|
[1]
|
Nordblom, N.F., Büttner, M. and Schwendicke, F. (2024) Artificial Intelligence in Orthodontics: Critical Review. Journal of Dental Research, 103, 577-584. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
LeCun, Y., Bengio, Y. and Hinton, G. (2015) Deep Learning. Nature, 521, 436-444. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Jiao, Z., Liang, Z., Liao, Q., Chen, S., Yang, H., Hong, G., et al. (2024) Deep Learning for Automatic Detection of Cephalometric Landmarks on Lateral Cephalometric Radiographs Using the Mask Region-Based Convolutional Neural Network: A Pilot Study. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 137, 554-562. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Lee, J., Yu, H., Kim, M., Kim, J. and Choi, J. (2020) Automated Cephalometric Landmark Detection with Confidence Regions Using Bayesian Convolutional Neural Networks. BMC Oral Health, 20, Article No. 270. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Lahoud, P., Diels, S., Niclaes, L., Van Aelst, S., Willems, H., Van Gerven, A., et al. (2022) Development and Validation of a Novel Artificial Intelligence Driven Tool for Accurate Mandibular Canal Segmentation on CBCT. Journal of Dentistry, 116, Article ID: 103891. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Köktürk, B., Pamukçu, H. and Gözüaçık, Ö. (2024) Evaluation of Different Machine Learning Algorithms for Extraction Decision in Orthodontic Treatment. Orthodontics & Craniofacial Research, 27, 13-24. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Gao, F. and Tang, Y. (2025) Multimodal Deep Learning for Cephalometric Landmark Detection and Treatment Prediction. Scientific Reports, 15, Article No. 25205. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
马建斌, 薛超然, 白丁. 人工智能技术在口腔正畸诊疗中的应用研究进展[J]. 口腔疾病防治, 2022, 30(4): 278-282.
|
|
[9]
|
Tjoa, E. and Guan, C. (2021) A Survey on Explainable Artificial Intelligence (XAI): Toward Medical XAI. IEEE Transactions on Neural Networks and Learning Systems, 32, 4793-4813. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Schmidhuber, J. (2015) Deep Learning in Neural Networks: An Overview. Neural Networks, 61, 85-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hinton, G.E., Osindero, S. and Teh, Y. (2006) A Fast Learning Algorithm for Deep Belief Nets. Neural Computation, 18, 1527-1554. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Krizhevsky, A., Sutskever, I. and Hinton, G.E. (2017) Imagenet Classification with Deep Convolutional Neural Networks. Communications of the ACM, 60, 84-90. [Google Scholar] [CrossRef]
|
|
[13]
|
Woo, S., Park, J., Lee, J. and Kweon, I.S. (2018) CBAM: Convolutional Block Attention Module. Computer Vision-ECCV 2018: 15th European Conference, Munich, 8-14 September 2018, 3-19. [Google Scholar] [CrossRef]
|
|
[14]
|
Schwendicke, F., Chaurasia, A., Arsiwala, L., Lee, J., Elhennawy, K., Jost-Brinkmann, P., et al. (2021) Deep Learning for Cephalometric Landmark Detection: Systematic Review and Meta-Analysis. Clinical Oral Investigations, 25, 4299-4309. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yang, S., Song, E.S., Lee, E.S., Kang, S., Yi, W. and Lee, S. (2023) Ceph-net: Automatic Detection of Cephalometric Landmarks on Scanned Lateral Cephalograms from Children and Adolescents Using an Attention-Based Stacked Regression Network. BMC Oral Health, 23, Article No. 803. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Sadr, S., Mohammad-Rahimi, H., Ghorbanimehr, M.S., Rokhshad, R., Abbasi, Z., Soltani, P., et al. (2023) Deep Learning for Tooth Identification and Enumeration in Panoramic Radiographs. Dental Research Journal, 20, Article No. 116. [Google Scholar] [CrossRef]
|
|
[17]
|
Dot, G., Chaurasia, A., Dubois, G., Savoldelli, C., Haghighat, S., Azimian, S., et al. (2024) Dentalsegmentator: Robust Open Source Deep Learning-Based CT and CBCT Image Segmentation. Journal of Dentistry, 147, Article ID: 105130. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Milletari, F., Navab, N. and Ahmadi, S. (2016) V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. 2016 4th International Conference on 3D Vision (3DV), Stanford, 25-28 October 2016, 565-571. [Google Scholar] [CrossRef]
|
|
[19]
|
Liu, J., Zhang, C. and Shan, Z. (2023) Application of Artificial Intelligence in Orthodontics: Current State and Future Perspectives. Healthcare, 11, Article No. 2760. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Brückner, C., Liu, C., Rist, L. and Maier, A. (2024) Influence of Imperfect Annotations on Deep Learning Segmentation Models. In: Maier, A., et al., Eds., Bildverarbeitung für die Medizin 2024, Springer, 226-231. [Google Scholar] [CrossRef]
|
|
[21]
|
Le, V.N.T., Kang, J., Oh, I., Kim, J., Yang, Y. and Lee, D. (2022) Effectiveness of Human-Artificial Intelligence Collaboration in Cephalometric Landmark Detection. Journal of Personalized Medicine, 12, Article No. 387. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
吴玥, 严斌. 机器学习在口腔正畸学领域的应用[J]. 口腔医学, 2022, 42(1): 29-35.
|
|
[23]
|
曹凌云, 颜家榕, 汤博钧. 深度学习在头影测量中的应用研究进展[J]. 口腔疾病防治, 2023, 31(1): 58-62.
|
|
[24]
|
Putra, R.H., Astuti, E.R., Nurrachman, A.S., Putri, D.K., Ghazali, A.B., Pradini, T.A., et al. (2023) Convolutional Neural Networks for Automated Tooth Numbering on Panoramic Radiographs: A Scoping Review. Imaging Science in Dentistry, 53, 271-281. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Liu, J., Hu, T., Feng, Y., Ding, W. and Liu, Z. (2023) Toothsegnet: Image Degradation Meets Tooth Segmentation in CBCT Images. 2023 IEEE 20th International Symposium on Biomedical Imaging (ISBI), Cartagena, 18-21 April 2023, 1-5. [Google Scholar] [CrossRef]
|
|
[26]
|
Sinard, E., Gajny, L., de La Dure‐Molla, M., Felizardo, R. and Dot, G. (2025) Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth with or without Association to Rare Diseases: Evaluation of Four Deep Learning‐Based Methods. Orthodontics & Craniofacial Research, 28, 433-440. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Milani, O.H., Atici, S.F., Allareddy, V., Ramachandran, V., Ansari, R., Cetin, A.E., et al. (2024) A Fully Automated Classification of Third Molar Development Stages Using Deep Learning. Scientific Reports, 14, Article No. 13082. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Xu, S., Peng, H., Yang, L., Zhong, W. and Gao, X. (2025) Automatic Detection of Orthodontically Induced External Root Resorption Based on Deep Convolutional Neural Networks Using CBCT Images. Scientific Reports, 15, Article No. 22984. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Dong, Z., Chen, J. and Xu, Y. (2024) Transformer-Based Tooth Alignment Prediction with Occlusion and Collision Constraints.
|
|
[30]
|
Liu, J., Hao, J., Lin, H., Pan, W., Yang, J., Feng, Y., et al. (2023) Deep Learning-Enabled 3D Multimodal Fusion of Cone-Beam CT and Intraoral Mesh Scans for Clinically Applicable Tooth-Bone Reconstruction. Patterns, 4, Article ID: 100825. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Shojaei, H. and Augusto, V. (2022) Constructing Machine Learning Models for Orthodontic Treatment Planning: A Comparison of Different Methods. 2022 IEEE International Conference on Big Data (Big Data), Osaka, 17-20 December 2022, 2790-2799. [Google Scholar] [CrossRef]
|
|
[32]
|
Huang, J., Chan, I., Wang, Z., Ding, X., Jin, Y., Yang, C., et al. (2024) Evaluation of Four Machine Learning Methods in Predicting Orthodontic Extraction Decision from Clinical Examination Data and Analysis of Feature Contribution. Frontiers in Bioengineering and Biotechnology, 12, Article ID: 1483230. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Ingle, N.A., Alabsi, N.F., Al-Hashimi, H., Albuolayan, N.A., Alburidy, F., Alanazi, F., et al. (2025) The Use of Artificial Intelligence in Orthodontic Treatment Planning: A Systematic Review and Meta-Analysis. Advances in Human Biology, 15, 158-166. [Google Scholar] [CrossRef]
|
|
[34]
|
Wolf, D., Farrag, G., Flügge, T. and Timm, L.H. (2024) Predicting Outcome in Clear Aligner Treatment: A Machine Learning Analysis. Journal of Clinical Medicine, 13, Article No. 3672. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Gracea, R.S., Winderickx, N., Vanheers, M., Hendrickx, J., Preda, F., Shujaat, S., et al. (2025) Artificial Intelligence for Orthodontic Diagnosis and Treatment Planning: A Scoping Review. Journal of Dentistry, 152, Article ID: 105442. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
杨振泽, 林军. 人工智能在正畸正颌联合治疗的应用及展望[J]. 口腔医学, 2023, 43(8): 747-751.
|
|
[37]
|
Li, Z. and Wang, L. (2025) Multi-task Reinforcement Learning and Explainable AI-Driven Platform for Personalized Planning and Clinical Decision Support in Orthodontic-Orthognathic Treatment. Scientific Reports, 15, Article No. 24502. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Jeong, S.H., Yun, J.P., Yeom, H., Lim, H.J., Lee, J. and Kim, B.C. (2020) Deep Learning Based Discrimination of Soft Tissue Profiles Requiring Orthognathic Surgery by Facial Photographs. Scientific Reports, 10, Article No. 16235. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Serafin, M., Baldini, B., Cabitza, F., Carrafiello, G., Baselli, G., Del Fabbro, M., et al. (2023) Accuracy of Automated 3D Cephalometric Landmarks by Deep Learning Algorithms: Systematic Review and Meta-Analysis. La Radiologia Medica, 128, 544-555. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Naik, N., Hameed, B.M.Z., Shetty, D.K., Swain, D., Shah, M., Paul, R., et al. (2022) Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Frontiers in Surgery, 9, Article ID: 862322. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Kaissis, G.A., Makowski, M.R., Rückert, D. and Braren, R.F. (2020) Secure, Privacy-Preserving and Federated Machine Learning in Medical Imaging. Nature Machine Intelligence, 2, 305-311. [Google Scholar] [CrossRef]
|
|
[42]
|
Cui, L. and Wu, X. (2025) ALDP-FL for Adaptive Local Differential Privacy in Federated Learning. Scientific Reports, 15, Article No. 26679. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Price, W.N. and Cohen, I.G. (2019) Privacy in the Age of Medical Big Data. Nature Medicine, 25, 37-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Braun, M., Hummel, P., Beck, S. and Dabrock, P. (2020) Primer on an Ethics of AI-Based Decision Support Systems in the Clinic. Journal of Medical Ethics, 47, e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Topol, E.J. (2019) High-Performance Medicine: The Convergence of Human and Artificial Intelligence. Nature Medicine, 25, 44-56. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
He, J., Baxter, S.L., Xu, J., Xu, J., Zhou, X. and Zhang, K. (2019) The Practical Implementation of Artificial Intelligence Technologies in Medicine. Nature Medicine, 25, 30-36. [Google Scholar] [CrossRef] [PubMed]
|