脓毒症进展为急性呼吸窘迫综合征的多层次危险因素分析
Multilevel Risk Factor Analysis for Progression of Sepsis to Acute Respiratory Distress Syndrome
DOI: 10.12677/acm.2025.1592668, PDF, HTML, XML,   
作者: 李美媛, 王乐乐:延安大学医学院,陕西 延安;徐 宁*:榆林市第一医院重症医学科,陕西 榆林
关键词: 脓毒症ARDS危险因素宿主因素病原特性医源性干预Sepsis ARDS Risk Factors Host Factors Pathogenic Characteristics Medical Interventions
摘要: 脓毒症是病原体感染导致机体免疫反应失调的器官功能障碍。其引发的全身炎症反应可损伤肺血管内皮和肺泡上皮,导致肺水肿和顽固性低氧血症,即ARDS。ARDS可使脓毒症患者的死亡率显著增加,两者叠加可产生严重后果。本文旨在系统分析脓毒症进展为急性呼吸窘迫综合征的关键危险因素。综述表明,由宿主因素、病原特性和医源性干预组成的三个关键维度共同构成了疾病进展的核心风险。深入分析这些危险因素的内在联系,对于早期识别高危患者、实施精准化预防策略及改善临床预后具有至关重要的指导意义。
Abstract: Sepsis is an organ dysfunction in which pathogenic infection leads to a dysregulated immune response. The systemic inflammatory response it triggers can damage the pulmonary vascular endothelium and alveolar epithelium, leading to pulmonary edema and intractable hypoxemia, i.e., ARDS. ARDS can lead to a significant increase in mortality in patients with sepsis, and the superimposition of the two can have serious consequences. The aim of this paper is to systematically analyze the key risk factors for the progression of sepsis to acute respiratory distress syndrome. The review suggests that three key dimensions consisting of host factors, pathogen characteristics, and medical interventions together constitute the core risk for disease progression. An in-depth analysis of the intrinsic linkage of these risk factors is a crucial guide for early identification of high-risk patients, implementation of precise prevention strategies and improvement of clinical prognosis.
文章引用:李美媛, 王乐乐, 徐宁. 脓毒症进展为急性呼吸窘迫综合征的多层次危险因素分析[J]. 临床医学进展, 2025, 15(9): 1665-1673. https://doi.org/10.12677/acm.2025.1592668

1. 前言

脓毒症是病原体感染导致机体免疫反应失调的器官功能障碍(Sepsis-3标准)。在临床实践中,脓毒症是ARDS (柏林标准:急性低氧性呼吸衰竭 + 双肺浸润影 + 非心源性肺水肿)的重要诱因,约占所有ARDS病例的31%~34% [1] [2]。其中脓毒症患者中ARDS的发生率为27.5%~30.3% [3] [4]。更值得关注的是,脓毒症相关ARDS患者的死亡率显著高于非ARDS脓毒症患者(p < 0.001) ,其中肺源性脓毒症ARDS的死亡风险高于肺外源性(HR 0.66, 95% CI 0.54~0.82) 。多中心研究显示,ARDS使脓毒症患者的死亡风险绝对增加26% [5],两者叠加可产生严重后果。从临床意义来看,脓毒症与ARDS的叠加效应主要体现在三个方面:首先,两者共同的炎症和内皮功能障碍机制导致多器官衰竭(肺、肝、肾等)风险显著升高[6] [7];其次,脓毒症后期的免疫抑制与ARDS的肺泡损伤协同作用,增加继发感染风险[8];最后,幸存者常遗留肺纤维化、认知功能障碍等后遗症,需长期康复支持[9]。在医疗资源方面,ARDS占ICU入院原因的10.4% [10],合并脓毒症时机械通气时间延长至7~10天,显著增加ICU住院时间[11],同时需要高频使用ECMO、广谱抗生素等昂贵治疗手段,造成沉重的经济负担[6] [12]。脓毒症发展为ARDS的危险因素是一个复杂的多维度问题,主要包含宿主因素、病原特性和医源性干预三个核心维度。这三个维度联合作用,共同决定了脓毒症患者发生ARDS的风险程度和临床预后。综上所述,脓毒症与ARDS的现代定义(Sepsis-3/Berlin)强调器官功能障碍与炎症损伤的量化评估,两者叠加时发病率约27%~32%,病死率可达40%,并显著增加医疗资源消耗,而深入理解脓毒症发展为ARDS的危险因素中所包含的三个核心维度,对于早期识别高危患者、优化临床决策和改善治疗效果具有重要意义。

2. 脓毒症进展为ARDS的核心病理机制

2.1. 炎症风暴与内皮损伤

炎症风暴与内皮损伤是这一过程的始动环节,脓毒症ARDS患者血浆中IL-6、IL-8、IL-10等促炎因子水平显著升高,这些细胞因子不仅与凝血参数和DIC显著相关,还与肾功能指标(肌酐、尿素氮)呈正相关,提示多器官损伤的协同作用[13]。特别是TNF-α、IL-6、IL-1β等关键炎症介质通过激活NF-κB等信号通路,直接加剧肺泡–毛细血管屏障破坏,导致特征性的肺水肿[14] [15]。中性粒细胞胞外陷阱(NETs)在这一过程中扮演关键角色,NETosis通过释放组蛋白和蛋白酶直接损伤内皮细胞,同时促进IL-6、IL-1β、TNF-α等细胞因子的进一步释放,形成正反馈循环[16] [17]。实验研究证实,抑制NETs形成可显著减轻LPS诱导的肺泡上皮细胞凋亡和炎症反应[16]

2.2. 凝血功能障碍

凝血功能障碍是脓毒症ARDS的第二大核心机制。弥散性血管内凝血(DIC)与微血栓形成构成恶性循环,IL-6等细胞因子水平与凝血参数(如DIC评分)的显著相关性证实了炎症与凝血系统的交互作用[13]。NETs通过激活凝血级联反应(如促进组织因子释放)加速微血栓形成,进一步加重肺缺血和内皮损伤[8] [18]。这种凝血–炎症相互放大的恶性循环被认为是ARDS高死亡率的重要病理基础[19]

2.3. 细胞损伤过程

线粒体功能障碍与细胞凋亡构成了脓毒症ARDS的终末通路。脓毒症通过改变线粒体外膜通透性(MOMP)等途径诱发肺泡上皮细胞凋亡,导致关键的屏障功能丧失[9]。研究发现METTL3等分子通过调控IL-6、TNF-α表达加剧肺炎链球菌诱导的肺泡上皮细胞凋亡[20]。同时,线粒体功能障碍引发的氧化应激和ATP耗竭进一步促进细胞死亡[21] [22]。内皮细胞损伤同样严重,TNF-α通过NF-κB依赖的PANX1通道上调IL-1β分泌,加剧内皮细胞钙内流和凋亡[23]。凝血异常(如DIC)和NETs释放的组蛋白也可直接损伤内皮[24] [25]

综上所述,脓毒症ARDS的病理机制呈现典型的恶性循环特征:细胞因子风暴驱动内皮损伤和NETs释放,后者又加重凝血异常和线粒体功能障碍,最终导致肺泡–毛细血管屏障的结构和功能崩溃[22] [26] [27]。针对这些关键环节(如抗炎治疗、NETs抑制、凝血调节)的干预策略可能是未来治疗的重要方向[28] [29]

3. 危险因素的系统分析

3.1. 宿主相关因素

在宿主相关因素中,基础疾病是重要诱因:慢性肺病(如COPD)作为独立危险因素,与肺泡屏障功能受损和炎症反应增强相关[30];糖尿病患者的免疫功能障碍和微血管病变可加重脓毒症诱导的器官损伤[31] [32];肝硬化患者因免疫功能抑制和凝血异常可能增加风险(但文献未明确提及机制)。免疫功能抑制状态(如化疗、HIV)显著提升真菌(曲霉菌)和病毒(流感、COVID-19)感染致ARDS的风险[33] [34]。遗传易感性方面,虽未直接提及ACE基因多态性,但TNF-α基因启动子多态性可能通过升高TNF-α水平影响炎症反应与预后[35] [36]。高龄(>65岁)因免疫功能下降及合并症增多,与更高SOFA评分、APACHE II评分和死亡率相关[37] [38];男性性别在部分研究中提示风险增加,但机制未明[30];肥胖(BMI > 30)则通过机械性限制通气和促炎状态(如IL-6升高)加剧ARDS [31] [39]

3.2. 病原体相关因素

在病原体相关因素中,病原体类型差异显著:革兰阴性菌(尤其是铜绿假单胞菌和肺炎克雷伯菌)与更高SOFA评分、PCT/IL-6水平及多器官衰竭相关[40]-[43];革兰阳性菌(如金黄色葡萄球菌)感染率较低但可能与混合感染或耐药性相关[44];真菌(如曲霉菌)常见于免疫抑制者,导致更严重氧合障碍(PaO2/FiO2降低)和死亡率;病毒(流感、COVID-19)可直接损伤肺泡上皮并引发过度炎症反应(如IL-6、TNF-α升高) [15] [33]。感染源分析显示,肺炎是主要来源且显著增加ARDS严重度(OR = 2.512) [30],腹腔感染和真菌感染同样列为危险因素。感染灶控制延迟(>12小时)可能加重炎症反应,但具体时间阈值尚不明确[45]

3.3. 临床与实验室指标

在临床与实验室指标方面,初始SOFA评分 ≥ 8和APACHE II > 20与ARDS发生率及死亡率显著相关[37]。炎症标志物中,PCT > 10 ng/mL和IL-6 > 1000 pg/mL提示严重感染及炎症风暴,预示ARDS发展和预后不良[40] [46]。氧合参数中,PaO2/FiO2 ≤ 200即使未达ARDS标准仍是独立危险因素[36] [37],呼吸频率 > 30次/分可作为早期预警指标[47]。凝血功能异常如D-二聚体 > 5 mg/L和血小板持续下降,反映微血栓形成和内皮损伤,与ARDS严重程度相关[47] [48]

3.4. 医源性因素

医源性因素包括液体过负荷(3天内累积正平衡 > 5 L可能加重肺水肿,但量化阈值未明确) [49] [50],过量输液会升高肺毛细血管静水压,加剧已因炎症受损的血管内皮屏障的渗漏,导致富含蛋白的液体涌入肺泡间隙,形成或加重非心源性肺水肿,这种“液体创伤”与脓毒症本身的炎症损伤协同作用,显著增加ARDS的发生风险。输血相关急性肺损伤(TRALI)在脓毒症中风险增加(文献未详细讨论) [49],目前认为其发生与输注的血液中含有抗白细胞抗体(如抗-HNA、抗-HLA)或生物活性脂质等反应性物质有关,这些物质激活肺内中性粒细胞,导致内皮细胞损伤和毛细血管渗漏。机械通气不当如高潮气量(>8 mL/kg)和高平台压(>30 cm H2O)可致呼吸机相关肺损伤[50],过高的潮气量(Vt)和平台压(Pplat)会对肺泡结构产生过度牵拉,造成物理性损伤。脓毒症患者的肺往往已是“婴儿肺”(实变与正常区域交织),更易遭受区域性过度膨胀。遵循**肺保护性通气策略**(低潮气量:6~8 mL/kg理想体重,限制平台压 < 30 cm H2O)是ARDS进展的基石。深度镇静和肌松会导致膈肌功能障碍和肺基底区塌陷,增加肺不张风险,削弱肺部的防御能力。然而,在ARDS早期短程使用神经肌肉阻滞剂又被证明有益,这表明其影响具有双重性,关键在于精准应用,而大剂量去甲肾上腺素(>0.5 μg/kg/min)则间接反映休克严重度及多器官衰竭风险[51]

总结表明,脓毒症相关ARDS危险因素涵盖宿主、病原体、临床及医疗干预多维度。革兰阴性菌感染、肺炎、高SOFA/APACHE II评分、PCT/IL-6显著增高及低氧合指数构成核心危险因素,而高龄、糖尿病、免 疫抑制、机械通气不当等因素进一步叠加风险。故早期识别上述因素对干预及改善预后至关重要[52] [53]

4. 多种危险因素联合可提升预测效能

研究表明,多种危险因素的联合作用会产生显著的协同效应,共同增加脓毒症患者发生ARDS的风险并恶化临床预后[54] [55]。这种协同效应主要体现在四个方面:首先,高龄与基础疾病的叠加作用尤为突出,老年患者合并高血压、糖尿病等慢性病时,其全身炎症反应和内皮损伤更易导致ARDS [56]。其次,感染类型与病原体特性存在显著交互,革兰阴性菌感染(如腹腔感染)通过释放内毒素和激活全身炎症反应,与脓毒症协同加重肺损伤[54]。第三,治疗相关因素的协同作用也不容忽视,液体过负荷与高氧需求(如FiO2 > 0.6)共同增加肺水肿风险,这种效应在合并急性肾损伤时更为显著[55]。最后,代谢紊乱也参与这一复杂网络,高动脉血谷氨酸水平与脓毒症诱导的氧化应激相互作用,加速肺损伤进展[57]

在预测模型方面,研究显示LIPS评分与脓毒症患者的低氧合指数、高乳酸值、APACHE II/SOFA评分共同构成独立危险因素[58]。改良应用中,LIPS与临床特征(如肺部/腹腔感染、真菌感染)结合可显著增强模型预测效能,这提示多因素整合对准确预测脓毒症并发症至关重要。

危险因素联合作用需通过多维度模型评估,而LIPS的改良需结合动态指标和新型生物标志物以提升脓毒症特异性。这些发现强调了在临床实践中的需要:(1) 系统评估危险因素的组合效应;(2) 开发整合临床指标和生物标志物的预测模型;(3) 针对高危患者实施早期干预措施。未来的研究应进一步探索不同危险因素组合的分子机制,并优化多参数预测模型在临床决策中的应用价值。

5. 现有研究的不足

目前关于脓毒症发展为ARDS危险因素的研究存在若干重要局限性。首先,多数研究为单中心回顾性分析(如文献[5] [30]),缺乏多中心前瞻性数据的支持。这种回顾性设计不仅可能引入选择偏倚,还无法动态评估危险因素的时序性影响[30] [52]。虽然文献[59]提到脓毒症与ARDS的交互作用对6个月预后的显著影响(P = 0.039),但大多数研究未能系统分析多因素间的协同或拮抗效应[52] [60]。例如,吸烟与SOFA评分的联合效应仅在创伤或输血相关ARDS中被探讨[61],而在普通脓毒症人群中缺乏充分证据。

其次,现有研究对重要人口学因素的关注不足。文献中未明确提及性别对ARDS发病率的独立影响,仅文献[62]在COVID-19相关ARDS中记录了性别作为基线特征,但未分析其与脓毒症ARDS的关联[62]。其他研究均未将性别差异作为主要分析变量[52]。此外,广泛使用的APACHE II/SOFA评分系统存在普适性问题。虽然这些评分已被多项研究验证为独立危险因素(文献[63]),但其在老年群体中可能低估风险。老年患者因生理储备下降、合并症复杂(如文献[64]),但现有评分系统未针对性调整年龄相关变量(如免疫衰老、多器官功能衰减) [64]。特别值得注意的是,老年患者常合并慢性病(如高血压、糖尿病),这些基础疾病可能与脓毒症协同加重肺损伤(文献[65]),但现有评分系统未能量化此类重要的交互作用[64]

综上所述,未来研究需要重点改进以下方向:(1) 开展多中心前瞻性队列研究以验证危险因素[52] [66];(2) 在分析模型中纳入交互项(如年龄 × 合并症、免疫抑制类型 × 感染源) [59] [60];(3) 开发针对特殊人群(如老年或免疫抑制患者)的改良评分系统,整合动态指标或特异性生物标志物[67]。这些改进将有助于更准确地识别高风险患者,并为个体化干预提供依据。

6. 总结

基于现有研究证据,脓毒症合并ARDS的危险因素可通过三维交互模型系统阐释。该模型整合了宿主因素、病原特性和医源性干预三个关键维度,为临床风险分层和精准干预提供了理论框架[68] [69]。在宿主因素方面,非可干预因素包括高龄、基础疾病(如糖尿病)及遗传易感性(如特定免疫反应基因) [70];而免疫功能状态(如淋巴细胞减少)、代谢紊乱(高乳酸血症)以及APACHE II/SOFA评分反映的器官功能衰竭则属于重要的可干预因素[30] [52]。特别值得注意的是,宿主–病原交互中的先天性免疫应答失调(如C5a介导的炎症级联反应)构成了脓毒症进展为ARDS的核心病理机制[29] [68]。从病原特性维度分析,病原体类型(尤其是肺部/腹部真菌感染或鲍曼不动杆菌感染)和病原体毒力(如革兰阴性菌通过内毒素释放激活TNF-α通路)均显著影响ARDS发生风险及严重程度[30] [71]。医源性干预因素同样至关重要,包括治疗延迟(早期液体复苏和抗生素使用可降低风险) [52] [72]、机械通气参数设置(如个体化PEEP调节) [69] [73]以及免疫调节治疗(如糖皮质激素的合理应用) [69]

针对主要可干预危险因素,临床应采取多维度干预策略:感染控制方面需强化感染源处理及精准抗微生物治疗[30];炎症与代谢管理需着重纠正高乳酸血症和优化氧合;临床监测则应动态评估APACHE III、SOFA评分及血流动力学参数[30] [70]。实施过程中强调多学科协作模式,整合呼吸治疗、感染控制和重症监护团队资源,针对血糖控制、早期活动等可干预因素制定个性化方案[74] [75]

本综述提出的三维联合模型具有重要临床价值:首先系统揭示了宿主–病原体–治疗三者动态联合的复杂性[68] [69];其次为构建基于可干预因素(如感染控制、机械通气参数优化)的风险预警体系提供了理论基础[76] [77];未来研究应致力于将该理论模型转化为临床预测工具,并验证针对性干预措施的有效性。

NOTES

*通讯作者。

参考文献

[1] Jiang, L., Yu, C., Xie, C., Zheng, Y. and Xia, Z. (2025) Enhancing Early Mortality Prediction for Sepsis-Associated Acute Respiratory Distress Syndrome Patients via Optimized Machine Learning Algorithm: Development and Multiple Databases’ Validation of the Safe-Mo. International Journal of Surgery.
https://doi.org/10.1097/js9.0000000000002741
[2] Xu, H., Sheng, S., Luo, W., Xu, X. and Zhang, Z. (2023) Acute Respiratory Distress Syndrome Heterogeneity and the Septic ARDS Subgroup. Frontiers in Immunology, 14, Article ID: 1277161.
https://doi.org/10.3389/fimmu.2023.1277161
[3] Zhang, C., Huang, Q. and He, F. (2022) Correlation of Small Nucleolar RNA Host Gene 16 with Acute Respiratory Distress Syndrome Occurrence and Prognosis in Sepsis Patients. Journal of Clinical Laboratory Analysis, 36, e24516.
https://doi.org/10.1002/jcla.24516
[4] Wang, Y., Zhang, L., Xi, X. and Zhou, J. (2021) The Association between Etiologies and Mortality in Acute Respiratory Distress Syndrome: A Multicenter Observational Cohort Study. Frontiers in Medicine, 8, Article ID: 739596.
https://doi.org/10.3389/fmed.2021.739596
[5] Wang, D., Jia, H., Zheng, X., Xi, X., Zheng, Y. and Li, W. (2024) Attributable Mortality of ARDS among Critically ILL Patients with Sepsis: A Multicenter, Retrospective Cohort Study. BMC Pulmonary Medicine, 24, Article No. 110.
https://doi.org/10.1186/s12890-024-02913-1
[6] Siddiqui, M.A., Pandey, S., Azim, A., Sinha, N. and Siddiqui, M.H. (2020) Metabolomics: An Emerging Potential Approach to Decipher Critical Illnesses. Biophysical Chemistry, 267, Article 106462.
https://doi.org/10.1016/j.bpc.2020.106462
[7] Huang, C., Li, J. and Wei, W. (2024) Clinical Significance of Platelet Mononuclear Cell Aggregates in Patients with Sepsis and Acute Respiratory Distress Syndrome. World Journal of Clinical Cases, 12, 966-972.
https://doi.org/10.12998/wjcc.v12.i5.966
[8] Byrnes, D., Masterson, C.H., Artigas, A. and Laffey, J.G. (2021) Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 42, 20-39.
https://doi.org/10.1055/s-0040-1713422
[9] Gorman, E.A., O’Kane, C.M. and McAuley, D.F. (2022) Acute Respiratory Distress Syndrome in Adults: Diagnosis, Outcomes, Long-Term Sequelae, and Management. The Lancet, 400, 1157-1170.
https://doi.org/10.1016/s0140-6736(22)01439-8
[10] Mane, A. and Isaac, N. (2021) Synopsis of Clinical Acute Respiratory Distress Syndrome (ARDS). In: Wang, Y.X., Ed., Advances in Experimental Medicine and Biology, Springer International Publishing, 323-331.
https://doi.org/10.1007/978-3-030-68748-9_16
[11] Luo, L., Tang, H., Huang, Q., Zhu, J., Jiang, D., Wang, B. and Sun, Y. (2021) Association of Post-Traumatic Acute Respiratory Distress Syn-Drome on Poor Prognosis: A Single-Center Study. Journal of the Pakistan Medical Association, 71, 440-445.
[12] Chen, Y., Qiu, C. and Cai, W. (2022) Identification of Key Immune Genes for Sepsis-Induced ARDS Based on Bioinformatics Analysis. Bioengineered, 13, 697-708.
https://doi.org/10.1080/21655979.2021.2012621
[13] Wang, J., Yang, X., Li, Y., Huang, J., Jiang, J. and Su, N. (2021) Specific Cytokines in the Inflammatory Cytokine Storm of Patients with Covid-19-Associated Acute Respiratory Distress Syndrome and Extrapulmonary Multiple-Organ Dysfunction. Virology Journal, 18, Article No. 117.
https://doi.org/10.1186/s12985-021-01588-y
[14] Khan, M.I., Khan, M.Z., Shin, J.H., Shin, T.S., Lee, Y.B., Kim, M.Y., et al. (2022) Neuroprotective Effects of Green Tea Seed Isolated Saponin Due to the Amelioration of Tauopathy and Alleviation of Neuroinflammation: A Therapeutic Approach to Alzheimer’s Disease. Molecules, 27, Article 2079.
https://doi.org/10.3390/molecules27072079
[15] Li, W., Li, D., Chen, Y., Abudou, H., Wang, H., Cai, J., et al. (2022) Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. Disease Markers, 2022, Article ID: 6362344.
https://doi.org/10.1155/2022/6362344
[16] Gao, W. and Zhang, Y. (2021) Depression of LncRNA MINCR Antagonizes LPS-Evoked Acute Injury and Inflammatory Response via miR-146b-5p and the TRAF6-NFKB Signaling. Molecular Medicine, 27, Article No. 124.
https://doi.org/10.1186/s10020-021-00367-3
[17] Liu, X., Li, T., Chen, H., Yuan, L. and Ao, H. (2024) Role and Intervention of PAD4 in Nets in Acute Respiratory Distress Syndrome. Respiratory Research, 25, Article No. 63.
https://doi.org/10.1186/s12931-024-02676-7
[18] Zhu, S., Yu, Y., Qu, M., Qiu, Z., Zhang, H., Miao, C., et al. (2023) Neutrophil Extracellular Traps Contribute to Immunothrombosis Formation via the Sting Pathway in Sepsis-Associated Lung Injury. Cell Death Discovery, 9, Article No. 315.
https://doi.org/10.1038/s41420-023-01614-8
[19] Zhang, N., Zhang, H., Yu, L. and Fu, Q. (2025) Advances in Anti-Inflammatory Treatment of Sepsis-Associated Acute Respiratory Distress Syndrome. Inflammation Research, 74, Article No. 74.
https://doi.org/10.1007/s00011-025-02043-2
[20] Ma, D., Zhang, H., Wang, X. and Wu, Q. (2024) Mettl3aggravates Cell Damage Induced by Streptococcus pneumoniae via the NEAT1/CTCF/MUC19 Axis. The Kaohsiung Journal of Medical Sciences, 40, 722-731.
https://doi.org/10.1002/kjm2.12843
[21] Yang, Z., Gao, Y., Zhao, L., Lv, X. and Du, Y. (2024) Molecular Mechanisms of Sepsis Attacking the Immune System and Solid Organs. Frontiers in Medicine, 11, Article ID: 1429370.
https://doi.org/10.3389/fmed.2024.1429370
[22] Huang, Q., Le, Y., Li, S. and Bian, Y. (2024) Signaling Pathways and Potential Therapeutic Targets in Acute Respiratory Distress Syndrome (Ards). Respiratory Research, 25, Article No. 30.
https://doi.org/10.1186/s12931-024-02678-5
[23] Sanchez Arias, J.C., Wicki-Stordeur, L.E., Candlish, R.C., van der Slagt, E., Paci, I., Rao, P.P.N., et al. (2020) PANX1 in Inflammation Heats Up: New Mechanistic Insights with Implications for Injury and Infection. Cell Calcium, 90, Article 102253.
https://doi.org/10.1016/j.ceca.2020.102253
[24] Tian, Y., Li, P., Wu, Z., Deng, Q., Pan, B., Stringer, K.A., et al. (2021) Citrullinated Histone H3 Mediates Sepsis-Induced Lung Injury through Activating Caspase-1 Dependent Inflammasome Pathway. Frontiers in Immunology, 12, Article ID: 761345.
https://doi.org/10.3389/fimmu.2021.761345
[25] Zhou, K., Qin, Q. and Lu, J. (2025) Pathophysiological Mechanisms of ARDS: A Narrative Review from Molecular to Organ-Level Perspectives. Respiratory Research, 26, Article No. 54.
https://doi.org/10.1186/s12931-025-03137-5
[26] Kitsiouli, E., Tenopoulou, M., Papadopoulos, S. and Lekka, M.E. (2021) Phospholipases A2 as Biomarkers in Acute Respiratory Distress Syndrome. Biomedical Journal, 44, 663-670.
https://doi.org/10.1016/j.bj.2021.08.005
[27] Gong, H., Chen, Y., Chen, M., Li, J., Zhang, H., Yan, S., et al. (2022) Advanced Development and Mechanism of Sepsis-Related Acute Respiratory Distress Syndrome. Frontiers in Medicine, 9, Article ID: 1043859.
https://doi.org/10.3389/fmed.2022.1043859
[28] Li, Z., Zheng, B., Liu, C., Zhao, X., Zhao, Y., Wang, X., et al. (2023) BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells International, 2023, Article ID: 7072700.
https://doi.org/10.1155/2023/7072700
[29] Zhang, J., Yan, W., Dong, Y., Luo, X., Miao, H., Maimaijuma, T., et al. (2024) Early Identification and Diagnosis, Pathophysiology, and Treatment of Sepsis-Related Acute Lung Injury: A Narrative Review. Journal of Thoracic Disease, 16, 5457-5476.
https://doi.org/10.21037/jtd-24-1191
[30] Shi, Y., Wang, L., Yu, S., Ma, X. and Li, X. (2022) Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Study from a Tertiary Hospital in China. BMC Pulmonary Medicine, 22, Article No. 238.
https://doi.org/10.1186/s12890-022-02015-w
[31] Jiang, W., Shi, H., Deng, X., Hou, W. and Wan, D. (2021) The Incidence of Incision Infections after Lumbar Fusion and the Significance of Dynamically Monitoring Serum Albumin and C-Reactive Protein Levels. Annals of Palliative Medicine, 10, 10870-10877.
https://doi.org/10.21037/apm-21-2512
[32] Shen, W., Liang, X. and Lin, A. (2022) Retrospecrisk Factors of Carbapenem-Resistant Gram-Negative Bacteria Pneumonia and Mortality. Cellular and Molecular Biology, 68, 124-129.
https://doi.org/10.14715/cmb/2022.68.10.20
[33] Xing, Z., Guo, H., Zhen, P., Ao, T. and Hu, M. (2025) Clinical Application of Metagenomic Next-Generation Sequencing in Etiologic Diagnosis of Severe Pneumonia in Adults. Frontiers in Cellular and Infection Microbiology, 15, Article 1561468.
https://doi.org/10.3389/fcimb.2025.1561468
[34] Tang, H., Zhao, Z., Zhang, X., Pan, L., Wu, Q., Wang, M., et al. (2021) Analysis of Pathogens and Risk Factors of Secondary Pulmonary Infection in Patients with COVID-19. Microbial Pathogenesis, 156, Article 104903.
https://doi.org/10.1016/j.micpath.2021.104903
[35] Wei, Q., Chen, X., Chen, X., Yuan, Z. and Wang, C. (2022) Contribution of IL-38 in Lung Immunity during Pseudomonas Aeruginosa-Induced Pneumonia. Shock, 57, 703-713.
https://doi.org/10.1097/shk.0000000000001919
[36] Zeng, S., Cui, S., Li, Y., Yao, Z., Li, Y., Cao, Y., et al. (2025) New Insights on Continuous Renal Replacement Therapy for Acute Respiratory Distress Syndrome: A Systematic Review and Meta‐Analysis. The Clinical Respiratory Journal, 19, e70045.
https://doi.org/10.1111/crj.70045
[37] Gao, J., Zhong, L., Wu, M., Ji, J., Liu, Z., Wang, C., et al. (2021) Risk Factors for Mortality in Critically Ill Patients with COVID-19: A Multicenter Retrospective Case-Control Study. BMC Infectious Diseases, 21, Article No. 602.
https://doi.org/10.1186/s12879-021-06300-7
[38] Liu, Y., Huang, H., Zheng, J., Liu, Z. and Peng, D. (2024) Predictive Role of Platelet and Inflammation Markers for Severe COVID-19 by Propensity Score Matching. Clinical Laboratory, 70.
https://doi.org/10.7754/clin.lab.2023.231027
[39] Qiao, L., Gao, H., You, Y. and Zhu, J. (2025) Analysis of the Distribution Characteristics of Infecting Microorganisms in the Wound Tissue of Patients with Perianal Abscess Combined with Infection and the Influencing Factors of Wound Healing. BMC Gastroenterology, 25, Article No. 258.
https://doi.org/10.1186/s12876-025-03853-8
[40] Deng, L., Wang, G. and Ju, S. (2024) Correlation between Inflammatory Factors, Autophagy Protein Levels, and Infection in Granulation Tissue of Diabetic Foot Ulcer. Immunity, Inflammation and Disease, 12, e1233.
https://doi.org/10.1002/iid3.1233
[41] Liu, T., Li, M., Tang, L., Wang, B., Li, T., Huang, Y., et al. (2024) Epidemiological, Clinical and Microbiological Characteristics of Patients with Biliary Tract Diseases with Positive Bile Culture in a Tertiary Hospital. BMC Infectious Diseases, 24, Article No. 1010.
https://doi.org/10.1186/s12879-024-09799-8
[42] Wu, M., Guo, F., He, X., Zheng, D., Ye, W., Li, S., et al. (2024) Analysis of Distribution and Drug Susceptibility Test Results of Pathogenic Bacteria in Diabetic Foot Ulcers. Diabetes Therapy, 15, 1627-1637.
https://doi.org/10.1007/s13300-024-01601-x
[43] Wu, H., Yuan, E., Li, W., Peng, M., Zhang, Q. and Xie, K. (2022) Microbiological and Clinical Characteristics of Bloodstream Infections in General Intensive Care Unit: A Retrospective Study. Frontiers in Medicine, 9, Article ID: 876207.
https://doi.org/10.3389/fmed.2022.876207
[44] Ding, H., Liu, C., Xu, Y., Wang, F., Luan, M. and Li, F. (2024) Prevalence of Nosocomial Infections and Their Influencing Factors in a Tertiary General Hospital in Qingdao. The Journal of Infection in Developing Countries, 18, 1522-1529.
https://doi.org/10.3855/jidc.19825
[45] Fei, A. and Wang, X. (2023) Identification of Genes as Potential Biomarkers for Sepsis-Related ARDS Using Weighted Gene Co-Expression Network Analysis. Combinatorial Chemistry & High Throughput Screening, 26, 789-800.
https://doi.org/10.2174/1386207325666220509180737
[46] Niu, D., Huang, Q., Yang, F., Tian, W., Li, C., Ding, L., et al. (2021) Serum Biomarkers to Differentiate Gram-Negative, Gram-Positive and Fungal Infection in Febrile Patients. Journal of Medical Microbiology, 70.
https://doi.org/10.1099/jmm.0.001360
[47] Xue, M., Liao, F., Xu, F., Chen, Y., Wang, S., Zhou, Y., et al. (2025) A Retrospective Study to Predict Failure of High-Flow Oxygen Therapy for Acute Hypoxic Respiratory Failure. International Journal of Emergency Medicine, 18, Article No. 98.
https://doi.org/10.1186/s12245-025-00891-7
[48] Wu, D., Wen, T., Li, F., Wanyan, Z., Ma, Z., Ji, P., et al. (2025) The Value of Heparin Binding Protein in Early Identification of Sepsis-Induced Coagulopathy Disease and Prognosis. Clinical Laboratory, 71.
https://doi.org/10.7754/clin.lab.2024.240714
[49] Poli, V., Pui-Yan Ma, V., Di Gioia, M., Broggi, A., Benamar, M., Chen, Q., et al. (2021) Zinc-Dependent Histone Deacetylases Drive Neutrophil Extracellular Trap Formation and Potentiate Local and Systemic Inflammation. iScience, 24, Article 103256.
https://doi.org/10.1016/j.isci.2021.103256
[50] Alshehri, S.S., Minhaji, B.I. and Pasha, M.R. (2022) Hyperleucocytosis as an Unusual Presentation of Hypereosinophilic Pneumonitis with Acute Respiratory Distress Syndrome. SAGE Open Medical Case Reports, 10, 1-5. Https://Doi.Org/10.1177/2050313x221086814
[51] Liao, X., Chen, Y., Liu, M., Liao, Q., Lin, J., Lin, H., et al. (2024) Comparison of Oxiris and Conventional Continuous Renal Replacement Therapy in Managing Severe Abdominal Infections: Impact on Septic Shock Mortality. Shock, 62, 529-538.
https://doi.org/10.1097/shk.0000000000002437
[52] Yin, R., Yang, X. and Yao, Y. (2024) Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Meta-Analysis. Heliyon, 10, e37336.
https://doi.org/10.1016/j.heliyon.2024.e37336
[53] Xu, C., Zheng, L., Jiang, Y. and Jin, L. (2023) A Prediction Model for Predicting the Risk of Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Cohort Study. BMC Pulmonary Medicine, 23, Article No. 78.
https://doi.org/10.1186/s12890-023-02365-z
[54] Ma, Y., Zhu, C., Ma, X., Zhou, B. and Dong, M. (2024) Risk Factors of Acute Respiratory Distress Syndrome in Sepsis Caused by Intra-Abdominal Infections: A Retrospective Study. Surgery, 175, 1432-1438.
https://doi.org/10.1016/j.surg.2024.01.020
[55] Bilodeaux, J., Farooqi, H., Osovskaya, M., Sosa, A., Wallbank, A., Knudsen, L., et al. (2023) Differential Effects of Two-Hit Models of Acute and Ventilator-Induced Lung Injury on Lung Structure, Function, and Inflammation. Frontiers in Physiology, 14, Article ID: 1217183.
https://doi.org/10.3389/fphys.2023.1217183
[56] Hall, S., Faridi, S., Trivedi, P., Sultana, S., Ray, B., Myers, T., et al. (2022) Selective CB2 Receptor Agonist, HU-308, Reduces Systemic Inflammation in Endotoxin Model of Pneumonia-Induced Acute Lung Injury. International Journal of Molecular Sciences, 23, Article 15857.
https://doi.org/10.3390/ijms232415857
[57] Qiu, Y., Zhan, F., Cheng, H., Shao, M., Li, X., Bao, X., et al. (2025) Targeting Glutamate Transport: A Breakthrough in Mitigating Sepsis Lung Injury. Free Radical Biology and Medicine, 235, 190-199.
https://doi.org/10.1016/j.freeradbiomed.2025.04.043
[58] Yang, J., Wei, A., Wu, B. and Deng, J. (2024) Predictive Value of Combination of Lung Injury Prediction Score and Receptor for Advanced Glycation End-Products for the Occurrence of Acute Respiratory Distress Syndrome. Experimental and Therapeutic Medicine, 27, Article No. 4.
https://doi.org/10.3892/etm.2023.12291
[59] Okazaki, T., Kawakami, D., Fujitani, S., Shinohara, N., Kawakita, K. and Kuroda, Y. (2022) Potential Interaction between Sepsis and Acute Respiratory Distress Syndrome and Effect on the 6-Month Clinical Outcomes: A Preliminary Secondary Analysis of a Prospective Observational Study. Journal of Intensive Care Medicine, 38, 60-69.
https://doi.org/10.1177/08850666221107559
[60] Lin, X., Liu, Y., Kong, L., Jin, B., Genna, B., Zhang, S., et al. (2025) Comorbidity-Related Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Systematic Review and Meta-Analysis. Advances in Clinical and Experimental Medicine, 34, 1255-1265.
https://doi.org/10.17219/acem/191594
[61] Moazed, F., Hendrickson, C., Jauregui, A., Gotts, J., Conroy, A., Delucchi, K., et al. (2022) Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine, 205, 927-935.
https://doi.org/10.1164/rccm.202105-1098oc
[62] Vadi, S., Suthar, D., Sanwalka, N., Sanghani, G. and Ravi, R. (2023) Incidence and Outcomes Following Pulmonary Barotrauma in COVID-19 Ventilated and Non-Ventilated Patients with Acute Respiratory Failure: A Retrospective Study. Lung India, 40, 242-247.
https://doi.org/10.4103/lungindia.lungindia_645_21
[63] Fu, X., Zhang, Y., Wang, J., Liu, Y. and Wei, B. (2024) Granulocyte Colony-Stimulating Factor Combined with SOFA Score for Mortality Prediction in Patients with Sepsis. Medicine, 103, e40926.
https://doi.org/10.1097/md.0000000000040926
[64] Brown, R., McKelvey, M.C., Ryan, S., Creane, S., Linden, D., Kidney, J.C., et al. (2020) The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Frontiers in Medicine, 7, Article ID: 589553.
https://doi.org/10.3389/fmed.2020.589553
[65] Wang, Q., Chen, Y., Huang, P., Su, D., Gao, F., Fu, X., et al. (2022) The Clinical Characteristics and Outcome of Elderly Patients with Acute Pancreatitis. Pancreas, 51, 1284-1291.
https://doi.org/10.1097/mpa.0000000000002192
[66] Mayow, A.H., Ahmad, F., Afzal, M.S., Khokhar, M.U., Rafique, D., Vallamchetla, S.K., et al. (2023) A Systematic Review and Meta-Analysis of Independent Predictors for Acute Respiratory Distress Syndrome in Patients Presenting with Sepsis. Cureus, 15, e37055.
https://doi.org/10.7759/cureus.37055
[67] Liu, M., Duan, Y., Zhang, Y., Yang, J., Wei, B. and Wang, J. (2024) Prognostic Value of Macrophage Inflammatory Protein-3alpha (MIP3-Alpha) and Severity Scores in Elderly Patients with Sepsis. Journal of Inflammation Research, 17, 1503-1509.
https://doi.org/10.2147/jir.s447142
[68] Schuurman, A.R., Sloot, P.M.A., Wiersinga, W.J. and van der Poll, T. (2023) Embracing Complexity in Sepsis. Critical Care, 27, Article No. 102.
https://doi.org/10.1186/s13054-023-04374-0
[69] Košútová, P., Nemcová, N., Kolomazník, M., Čalkovská, A. and Mikolka, P. (2025) A Novel Rabbit Model of Severe ARDS: Synergistic Effects of Acid Aspiration and Harmful Mechanical Ventilation. Translational Research, 281, 43-54.
https://doi.org/10.1016/j.trsl.2025.05.009
[70] Ge, M., Xu, Y., Hu, X., He, Y., Xu, S., He, T., et al. (2024) Genetic Causality between Modifiable Risk Factors and the Risk of Rheumatoid Arthritis: Evidence from Mendelian Randomization. International Journal of Rheumatic Diseases, 27, e15315.
https://doi.org/10.1111/1756-185x.15315
[71] Li, N., Wang, H. and Zhu, L. (2025) Impact of Pathogen Status on Sepsis-Associated Acute Respiratory Distress Syndrome Outcomes. Medical Science Monitor, 31, e947681.
https://doi.org/10.12659/msm.947681
[72] Espat, N.N., Lee, P., Baum, S., Chin, B., Zagales, R., Yates, Z., et al. (2025) Optimizing Early Surgical Sepsis Management in the Emergency Department: Risk Factors, Early Detection, and Management: A Scoping Review. The American Journal of Emergency Medicine, 95, 133-139.
https://doi.org/10.1016/j.ajem.2025.05.048
[73] Bai, Y., Xia, J., Huang, X., Chen, S. and Zhan, Q. (2022) Using Machine Learning for the Early Prediction of Sepsis-Associated ARDS in the ICU and Identification of Clinical Phenotypes with Differential Responses to Treatment. Frontiers in Physiology, 13, Article ID: 1050849.
https://doi.org/10.3389/fphys.2022.1050849
[74] Kalfa, D., Karamichalis, J.M., Singh, S.K., Jiang, P., Anderson, B.R., Vargas, D., et al. (2023) Operative Mortality after Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery Mortality Category 1 to 3 Procedures: Deficiencies and Opportunities for Quality Improvement. The Journal of Thoracic and Cardiovascular Surgery, 166, 325-333.E3.
https://doi.org/10.1016/j.jtcvs.2022.11.022
[75] Alassaf, A., Gharaibeh, L., Odeh, R., Ibrahim, S. and Ajlouni, K. (2022) Predictors of Glycemic Control in Children and Adolescents with Type 1 Diabetes at 12 Months after Diagnosis. Pediatric Diabetes, 23, 729-735.
https://doi.org/10.1111/pedi.13342
[76] Olier, I., Ortega-Martorell, S., Pieroni, M. and Lip, G.Y.H. (2021) How Machine Learning Is Impacting Research in Atrial Fibrillation: Implications for Risk Prediction and Future Management. Cardiovascular Research, 117, 1700-1717.
https://doi.org/10.1093/cvr/cvab169
[77] Zhou, K., Qin, L., Chen, Y., Gao, H., Ling, Y., Qin, Q., et al. (2025) A Machine Learning Model for Predicting Acute Respiratory Distress Syndrome Risk in Patients with Sepsis Using Circulating Immune Cell Parameters: A Retrospective Study. BMC Infectious Diseases, 25, Article No. 568.
https://doi.org/10.1186/s12879-025-10974-8