gravis. Acta Neuropathologica Communications, 3, Article No. 1. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Wang, Z., Wang, W., Chen, Y. and Wei, D. (2012) T Helper Type 17 Cells Expand in Patients with Myasthenia‐associated Thymoma. Scandinavian Journal of Immunology, 76, 54-61. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Jing, L., Hou, Y., Wu, H., Miao, Y., Li, X., Cao, J., et al. (2015) Transcriptome Analysis of mRNA and miRNA in Skeletal Muscle Indicates an Important Network for Differential Residual Feed Intake in Pigs. Scientific Reports, 5, Article ID: 11953. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Sabre, L., Maddison, P., Wong, S.H., Sadalage, G., Ambrose, P.A., Plant, G.T., et al. (2019) miR‐30e‐5p as Predictor of Generalization in Ocular Myasthenia Gravis. Annals of Clinical and Translational Neurology, 6, 243-251. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Stosic-Grujicic, S., Stojanovic, I. and Nicoletti, F. (2009) MIF in Autoimmunity and Novel Therapeutic Approaches. Autoimmunity Reviews, 8, 244-249. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Sumaiya, K., Langford, D., Natarajaseenivasan, K. and Shanmughapriya, S. (2022) Macrophage Migration Inhibitory Factor (MIF): A Multifaceted Cytokine Regulated by Genetic and Physiological Strategies. Pharmacology & Therapeutics, 233, Article ID: 108024. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Greven, D., Leng, L. and Bucala, R. (2010) Autoimmune Diseases: MIF as a Therapeutic Target. Expert Opinion on Therapeutic Targets, 14, 253-264. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Bucala, R. (2012) MIF, MIF Alleles, and Prospects for Therapeutic Intervention in Autoimmunity. Journal of Clinical Immunology, 33, 72-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Huang, X., Li, H., Zhang, Z., Wang, Z., Du, X. and Zhang, Y. (2024) Macrophage Migration Inhibitory Factor: A Noval Biomarker Upregulates in Myasthenia Gravis and Correlates with Disease Severity and Relapse. Cytokine, 175, Article ID: 156485. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Zhang, Y., Zhang, J., Sheng, H., Li, H. and Wang, R. (2019) Acute Phase Reactant Serum Amyloid a in Inflammation and Other Diseases. Advances in Clinical Chemistry, 90, 25-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Sack, G.H. (2018) Serum Amyloid A—A Review. Molecular Medicine, 24, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Buck, M., Gouwy, M., Wang, J., Snick, J., Opdenakker, G., Struyf, S., et al. (2016) Structure and Expression of Different Serum Amyloid a (SAA) Variants and Their Concentration-Dependent Functions during Host Insults. Current Medicinal Chemistry, 23, 1725-1755. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Sodin-Šemrl, S., Žigon, P., Čučnik, S., Kveder, T., Blinc, A., Tomšič, M., et al. (2006) Serum Amyloid a in Autoimmune Thrombosis. Autoimmunity Reviews, 6, 21-27. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Huang, X., An, X., Gao, X., Wang, N., Liu, J., Zhang, Y., et al. (2024) Serum Amyloid a Facilitates Expansion of CD4+ T Cell and CD19+ B Cell Subsets Implicated in the Severity of Myasthenia Gravis Patients. Journal of Neurochemistry, 168, 224-237. [Google Scholar] [CrossRef] [PubMed]
|