|
[1]
|
Song, P., Wang, J., Bucan, K., Theodoratou, E., Rudan, I. and Chan, K.Y. (2017) National and Subnational Prevalence and Burden of Glaucoma in China: A Systematic Analysis. Journal of Global Health, 7, Article 020705. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Hamet, P. and Tremblay, J. (2017) Artificial Intelligence in Medicine. Metabolism, 69, S36-S40. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kolluri, S., Lin, J., Liu, R., Zhang, Y. and Zhang, W. (2022) Machine Learning and Artificial Intelligence in Pharmaceutical Research and Development: A Review. The AAPS Journal, 24, Article No. 19. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Shafique, M., Theocharides, T., Bouganis, C., Hanif, M.A., Khalid, F., Hafiz, R., et al. (2018) An Overview of Next-Generation Architectures for Machine Learning: Roadmap, Opportunities and Challenges in the IOT Era. 2018 Design, Automation & Test in Europe Conference & Exhibition (DATE), Dresden, 19-23 March 2018, 827-832. [Google Scholar] [CrossRef]
|
|
[5]
|
Goldstein, B.A., Navar, A.M. and Carter, R.E. (2017) Moving Beyond Regression Techniques in Cardiovascular Risk Prediction: Applying Machine Learning to Address Analytic Challenges. European Heart Journal, 38, ehw302. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Vranas, K.C., Jopling, J.K., Sweeney, T.E., Ramsey, M.C., Milstein, A.S., Slatore, C.G., et al. (2017) Identifying Distinct Subgroups of ICU Patients: A Machine Learning Approach. Critical Care Medicine, 45, 1607-1615. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Kuwahara, T., Hara, K., Mizuno, N., Haba, S., Okuno, N., Koda, H., et al. (2021) Current Status of Artificial Intelligence Analysis for Endoscopic Ultrasonography. Digestive Endoscopy, 33, 298-305. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Thompson, A.C., Jammal, A.A. and Medeiros, F.A. (2020) A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Translational Vision Science & Technology, 9, Article 42. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Rajalakshmi, R., Dutt, S., Sivaraman, A. and Savoy, F. (2020) Insights into the Growing Popularity of Artificial Intelligence in Ophthalmology. Indian Journal of Ophthalmology, 68, 1339-1346. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Zhao, Q. and Hastie, T. (2019) Causal Interpretations of Black-Box Models. Journal of Business & Economic Statistics, 39, 272-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Ting, D.S.W., Pasquale, L.R., Peng, L., Campbell, J.P., Lee, A.Y., Raman, R., et al. (2019) Artificial Intelligence and Deep Learning in Ophthalmology. British Journal of Ophthalmology, 103, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Avila-Tomás, J.F., Mayer-Pujadas, M.A. and Quesada-Varela, V.J. (2020) La inteligencia artificial y sus aplicaciones en medicina I: introducción antecedentes a la IA y robótica. Atención Primaria, 52, 778-784. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Fu, J., Zhong, X., Li, N., Van Dams, R., Lewis, J., Sung, K., et al. (2020) Deep Learning-Based Radiomic Features for Improving Neoadjuvant Chemoradiation Response Prediction in Locally Advanced Rectal Cancer. Physics in Medicine & Biology, 65, Article 075001. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Zhang, B., Liang, X.L., Gao, H.Y., Ye, L.S. and Wang, Y.G. (2016) Models of Logistic Regression Analysis, Support Vector Machine, and Back-Propagation Neural Network Based on Serum Tumor Markers in Colorectal Cancer Diagnosis. Genetics and Molecular Research, 15, gmr.15028643. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
John, D. and Parikh, R. (2017) Cost-Effectiveness and Cost Utility of Community Screening for Glaucoma in Urban India. Public Health, 148, 37-48. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Bhartiya, S. (2022) Glaucoma Screening: Is AI the Answer? Journal of Current Glaucoma Practice, 16, 71-73. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Xiao, X., Xue, L., Ye, L., Li, H. and He, Y. (2021) Health Care Cost and Benefits of Artificial Intelligence-Assisted Population-Based Glaucoma Screening for the Elderly in Remote Areas of China: A Cost-Offset Analysis. BMC Public Health, 21, Article No. 1065. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Olawoye, O., Azuara-Blanco, A., Chan, V.F., Piyasena, P., Crealey, G.E., O’Neill, C., et al. (2021) A Review to Populate a Proposed Cost-Effectiveness Analysis of Glaucoma Screening in Sub-Saharan Africa. Ophthalmic Epidemiology, 29, 328-338. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Ting, D.S.W., Cheung, C.Y., Lim, G., Tan, G.S.W., Quang, N.D., Gan, A., et al. (2017) Development and Validation of a Deep Learning System for Diabetic Retinopathy and Related Eye Diseases Using Retinal Images from Multiethnic Populations with Diabetes. JAMA, 318, 2211-2223. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Ruamviboonsuk, P., Krause, J., Chotcomwongse, P., Sayres, R., Raman, R., Widner, K., et al. (2019) Deep Learning versus Human Graders for Classifying Diabetic Retinopathy Severity in a Nationwide Screening Program. npj Digital Medicine, 2, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tan, N.Y.Q., Friedman, D.S., Stalmans, I., Ahmed, I.I.K. and Sng, C.C.A. (2020) Glaucoma Screening: Where Are We and Where Do We Need to Go? Current Opinion in Ophthalmology, 31, 91-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tang, J., Liang, Y., O'Neill, C., Kee, F., Jiang, J. and Congdon, N. (2019) Cost-effectiveness and Cost-Utility of Population-Based Glaucoma Screening in China: A Decision-Analytic Markov Model. The Lancet Global Health, 7, e968-e978. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
John, D. and Parikh, R. (2018) Cost-Effectiveness of Community Screening for Glaucoma in Rural India: A Decision Analytical Model. Public Health, 155, 142-151. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Miller, S.E., Thapa, S., Robin, A.L., Niziol, L.M., Ramulu, P.Y., Woodward, M.A., et al. (2017) Glaucoma Screening in Nepal: Cup-to-Disc Estimate with Standard Mydriatic Fundus Camera Compared to Portable Nonmydriatic Camera. American Journal of Ophthalmology, 182, 99-106. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Upadhyaya, S., Agarwal, A., Rengaraj, V., Srinivasan, K., Newman Casey, P.A. and Schehlein, E. (2021) Validation of a Portable, Non-Mydriatic Fundus Camera Compared to Gold Standard Dilated Fundus Examination Using Slit Lamp Biomicroscopy for Assessing the Optic Disc for Glaucoma. Eye, 36, 441-447. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Li, Z., He, Y., Keel, S., Meng, W., Chang, R.T. and He, M. (2018) Efficacy of a Deep Learning System for Detecting Glaucomatous Optic Neuropathy Based on Color Fundus Photographs. Ophthalmology, 125, 1199-1206. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Medeiros, F.A., Jammal, A.A. and Thompson, A.C. (2019) From Machine to Machine: An OCT-Trained Deep Learning Algorithm for Objective Quantification of Glaucomatous Damage in Fundus Photographs. Ophthalmology, 126, 513-521. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Mursch-Edlmayr, A.S., Ng, W.S., Diniz-Filho, A., Sousa, D.C., Arnould, L., Schlenker, M.B., et al. (2020) Artificial Intelligence Algorithms to Diagnose Glaucoma and Detect Glaucoma Progression: Translation to Clinical Practice. Translational Vision Science & Technology, 9, Article 55. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Muhammad, H., Fuchs, T.J., De Cuir, N., De Moraes, C.G., Blumberg, D.M., Liebmann, J.M., et al. (2017) Hybrid Deep Learning on Single Wide-Field Optical Coherence Tomography Scans Accurately Classifies Glaucoma Suspects. Journal of Glaucoma, 26, 1086-1094. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Li, F., Wang, Z., Qu, G., Song, D., Yuan, Y., Xu, Y., et al. (2018) Automatic Differentiation of Glaucoma Visual Field from Non-Glaucoma Visual Filed Using Deep Convolutional Neural Network. BMC Medical Imaging, 18, Article No. 35. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Yousefi, S., Elze, T., Pasquale, L.R., Saeedi, O., Wang, M., Shen, L.Q., et al. (2020) Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence-Enabled Dashboard. Ophthalmology, 127, 1170-1178. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kazemian, P., Lavieri, M.S., Van Oyen, M.P., Andrews, C. and Stein, J.D. (2018) Personalized Prediction of Glaucoma Progression under Different Target Intraocular Pressure Levels Using Filtered Forecasting Methods. Ophthalmology, 125, 569-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Salazar, D., Morales, E., Rabiolo, A., Capistrano, V., Lin, M., Afifi, A.A., et al. (2020) Pointwise Methods to Measure Long-Term Visual Field Progression in Glaucoma. JAMA Ophthalmology, 138, 536-543. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
张秀兰, 李飞. 人工智能和青光眼: 机遇与挑战[J]. 中华实验眼科杂志, 2018, 36(4): 245-247.
|
|
[36]
|
Keel, S., Lee, P.Y., Scheetz, J., Li, Z., Kotowicz, M.A., MacIsaac, R.J., et al. (2018) Feasibility and Patient Acceptability of a Novel Artificial Intelligence-Based Screening Model for Diabetic Retinopathy at Endocrinology Outpatient Services: A Pilot Study. Scientific Reports, 8, Article No. 4330. [Google Scholar] [CrossRef] [PubMed]
|