[1]
|
Honey, O.B., Scarfe, W.C., Hilgers, M.J., Klueber, K., Silveira, A.M., Haskell, B.S., et al. (2007) Accuracy of Cone-Beam Computed Tomography Imaging of the Temporomandibular Joint: Comparisons with Panoramic Radiology and Linear Tomography. American Journal of Orthodontics and Dentofacial Orthopedics, 132, 429-438. https://doi.org/10.1016/j.ajodo.2005.10.032
|
[2]
|
Tallents, R.H., Katzberg, R.W., Murphy, W. and Proskin, H. (1996) Magnetic Resonance Imaging Findings in Asymptomatic Volunteers and Symptomatic Patients with Temporomandibular Disorders. The Journal of Prosthetic Dentistry, 75, 529-533. https://doi.org/10.1016/s0022-3913(96)90458-8
|
[3]
|
陈志晔, 胡敏, 王燕一. 颞下颌关节骨关节炎的MRI成像诊断[J]. 中华口腔医学杂志, 2022, 57(6): 660-664.
|
[4]
|
Kazimierczak, N., Kazimierczak, W., Serafin, Z., Nowicki, P., Nożewski, J. and Janiszewska-Olszowska, J. (2024) AI in Orthodontics: Revolutionizing Diagnostics and Treatment Planning—A Comprehensive Review. Journal of Clinical Medicine, 13, Article No. 344. https://doi.org/10.3390/jcm13020344
|
[5]
|
Vinayahalingam, S., Berends, B., Baan, F., Moin, D.A., van Luijn, R., Bergé, S., et al. (2023) Deep Learning for Automated Segmentation of the Temporomandibular Joint. Journal of Dentistry, 132, Article ID: 104475. https://doi.org/10.1016/j.jdent.2023.104475
|
[6]
|
Le, C., Deleat-Besson, R., Prieto, J., Brosset, S., Dumont, M., Zhang, W., et al. (2021) Automatic Segmentation of Mandibular Ramus and Condyles. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Mexico, 1-5 November 2021, 2952-2955. https://doi.org/10.1109/embc46164.2021.9630727
|
[7]
|
Kim, Y.H., Shin, J.Y., Lee, A., Park, S., Han, S. and Hwang, H.J. (2021) Automated Cortical Thickness Measurement of the Mandibular Condyle Head on CBCT Images Using a Deep Learning Method. Scientific Reports, 11, Article No. 14852. https://doi.org/10.1038/s41598-021-94362-7
|
[8]
|
Hu, P., Li, J., Ma, R., Zhang, K., Guo, Y. and Li, G. (2024) Temporomandibular Joint CBCT Image Segmentation via Multi-View Ensemble Learning Network. Medical & Biological Engineering & Computing, 63, 693-706. https://doi.org/10.1007/s11517-024-03225-6
|
[9]
|
Lee, K.S., Kwak, H.J., Oh, J.M., Jha, N., Kim, Y.J., Kim, W., et al. (2020) Automated Detection of TMJ Osteoarthritis Based on Artificial Intelligence. Journal of Dental Research, 99, 1363-1367. https://doi.org/10.1177/0022034520936950
|
[10]
|
Talaat, W.M., Shetty, S., Al Bayatti, S., Talaat, S., Mourad, L., Shetty, S., et al. (2023) An Artificial Intelligence Model for the Radiographic Diagnosis of Osteoarthritis of the Temporomandibular Joint. Scientific Reports, 13, Article No. 15972. https://doi.org/10.1038/s41598-023-43277-6
|
[11]
|
Eşer, G., Duman, Ş.B., Bayrakdar, İ.Ş. and Çelik, Ö. (2023) Classification of Temporomandibular Joint Osteoarthritis on cone Beam Computed Tomography Images Using Artificial Intelligence System. Journal of Oral Rehabilitation, 50, 758-766. https://doi.org/10.1111/joor.13481
|
[12]
|
伍丹丹, 王培, 敬洋, 贾真, 杨健. 基于深度学习的颞下颌关节骨关节炎影像智能诊断模型构建与评估[J]. 实用口腔医学杂志, 2025, 41(4): 519-524.
|
[13]
|
Mao, W., Fang, Y., Wang, Z., Liu, M., Sun, Y., Wu, H., et al. (2025) Automated Diagnosis and Classification of Temporomandibular Joint Degenerative Disease via Artificial Intelligence Using CBCT Imaging. Journal of Dentistry, 154, Article ID: 105592. https://doi.org/10.1016/j.jdent.2025.105592
|
[14]
|
Orhan, K., Sanders, A., Ünsal, G., Ezhov, M., Mısırlı, M., Gusarev, M., et al. (2023) Assessing the Reliability of CBCT-Based AI-Generated STL Files in Diagnosing Osseous Changes of the Mandibular Condyle: A Comparative Study with Ground Truth Diagnosis. Dentomaxillofacial Radiology, 52, Article ID: 20230141. https://doi.org/10.1259/dmfr.20230141
|
[15]
|
de Dumast, P., Mirabel, C., Cevidanes, L., Ruellas, A., Yatabe, M., Ioshida, M., et al. (2018) A Web-Based System for Neural Network Based Classification in Temporomandibular Joint Osteoarthritis. Computerized Medical Imaging and Graphics, 67, 45-54. https://doi.org/10.1016/j.compmedimag.2018.04.009
|
[16]
|
Marques, J.P., Simonis, F.F.J. and Webb, A.G. (2019) Low‐Field MRI: An MR Physics Perspective. Journal of Magnetic Resonance Imaging, 49, 1528-1542. https://doi.org/10.1002/jmri.26637
|
[17]
|
Li, M., Punithakumar, K., Major, P.W., Le, L.H., Nguyen, K.T., Pacheco-Pereira, C., et al. (2022) Temporomandibular Joint Segmentation in MRI Images Using Deep Learning. Journal of Dentistry, 127, Article ID: 104345. https://doi.org/10.1016/j.jdent.2022.104345
|
[18]
|
刘飞, 张久楼, 金若帆, 张楠, 周薇娜. 基于深度学习方法建立颞下颌关节核磁共振影像的自动分割模型[J]. 口腔医学, 2025, 45(6): 445-452.
|
[19]
|
Nozawa, M., Ito, H., Ariji, Y., Fukuda, M., Igarashi, C., Nishiyama, M., et al. (2022) Automatic Segmentation of the Temporomandibular Joint Disc on Magnetic Resonance Images Using a Deep Learning Technique. Dentomaxillofacial Radiology, 51, Article ID: 20210185. https://doi.org/10.1259/dmfr.20210185
|
[20]
|
Orhan, K., Driesen, L., Shujaat, S., Jacobs, R. and Chai, X. (2021) Development and Validation of a Magnetic Resonance Imaging‐Based Machine Learning Model for TMJ Pathologies. BioMed Research International, 2021, Article ID: 6656773. https://doi.org/10.1155/2021/6656773
|
[21]
|
Lin, B., Cheng, M., Wang, S., Li, F. and Zhou, Q. (2022) Automatic Detection of Anteriorly Displaced Temporomandibular Joint Discs on Magnetic Resonance Images Using a Deep Learning Algorithm. Dentomaxillofacial Radiology, 51, Article ID: 20210341. https://doi.org/10.1259/dmfr.20210341
|
[22]
|
Lee, Y., Won, J.H., Kim, S., Auh, Q. and Noh, Y. (2022) Advantages of Deep Learning with Convolutional Neural Network in Detecting Disc Displacement of the Temporomandibular Joint in Magnetic Resonance Imaging. Scientific Reports, 12, Article No. 11352. https://doi.org/10.1038/s41598-022-15231-5
|
[23]
|
Ozsari, S., Yapicioglu, F.R., Yilmaz, D., Kamburoglu, K., Guzel, M.S., Bostanci, G.E., et al. (2023) Interpretation of Magnetic Resonance Images of Temporomandibular Joint Disorders by Using Deep Learning. IEEE Access, 11, 49102-49113. https://doi.org/10.1109/access.2023.3277756
|
[24]
|
Yoon, K., Kim, J., Kim, S., Huh, J., Kim, J. and Choi, J. (2023) Explainable Deep Learning-Based Clinical Decision Support Engine for MRI-Based Automated Diagnosis of Temporomandibular Joint Anterior Disk Displacement. Computer Methods and Programs in Biomedicine, 233, Article ID: 107465. https://doi.org/10.1016/j.cmpb.2023.107465
|
[25]
|
Kao, Z., Chiu, N., Wu, H.H., Chang, W., Wang, D., Kung, Y., et al. (2022) Classifying Temporomandibular Disorder with Artificial Intelligent Architecture Using Magnetic Resonance Imaging. Annals of Biomedical Engineering, 51, 517-526. https://doi.org/10.1007/s10439-022-03056-2
|
[26]
|
Kim, J., Kim, D., Jeon, K.J., Kim, H. and Huh, J. (2021) Using Deep Learning to Predict Temporomandibular Joint Disc Perforation Based on Magnetic Resonance Imaging. Scientific Reports, 11, Article No. 6680. https://doi.org/10.1038/s41598-021-86115-3
|
[27]
|
Nozawa, M., Fukuda, M., Kotaki, S., Araragi, M., Akiyama, H. and Ariji, Y. (2024) Can Temporomandibular Joint Osteoarthritis Be Diagnosed on MRI Proton Density-Weighted Images with Diagnostic Support from the Latest Deep Learning Classification Models? Dentomaxillofacial Radiology, 54, 56-63. https://doi.org/10.1093/dmfr/twae040
|
[28]
|
Lee, C., Ha, E., Choi, Y.J., Jeon, K.J. and Han, S. (2022) Synthesis of T2-Weighted Images from Proton Density Images Using a Generative Adversarial Network in a Temporomandibular Joint Magnetic Resonance Imaging Protocol. Imaging Science in Dentistry, 52, 393-398. https://doi.org/10.5624/isd.20220125
|
[29]
|
Jeon, K.J., Kim, Y.H., Ha, E., Choi, H.S., Ahn, H., Lee, J.R., et al. (2022) Quantitative Analysis of the Mouth Opening Movement of Temporomandibular Joint Disorder Patients According to Disc Position Using Computer Vision: A Pilot Study. Quantitative Imaging in Medicine and Surgery, 12, 1909-1918. https://doi.org/10.21037/qims-21-629
|
[30]
|
Choi, E., Kim, D., Lee, J. and Park, H. (2021) Artificial Intelligence in Detecting Temporomandibular Joint Osteoarthritis on Orthopantomogram. Scientific Reports, 11, Article No. 10246. https://doi.org/10.1038/s41598-021-89742-y
|
[31]
|
Jung, W., Lee, K., Suh, B., Seok, H. and Lee, D. (2021) Deep Learning for Osteoarthritis Classification in Temporomandibular Joint. Oral Diseases, 29, 1050-1059. https://doi.org/10.1111/odi.14056
|
[32]
|
Meng, X., Liu, S., Wu, Z. and Guo, L. (2024) Application of Panoramic Radiographs in the Diagnosis of Temporomandibular Disorders. Medicine, 103, e36469. https://doi.org/10.1097/md.0000000000036469
|
[33]
|
Thanathornwong, B., Treebupachatsakul, T., Teechot, T., Poomrittigul, S., Warin, K. and Suebnukarn, S. (2024) Temporomandibular Joint Disorders Multi-Class Classification Using Deep Learning. In: Studies in Health Technology and Informatics, IOS Press, 1495-1496. https://doi.org/10.3233/shti231261
|
[34]
|
Fang, X., Xiong, X., Lin, J., Wu, Y., Xiang, J. and Wang, J. (2023) Machine-Learning-Based Detection of Degenerative Temporomandibular Joint Diseases Using Lateral Cephalograms. American Journal of Orthodontics and Dentofacial Orthopedics, 163, 260-271.e5. https://doi.org/10.1016/j.ajodo.2022.10.015
|
[35]
|
Diniz de Lima, E., Souza Paulino, J.A., Lira de Farias Freitas, A.P., Viana Ferreira, J.E., Barbosa, J.d.S., Bezerra Silva, D.F., et al. (2022) Artificial Intelligence and Infrared Thermography as Auxiliary Tools in the Diagnosis of Temporomandibular Disorder. Dentomaxillofacial Radiology, 51, Article ID: 20210318. https://doi.org/10.1259/dmfr.20210318
|
[36]
|
Zhang, L., Shen, L., Zhang, L., Zhang, C. and Wang, H. (2022) Dynamic 3D Images Fusion of the Temporomandibular Joints: A Novel Technique. Journal of Dentistry, 126, Article ID: 104286. https://doi.org/10.1016/j.jdent.2022.104286
|
[37]
|
Le, C., Deleat-Besson, R., Al Turkestani, N., Cevidanes, L., Bianchi, J., Zhang, W., et al. (2021) TMJOAI: An Artificial Web-Based Intelligence Tool for Early Diagnosis of the Temporomandibular Joint Osteoarthritis. In: Laura, C.O., et al., Eds., Clinical Image-Based Procedures, Distributed and Collaborative Learning, Artificial Intelligence for Combating COVID-19 and Secure and Privacy-Preserving Machine Learning, Springer International Publishing, 78-87. https://doi.org/10.1007/978-3-030-90874-4_8
|
[38]
|
Calil, B.C., da Cunha, D.V., Vieira, M.F., de Oliveira Andrade, A., Furtado, D.A., Bellomo Junior, D.P., et al. (2020) Identification of Arthropathy and Myopathy of the Temporomandibular Syndrome by Biomechanical Facial Features. BioMedical Engineering OnLine, 19, Article No. 22. https://doi.org/10.1186/s12938-020-00764-5
|
[39]
|
Lasek, J., Nurzynska, K., Piórkowski, A., Strzelecki, M. and Obuchowicz, R. (2025) Deep Learning for Ultrasonographic Assessment of Temporomandibular Joint Morphology. Tomography, 11, Article No. 27. https://doi.org/10.3390/tomography11030027
|