|
[1]
|
陈晨, 罗冬梅, 葛磊, 等. 结直肠癌肝转移患者预后列线图模型实证研究[J]. 中华肿瘤防治杂志, 2023, 30(22): 1362-1368.
|
|
[2]
|
申宇光, 王冬阳, 唐坚, 等. 结直肠癌早期筛查的最新进展[J]. 上海医学, 2023, 46(8): 515-518.
|
|
[3]
|
徐梦圆, 单天昊, 曾红梅. 2020年全球结肠癌和直肠癌发病死亡分析[J]. 江苏预防医学, 2023, 34(1): 12-16.
|
|
[4]
|
Pennel, K., Dutton, L., Melissourgou-Syka, L., Roxburgh, C., Birch, J. and Edwards, J. (2024) Novel Radiation and Targeted Therapy Combinations for Improving Rectal Cancer Outcomes. Expert Reviews in Molecular Medicine, 26, e14. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Toda, S. and Kuroyanagi, H. (2013) Laparoscopic Surgery for Rectal Cancer: Current Status and Future Perspective. Asian Journal of Endoscopic Surgery, 7, 2-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Koukourakis, I.M., Kouloulias, V., Tiniakos, D., Georgakopoulos, I. and Zygogianni, A. (2023) Current Status of Locally Advanced Rectal Cancer Therapy and Future Prospects. Critical Reviews in Oncology/Hematology, 186, Article ID: 103992. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Siegel, R.L., Miller, K.D., Fuchs, H.E. and Jemal, A. (2022) Cancer Statistics, 2022. CA: A Cancer Journal for Clinicians, 72, 7-33. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Kirkby, C.J., Gala de Pablo, J., Tinkler-Hundal, E., Wood, H.M., Evans, S.D. and West, N.P. (2021) Correction: Developing a Raman Spectroscopy-Based Tool to Stratify Patient Response to Pre-Operative Radiotherapy in Rectal Cancer. The Analyst, 146, 4401-4401. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ell, P.J. (2006) The Contribution of PET/CT to Improved Patient Management. The British Journal of Radiology, 79, 32-36. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Tsukamoto, E. and Ochi, S. (2006) PET/CT Today: System and Its Impact on Cancer Diagnosis. Annals of Nuclear Medicine, 20, 255-267. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Lee, S.Y., Jeon, S.I., Jung, S., Chung, I.J. and Ahn, C. (2014) Targeted Multimodal Imaging Modalities. Advanced Drug Delivery Reviews, 76, 60-78. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jennings, L.E. and Long, N.J. (2009) “Two Is Better than One”—Probes for Dual-Modality Molecular Imaging. Chemical Communications, No. 24, 3511-3524. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Coppola, F., Giannini, V., Gabelloni, M., Panic, J., Defeudis, A., Lo Monaco, S., et al. (2021) Radiomics and Magnetic Resonance Imaging of Rectal Cancer: From Engineering to Clinical Practice. Diagnostics, 11, Article No. 756. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Moreira, J.M., Santiago, I., Santinha, J., Figueiredo, N., Marias, K., Figueiredo, M., et al. (2019) Challenges and Promises of Radiomics for Rectal Cancer. Current Colorectal Cancer Reports, 15, 175-180. [Google Scholar] [CrossRef]
|
|
[15]
|
Liu, Z., Wang, S., Dong, D., Wei, J., Fang, C., Zhou, X., et al. (2019) The Applications of Radiomics in Precision Diagnosis and Treatment of Oncology: Opportunities and Challenges. Theranostics, 9, 1303-1322. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Romesser, P.B. and Cercek, A. (2024) Optimizing Rectal Cancer Treatment: A Path Towards Personalization. Annals of Oncology, 35, 831-835. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sun, Y., Hu, P., Wang, J., Shen, L., Xia, F., Qing, G., et al. (2018) Radiomic Features of Pretreatment MRI Could Identify T Stage in Patients with Rectal Cancer: Preliminary Findings. Journal of Magnetic Resonance Imaging, 48, 615-621. [Google Scholar] [CrossRef]
|
|
[18]
|
Li, M., Zhang, J., Dan, Y., Yao, Y., Dai, W., Cai, G., et al. (2020) A Clinical-Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Colorectal Cancer. Journal of Translational Medicine, 18, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Han, Y., Liu, D. and Li, L. (2020) PD-1/PD-L1 Pathway: Current Researches in Cancer. American Journal of Cancer Research, 10, 727-742.
|
|
[20]
|
Incorvaia, L., Fanale, D., Badalamenti, G., Barraco, N., Bono, M., Corsini, L.R., et al. (2019) Programmed Death Ligand 1 (PD-L1) as a Predictive Biomarker for Pembrolizumab Therapy in Patients with Advanced Non-Small-Cell Lung Cancer (NSCLC). Advances in Therapy, 36, 2600-2617. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Chen, L. and Han, X. (2015) Anti-PD-1/PD-L1 Therapy of Human Cancer: Past, Present, and Future. Journal of Clinical Investigation, 125, 3384-3391. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Riley, J.L. (2009) PD‐1 Signaling in Primary T Cells. Immunological Reviews, 229, 114-125. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ribas, A. and Wolchok, J.D. (2018) Cancer Immunotherapy Using Checkpoint Blockade. Science, 359, 1350-1355. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Chen, D.S. and Mellman, I. (2017) Elements of Cancer Immunity and the Cancer-Immune Set Point. Nature, 541, 321-330. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Doroshow, D.B., Bhalla, S., Beasley, M.B., Sholl, L.M., Kerr, K.M., Gnjatic, S., et al. (2021) PD-L1 as a Biomarker of Response to Immune-Checkpoint Inhibitors. Nature Reviews Clinical Oncology, 18, 345-362. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Mok, T.S.K., Wu, Y., Kudaba, I., Kowalski, D.M., Cho, B.C., Turna, H.Z., et al. (2019) Pembrolizumab versus Chemotherapy for Previously Untreated, Pd-L1-Expressing, Locally Advanced or Metastatic Non-Small-Cell Lung Cancer (KEYNOTE-042): A Randomised, Open-Label, Controlled, Phase 3 Trial. The Lancet, 393, 1819-1830. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Zhang, X.Y., Zhu, H.T., Li, X.T., et al. (2022) A Prediction Model of Pathological Complete Response in Patients with Locally Advanced Rectal Cancer after PD-1 Antibody Combined with Total Neoadjuvant Chemoradiotherapy Based on MRI Radiomics. Chinese Journal of Gastrointestinal Surgery, 25, 228-234.
|
|
[28]
|
Tian, X., Ma, A., Jia, Z., Ruzeaiti, B., Liang, G., Zeng, H., et al. (2025) MRI Radiomics Combined with Delta-Radiomics Model for Predicting Pathological Complete Response in Locally Advanced Rectal Cancer Patients after Neoadjuvant Chemoradiotherapy: A Multi-Institutional Study. Applied Radiation and Isotopes, 222, Article ID: 111842. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Wang, Y., Liu, Y., Guan, X., et al. (2025) Immunotherapy and Chemoradiotherapy for Mismatch Repair Proficient Locally Advanced Rectal Cancer: A Systematic Review and Meta-Analysis. Radiotherapy and Oncology, 211, 111073. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Hayashi, H., Beppu, T., Sakamoto, Y., Miyamoto, Y., Yokoyama, N., Higashi, T., et al. (2015) Prognostic Value of Ki-67 Expression in Conversion Therapy for Colorectal Liver-Limited Metastases. American Journal of Cancer Research, 15, 1225-1233.
|
|
[31]
|
Okumura, Y., Nishimura, R., Nakatsukasa, K., Yoshida, A., Masuda, N., Tanabe, M., et al. (2015) Change in Estrogen Receptor, HER2, and Ki-67 Status between Primary Breast Cancer and Ipsilateral Breast Cancer Tumor Recurrence. European Journal of Surgical Oncology (EJSO), 41, 548-552. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
McDonnell, A.M., Nowak, A.K. and Lake, R.A. (2011) Contribution of the Immune System to the Chemotherapeutic Response. Seminars in Immunopathology, 33, 353-367. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Zitvogel, L., Galluzzi, L., Smyth, M.J. and Kroemer, G. (2013) Mechanism of Action of Conventional and Targeted Anticancer Therapies: Reinstating Immunosurveillance. Immunity, 39, 74-88. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Hiraoka, K., Miyamoto, M., Cho, Y., Suzuoki, M., Oshikiri, T., Nakakubo, Y., et al. (2006) Concurrent Infiltration by CD8+ T Cells and CD4+ T Cells Is a Favourable Prognostic Factor in Non-Small-Cell Lung Carcinoma. British Journal of Cancer, 94, 275-280. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Loi, S., Sirtaine, N., Piette, F., Salgado, R., Viale, G., Van Eenoo, F., et al. (2013) Prognostic and Predictive Value of Tumor-Infiltrating Lymphocytes in a Phase III Randomized Adjuvant Breast Cancer Trial in Node-Positive Breast Cancer Comparing the Addition of Docetaxel to Doxorubicin with Doxorubicin-Based Chemotherapy: BIG 02-98. Journal of Clinical Oncology, 31, 860-867. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Anitei, M., Zeitoun, G., Mlecnik, B., Marliot, F., Haicheur, N., Todosi, A., et al. (2014) Prognostic and Predictive Values of the Immunoscore in Patients with Rectal Cancer. Clinical Cancer Research, 20, 1891-1899. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Shinto, E., Hase, K., Hashiguchi, Y., Sekizawa, A., Ueno, H., Shikina, A., et al. (2014) CD8+ and FOXP3+ Tumor-Infiltrating T Cells before and after Chemoradiotherapy for Rectal Cancer. Annals of Surgical Oncology, 21, 414-421. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Imaizumi, K., Suzuki, T., Kojima, M., Shimomura, M., Sakuyama, N., Tsukada, Y., et al. (2019) Ki67 Expression and Localization of T Cells after Neoadjuvant Therapies as Reliable Predictive Markers in Rectal Cancer. Cancer Science, 111, 23-35. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Li, Q., Liu, J., Li, W., Qiu, M., Zhuo, X., You, Q., et al. (2024) Magnetic Resonance Imaging-Based Radiomics in Predicting the Expression of Ki-67, P53, and Epidermal Growth Factor Receptor in Rectal Cancer. Journal of Gastrointestinal Oncology, 15, 2088-2099. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Yao, X., Ao, W., Zhu, X., Tian, S., Han, X., Hu, J., et al. (2023) A Novel Radiomics Based on Multi-Parametric Magnetic Resonance Imaging for Predicting Ki-67 Expression in Rectal Cancer: A Multicenter Study. BMC Medical Imaging, 23, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Meng, X., Xia, W., Xie, P., Zhang, R., Li, W., Wang, M., et al. (2018) Preoperative Radiomic Signature Based on Multiparametric Magnetic Resonance Imaging for Noninvasive Evaluation of Biological Characteristics in Rectal Cancer. European Radiology, 29, 3200-3209. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Le, C.C., Bennasroune, A., Collin, G., Hachet, C., Lehrter, V., Rioult, D., et al. (2020) LRP-1 Promotes Colon Cancer Cell Proliferation in 3D Collagen Matrices by Mediating DDR1 Endocytosis. Frontiers in Cell and Developmental Biology, 8, Article No. 412. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Schaue, D. and McBride, W.H. (2015) Opportunities and Challenges of Radiotherapy for Treating Cancer. Nature Reviews Clinical Oncology, 12, 527-540. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Lee, K.J., Ko, E.J., Park, Y., Park, S.S., Ju, E.J., Park, J., et al. (2020) A Novel Nanoparticle-Based Theranostic Agent Targeting LRP-1 Enhances the Efficacy of Neoadjuvant Radiotherapy in Colorectal Cancer. Biomaterials, 255, Article ID: 120151. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Yoshikawa, K., Shimada, M., Higashijima, J., et al. (2018) Ki-67 and Survivin as Predictive Factors for Rectal Cancer Treated with Preoperative Chemoradiotherapy. Anticancer Research, 38, 1735-1739.
|
|
[46]
|
Li, Z., Huang, H., Wang, C., Zhao, Z., Ma, W., Wang, D., et al. (2022) DCE-MRI Radiomics Models Predicting the Expression of Radioresistant-Related Factors of LRP-1 and Survivin in Locally Advanced Rectal Cancer. Frontiers in Oncology, 12, Article ID: 881341. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Li, Z., Huang, H., Zhao, Z., Ma, W., Mao, H., Liu, F., et al. (2024) Development and Validation of a Nomogram Based on DCE-MRI Radiomics for Predicting Hypoxia-Inducible Factor 1α Expression in Locally Advanced Rectal Cancer. Academic Radiology, 31, 4923-4933. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Weisberg, E.M., Chu, L.C., Park, S., Yuille, A.L., Kinzler, K.W., Vogelstein, B., et al. (2020) Deep Lessons Learned: Radiology, Oncology, Pathology, and Computer Science Experts Unite around Artificial Intelligence to Strive for Earlier Pancreatic Cancer Diagnosis. Diagnostic and Interventional Imaging, 101, 111-115. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Hou, M. and Sun, J. (2021) Emerging Applications of Radiomics in Rectal Cancer: State of the Art and Future Perspectives. World Journal of Gastroenterology, 27, 3802-3814. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Kang, J., Rancati, T., Lee, S., Oh, J.H., Kerns, S.L., Scott, J.G., et al. (2018) Machine Learning and Radiogenomics: Lessons Learned and Future Directions. Frontiers in Oncology, 8, Article No. 228. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Duron, L., Savatovsky, J., Fournier, L. and Lecler, A. (2021) Can We Use Radiomics in Ultrasound Imaging? Impact of Preprocessing on Feature Repeatability. Diagnostic and Interventional Imaging, 102, 659-667. [Google Scholar] [CrossRef] [PubMed]
|