[1]
|
Jiang, L., Yu, C., Xie, C., Zheng, Y. and Xia, Z. (2025) Enhancing Early Mortality Prediction for Sepsis-Associated Acute Respiratory Distress Syndrome Patients via Optimized Machine Learning Algorithm: Development and Multiple Databases’ Validation of the Safe-Mo. International Journal of Surgery. https://doi.org/10.1097/js9.0000000000002741
|
[2]
|
Xu, H., Sheng, S., Luo, W., Xu, X. and Zhang, Z. (2023) Acute Respiratory Distress Syndrome Heterogeneity and the Septic ARDS Subgroup. Frontiers in Immunology, 14, Article ID: 1277161. https://doi.org/10.3389/fimmu.2023.1277161
|
[3]
|
Zhang, C., Huang, Q. and He, F. (2022) Correlation of Small Nucleolar RNA Host Gene 16 with Acute Respiratory Distress Syndrome Occurrence and Prognosis in Sepsis Patients. Journal of Clinical Laboratory Analysis, 36, e24516. https://doi.org/10.1002/jcla.24516
|
[4]
|
Wang, Y., Zhang, L., Xi, X. and Zhou, J. (2021) The Association between Etiologies and Mortality in Acute Respiratory Distress Syndrome: A Multicenter Observational Cohort Study. Frontiers in Medicine, 8, Article ID: 739596. https://doi.org/10.3389/fmed.2021.739596
|
[5]
|
Wang, D., Jia, H., Zheng, X., Xi, X., Zheng, Y. and Li, W. (2024) Attributable Mortality of ARDS among Critically ILL Patients with Sepsis: A Multicenter, Retrospective Cohort Study. BMC Pulmonary Medicine, 24, Article No. 110. https://doi.org/10.1186/s12890-024-02913-1
|
[6]
|
Siddiqui, M.A., Pandey, S., Azim, A., Sinha, N. and Siddiqui, M.H. (2020) Metabolomics: An Emerging Potential Approach to Decipher Critical Illnesses. Biophysical Chemistry, 267, Article 106462. https://doi.org/10.1016/j.bpc.2020.106462
|
[7]
|
Huang, C., Li, J. and Wei, W. (2024) Clinical Significance of Platelet Mononuclear Cell Aggregates in Patients with Sepsis and Acute Respiratory Distress Syndrome. World Journal of Clinical Cases, 12, 966-972. https://doi.org/10.12998/wjcc.v12.i5.966
|
[8]
|
Byrnes, D., Masterson, C.H., Artigas, A. and Laffey, J.G. (2021) Mesenchymal Stem/Stromal Cells Therapy for Sepsis and Acute Respiratory Distress Syndrome. Seminars in Respiratory and Critical Care Medicine, 42, 20-39. https://doi.org/10.1055/s-0040-1713422
|
[9]
|
Gorman, E.A., O’Kane, C.M. and McAuley, D.F. (2022) Acute Respiratory Distress Syndrome in Adults: Diagnosis, Outcomes, Long-Term Sequelae, and Management. The Lancet, 400, 1157-1170. https://doi.org/10.1016/s0140-6736(22)01439-8
|
[10]
|
Mane, A. and Isaac, N. (2021) Synopsis of Clinical Acute Respiratory Distress Syndrome (ARDS). In: Wang, Y.X., Ed., Advances in Experimental Medicine and Biology, Springer International Publishing, 323-331. https://doi.org/10.1007/978-3-030-68748-9_16
|
[11]
|
Luo, L., Tang, H., Huang, Q., Zhu, J., Jiang, D., Wang, B. and Sun, Y. (2021) Association of Post-Traumatic Acute Respiratory Distress Syn-Drome on Poor Prognosis: A Single-Center Study. Journal of the Pakistan Medical Association, 71, 440-445.
|
[12]
|
Chen, Y., Qiu, C. and Cai, W. (2022) Identification of Key Immune Genes for Sepsis-Induced ARDS Based on Bioinformatics Analysis. Bioengineered, 13, 697-708. https://doi.org/10.1080/21655979.2021.2012621
|
[13]
|
Wang, J., Yang, X., Li, Y., Huang, J., Jiang, J. and Su, N. (2021) Specific Cytokines in the Inflammatory Cytokine Storm of Patients with Covid-19-Associated Acute Respiratory Distress Syndrome and Extrapulmonary Multiple-Organ Dysfunction. Virology Journal, 18, Article No. 117. https://doi.org/10.1186/s12985-021-01588-y
|
[14]
|
Khan, M.I., Khan, M.Z., Shin, J.H., Shin, T.S., Lee, Y.B., Kim, M.Y., et al. (2022) Neuroprotective Effects of Green Tea Seed Isolated Saponin Due to the Amelioration of Tauopathy and Alleviation of Neuroinflammation: A Therapeutic Approach to Alzheimer’s Disease. Molecules, 27, Article 2079. https://doi.org/10.3390/molecules27072079
|
[15]
|
Li, W., Li, D., Chen, Y., Abudou, H., Wang, H., Cai, J., et al. (2022) Classic Signaling Pathways in Alveolar Injury and Repair Involved in Sepsis-Induced ALI/ARDS: New Research Progress and Prospect. Disease Markers, 2022, Article ID: 6362344. https://doi.org/10.1155/2022/6362344
|
[16]
|
Gao, W. and Zhang, Y. (2021) Depression of LncRNA MINCR Antagonizes LPS-Evoked Acute Injury and Inflammatory Response via miR-146b-5p and the TRAF6-NFKB Signaling. Molecular Medicine, 27, Article No. 124. https://doi.org/10.1186/s10020-021-00367-3
|
[17]
|
Liu, X., Li, T., Chen, H., Yuan, L. and Ao, H. (2024) Role and Intervention of PAD4 in Nets in Acute Respiratory Distress Syndrome. Respiratory Research, 25, Article No. 63. https://doi.org/10.1186/s12931-024-02676-7
|
[18]
|
Zhu, S., Yu, Y., Qu, M., Qiu, Z., Zhang, H., Miao, C., et al. (2023) Neutrophil Extracellular Traps Contribute to Immunothrombosis Formation via the Sting Pathway in Sepsis-Associated Lung Injury. Cell Death Discovery, 9, Article No. 315. https://doi.org/10.1038/s41420-023-01614-8
|
[19]
|
Zhang, N., Zhang, H., Yu, L. and Fu, Q. (2025) Advances in Anti-Inflammatory Treatment of Sepsis-Associated Acute Respiratory Distress Syndrome. Inflammation Research, 74, Article No. 74. https://doi.org/10.1007/s00011-025-02043-2
|
[20]
|
Ma, D., Zhang, H., Wang, X. and Wu, Q. (2024) Mettl3aggravates Cell Damage Induced by Streptococcus pneumoniae via the NEAT1/CTCF/MUC19 Axis. The Kaohsiung Journal of Medical Sciences, 40, 722-731. https://doi.org/10.1002/kjm2.12843
|
[21]
|
Yang, Z., Gao, Y., Zhao, L., Lv, X. and Du, Y. (2024) Molecular Mechanisms of Sepsis Attacking the Immune System and Solid Organs. Frontiers in Medicine, 11, Article ID: 1429370. https://doi.org/10.3389/fmed.2024.1429370
|
[22]
|
Huang, Q., Le, Y., Li, S. and Bian, Y. (2024) Signaling Pathways and Potential Therapeutic Targets in Acute Respiratory Distress Syndrome (Ards). Respiratory Research, 25, Article No. 30. https://doi.org/10.1186/s12931-024-02678-5
|
[23]
|
Sanchez Arias, J.C., Wicki-Stordeur, L.E., Candlish, R.C., van der Slagt, E., Paci, I., Rao, P.P.N., et al. (2020) PANX1 in Inflammation Heats Up: New Mechanistic Insights with Implications for Injury and Infection. Cell Calcium, 90, Article 102253. https://doi.org/10.1016/j.ceca.2020.102253
|
[24]
|
Tian, Y., Li, P., Wu, Z., Deng, Q., Pan, B., Stringer, K.A., et al. (2021) Citrullinated Histone H3 Mediates Sepsis-Induced Lung Injury through Activating Caspase-1 Dependent Inflammasome Pathway. Frontiers in Immunology, 12, Article ID: 761345. https://doi.org/10.3389/fimmu.2021.761345
|
[25]
|
Zhou, K., Qin, Q. and Lu, J. (2025) Pathophysiological Mechanisms of ARDS: A Narrative Review from Molecular to Organ-Level Perspectives. Respiratory Research, 26, Article No. 54. https://doi.org/10.1186/s12931-025-03137-5
|
[26]
|
Kitsiouli, E., Tenopoulou, M., Papadopoulos, S. and Lekka, M.E. (2021) Phospholipases A2 as Biomarkers in Acute Respiratory Distress Syndrome. Biomedical Journal, 44, 663-670. https://doi.org/10.1016/j.bj.2021.08.005
|
[27]
|
Gong, H., Chen, Y., Chen, M., Li, J., Zhang, H., Yan, S., et al. (2022) Advanced Development and Mechanism of Sepsis-Related Acute Respiratory Distress Syndrome. Frontiers in Medicine, 9, Article ID: 1043859. https://doi.org/10.3389/fmed.2022.1043859
|
[28]
|
Li, Z., Zheng, B., Liu, C., Zhao, X., Zhao, Y., Wang, X., et al. (2023) BMSC-Derived Exosomes Alleviate Sepsis-Associated Acute Respiratory Distress Syndrome by Activating the Nrf2 Pathway to Reverse Mitochondrial Dysfunction. Stem Cells International, 2023, Article ID: 7072700. https://doi.org/10.1155/2023/7072700
|
[29]
|
Zhang, J., Yan, W., Dong, Y., Luo, X., Miao, H., Maimaijuma, T., et al. (2024) Early Identification and Diagnosis, Pathophysiology, and Treatment of Sepsis-Related Acute Lung Injury: A Narrative Review. Journal of Thoracic Disease, 16, 5457-5476. https://doi.org/10.21037/jtd-24-1191
|
[30]
|
Shi, Y., Wang, L., Yu, S., Ma, X. and Li, X. (2022) Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Study from a Tertiary Hospital in China. BMC Pulmonary Medicine, 22, Article No. 238. https://doi.org/10.1186/s12890-022-02015-w
|
[31]
|
Jiang, W., Shi, H., Deng, X., Hou, W. and Wan, D. (2021) The Incidence of Incision Infections after Lumbar Fusion and the Significance of Dynamically Monitoring Serum Albumin and C-Reactive Protein Levels. Annals of Palliative Medicine, 10, 10870-10877. https://doi.org/10.21037/apm-21-2512
|
[32]
|
Shen, W., Liang, X. and Lin, A. (2022) Retrospecrisk Factors of Carbapenem-Resistant Gram-Negative Bacteria Pneumonia and Mortality. Cellular and Molecular Biology, 68, 124-129. https://doi.org/10.14715/cmb/2022.68.10.20
|
[33]
|
Xing, Z., Guo, H., Zhen, P., Ao, T. and Hu, M. (2025) Clinical Application of Metagenomic Next-Generation Sequencing in Etiologic Diagnosis of Severe Pneumonia in Adults. Frontiers in Cellular and Infection Microbiology, 15, Article 1561468. https://doi.org/10.3389/fcimb.2025.1561468
|
[34]
|
Tang, H., Zhao, Z., Zhang, X., Pan, L., Wu, Q., Wang, M., et al. (2021) Analysis of Pathogens and Risk Factors of Secondary Pulmonary Infection in Patients with COVID-19. Microbial Pathogenesis, 156, Article 104903. https://doi.org/10.1016/j.micpath.2021.104903
|
[35]
|
Wei, Q., Chen, X., Chen, X., Yuan, Z. and Wang, C. (2022) Contribution of IL-38 in Lung Immunity during Pseudomonas Aeruginosa-Induced Pneumonia. Shock, 57, 703-713. https://doi.org/10.1097/shk.0000000000001919
|
[36]
|
Zeng, S., Cui, S., Li, Y., Yao, Z., Li, Y., Cao, Y., et al. (2025) New Insights on Continuous Renal Replacement Therapy for Acute Respiratory Distress Syndrome: A Systematic Review and Meta‐Analysis. The Clinical Respiratory Journal, 19, e70045. https://doi.org/10.1111/crj.70045
|
[37]
|
Gao, J., Zhong, L., Wu, M., Ji, J., Liu, Z., Wang, C., et al. (2021) Risk Factors for Mortality in Critically Ill Patients with COVID-19: A Multicenter Retrospective Case-Control Study. BMC Infectious Diseases, 21, Article No. 602. https://doi.org/10.1186/s12879-021-06300-7
|
[38]
|
Liu, Y., Huang, H., Zheng, J., Liu, Z. and Peng, D. (2024) Predictive Role of Platelet and Inflammation Markers for Severe COVID-19 by Propensity Score Matching. Clinical Laboratory, 70. https://doi.org/10.7754/clin.lab.2023.231027
|
[39]
|
Qiao, L., Gao, H., You, Y. and Zhu, J. (2025) Analysis of the Distribution Characteristics of Infecting Microorganisms in the Wound Tissue of Patients with Perianal Abscess Combined with Infection and the Influencing Factors of Wound Healing. BMC Gastroenterology, 25, Article No. 258. https://doi.org/10.1186/s12876-025-03853-8
|
[40]
|
Deng, L., Wang, G. and Ju, S. (2024) Correlation between Inflammatory Factors, Autophagy Protein Levels, and Infection in Granulation Tissue of Diabetic Foot Ulcer. Immunity, Inflammation and Disease, 12, e1233. https://doi.org/10.1002/iid3.1233
|
[41]
|
Liu, T., Li, M., Tang, L., Wang, B., Li, T., Huang, Y., et al. (2024) Epidemiological, Clinical and Microbiological Characteristics of Patients with Biliary Tract Diseases with Positive Bile Culture in a Tertiary Hospital. BMC Infectious Diseases, 24, Article No. 1010. https://doi.org/10.1186/s12879-024-09799-8
|
[42]
|
Wu, M., Guo, F., He, X., Zheng, D., Ye, W., Li, S., et al. (2024) Analysis of Distribution and Drug Susceptibility Test Results of Pathogenic Bacteria in Diabetic Foot Ulcers. Diabetes Therapy, 15, 1627-1637. https://doi.org/10.1007/s13300-024-01601-x
|
[43]
|
Wu, H., Yuan, E., Li, W., Peng, M., Zhang, Q. and Xie, K. (2022) Microbiological and Clinical Characteristics of Bloodstream Infections in General Intensive Care Unit: A Retrospective Study. Frontiers in Medicine, 9, Article ID: 876207. https://doi.org/10.3389/fmed.2022.876207
|
[44]
|
Ding, H., Liu, C., Xu, Y., Wang, F., Luan, M. and Li, F. (2024) Prevalence of Nosocomial Infections and Their Influencing Factors in a Tertiary General Hospital in Qingdao. The Journal of Infection in Developing Countries, 18, 1522-1529. https://doi.org/10.3855/jidc.19825
|
[45]
|
Fei, A. and Wang, X. (2023) Identification of Genes as Potential Biomarkers for Sepsis-Related ARDS Using Weighted Gene Co-Expression Network Analysis. Combinatorial Chemistry & High Throughput Screening, 26, 789-800. https://doi.org/10.2174/1386207325666220509180737
|
[46]
|
Niu, D., Huang, Q., Yang, F., Tian, W., Li, C., Ding, L., et al. (2021) Serum Biomarkers to Differentiate Gram-Negative, Gram-Positive and Fungal Infection in Febrile Patients. Journal of Medical Microbiology, 70. https://doi.org/10.1099/jmm.0.001360
|
[47]
|
Xue, M., Liao, F., Xu, F., Chen, Y., Wang, S., Zhou, Y., et al. (2025) A Retrospective Study to Predict Failure of High-Flow Oxygen Therapy for Acute Hypoxic Respiratory Failure. International Journal of Emergency Medicine, 18, Article No. 98. https://doi.org/10.1186/s12245-025-00891-7
|
[48]
|
Wu, D., Wen, T., Li, F., Wanyan, Z., Ma, Z., Ji, P., et al. (2025) The Value of Heparin Binding Protein in Early Identification of Sepsis-Induced Coagulopathy Disease and Prognosis. Clinical Laboratory, 71. https://doi.org/10.7754/clin.lab.2024.240714
|
[49]
|
Poli, V., Pui-Yan Ma, V., Di Gioia, M., Broggi, A., Benamar, M., Chen, Q., et al. (2021) Zinc-Dependent Histone Deacetylases Drive Neutrophil Extracellular Trap Formation and Potentiate Local and Systemic Inflammation. iScience, 24, Article 103256. https://doi.org/10.1016/j.isci.2021.103256
|
[50]
|
Alshehri, S.S., Minhaji, B.I. and Pasha, M.R. (2022) Hyperleucocytosis as an Unusual Presentation of Hypereosinophilic Pneumonitis with Acute Respiratory Distress Syndrome. SAGE Open Medical Case Reports, 10, 1-5. Https://Doi.Org/10.1177/2050313x221086814
|
[51]
|
Liao, X., Chen, Y., Liu, M., Liao, Q., Lin, J., Lin, H., et al. (2024) Comparison of Oxiris and Conventional Continuous Renal Replacement Therapy in Managing Severe Abdominal Infections: Impact on Septic Shock Mortality. Shock, 62, 529-538. https://doi.org/10.1097/shk.0000000000002437
|
[52]
|
Yin, R., Yang, X. and Yao, Y. (2024) Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Meta-Analysis. Heliyon, 10, e37336. https://doi.org/10.1016/j.heliyon.2024.e37336
|
[53]
|
Xu, C., Zheng, L., Jiang, Y. and Jin, L. (2023) A Prediction Model for Predicting the Risk of Acute Respiratory Distress Syndrome in Sepsis Patients: A Retrospective Cohort Study. BMC Pulmonary Medicine, 23, Article No. 78. https://doi.org/10.1186/s12890-023-02365-z
|
[54]
|
Ma, Y., Zhu, C., Ma, X., Zhou, B. and Dong, M. (2024) Risk Factors of Acute Respiratory Distress Syndrome in Sepsis Caused by Intra-Abdominal Infections: A Retrospective Study. Surgery, 175, 1432-1438. https://doi.org/10.1016/j.surg.2024.01.020
|
[55]
|
Bilodeaux, J., Farooqi, H., Osovskaya, M., Sosa, A., Wallbank, A., Knudsen, L., et al. (2023) Differential Effects of Two-Hit Models of Acute and Ventilator-Induced Lung Injury on Lung Structure, Function, and Inflammation. Frontiers in Physiology, 14, Article ID: 1217183. https://doi.org/10.3389/fphys.2023.1217183
|
[56]
|
Hall, S., Faridi, S., Trivedi, P., Sultana, S., Ray, B., Myers, T., et al. (2022) Selective CB2 Receptor Agonist, HU-308, Reduces Systemic Inflammation in Endotoxin Model of Pneumonia-Induced Acute Lung Injury. International Journal of Molecular Sciences, 23, Article 15857. https://doi.org/10.3390/ijms232415857
|
[57]
|
Qiu, Y., Zhan, F., Cheng, H., Shao, M., Li, X., Bao, X., et al. (2025) Targeting Glutamate Transport: A Breakthrough in Mitigating Sepsis Lung Injury. Free Radical Biology and Medicine, 235, 190-199. https://doi.org/10.1016/j.freeradbiomed.2025.04.043
|
[58]
|
Yang, J., Wei, A., Wu, B. and Deng, J. (2024) Predictive Value of Combination of Lung Injury Prediction Score and Receptor for Advanced Glycation End-Products for the Occurrence of Acute Respiratory Distress Syndrome. Experimental and Therapeutic Medicine, 27, Article No. 4. https://doi.org/10.3892/etm.2023.12291
|
[59]
|
Okazaki, T., Kawakami, D., Fujitani, S., Shinohara, N., Kawakita, K. and Kuroda, Y. (2022) Potential Interaction between Sepsis and Acute Respiratory Distress Syndrome and Effect on the 6-Month Clinical Outcomes: A Preliminary Secondary Analysis of a Prospective Observational Study. Journal of Intensive Care Medicine, 38, 60-69. https://doi.org/10.1177/08850666221107559
|
[60]
|
Lin, X., Liu, Y., Kong, L., Jin, B., Genna, B., Zhang, S., et al. (2025) Comorbidity-Related Risk Factors for Acute Respiratory Distress Syndrome in Sepsis Patients: A Systematic Review and Meta-Analysis. Advances in Clinical and Experimental Medicine, 34, 1255-1265. https://doi.org/10.17219/acem/191594
|
[61]
|
Moazed, F., Hendrickson, C., Jauregui, A., Gotts, J., Conroy, A., Delucchi, K., et al. (2022) Cigarette Smoke Exposure and Acute Respiratory Distress Syndrome in Sepsis: Epidemiology, Clinical Features, and Biologic Markers. American Journal of Respiratory and Critical Care Medicine, 205, 927-935. https://doi.org/10.1164/rccm.202105-1098oc
|
[62]
|
Vadi, S., Suthar, D., Sanwalka, N., Sanghani, G. and Ravi, R. (2023) Incidence and Outcomes Following Pulmonary Barotrauma in COVID-19 Ventilated and Non-Ventilated Patients with Acute Respiratory Failure: A Retrospective Study. Lung India, 40, 242-247. https://doi.org/10.4103/lungindia.lungindia_645_21
|
[63]
|
Fu, X., Zhang, Y., Wang, J., Liu, Y. and Wei, B. (2024) Granulocyte Colony-Stimulating Factor Combined with SOFA Score for Mortality Prediction in Patients with Sepsis. Medicine, 103, e40926. https://doi.org/10.1097/md.0000000000040926
|
[64]
|
Brown, R., McKelvey, M.C., Ryan, S., Creane, S., Linden, D., Kidney, J.C., et al. (2020) The Impact of Aging in Acute Respiratory Distress Syndrome: A Clinical and Mechanistic Overview. Frontiers in Medicine, 7, Article ID: 589553. https://doi.org/10.3389/fmed.2020.589553
|
[65]
|
Wang, Q., Chen, Y., Huang, P., Su, D., Gao, F., Fu, X., et al. (2022) The Clinical Characteristics and Outcome of Elderly Patients with Acute Pancreatitis. Pancreas, 51, 1284-1291. https://doi.org/10.1097/mpa.0000000000002192
|
[66]
|
Mayow, A.H., Ahmad, F., Afzal, M.S., Khokhar, M.U., Rafique, D., Vallamchetla, S.K., et al. (2023) A Systematic Review and Meta-Analysis of Independent Predictors for Acute Respiratory Distress Syndrome in Patients Presenting with Sepsis. Cureus, 15, e37055. https://doi.org/10.7759/cureus.37055
|
[67]
|
Liu, M., Duan, Y., Zhang, Y., Yang, J., Wei, B. and Wang, J. (2024) Prognostic Value of Macrophage Inflammatory Protein-3alpha (MIP3-Alpha) and Severity Scores in Elderly Patients with Sepsis. Journal of Inflammation Research, 17, 1503-1509. https://doi.org/10.2147/jir.s447142
|
[68]
|
Schuurman, A.R., Sloot, P.M.A., Wiersinga, W.J. and van der Poll, T. (2023) Embracing Complexity in Sepsis. Critical Care, 27, Article No. 102. https://doi.org/10.1186/s13054-023-04374-0
|
[69]
|
Košútová, P., Nemcová, N., Kolomazník, M., Čalkovská, A. and Mikolka, P. (2025) A Novel Rabbit Model of Severe ARDS: Synergistic Effects of Acid Aspiration and Harmful Mechanical Ventilation. Translational Research, 281, 43-54. https://doi.org/10.1016/j.trsl.2025.05.009
|
[70]
|
Ge, M., Xu, Y., Hu, X., He, Y., Xu, S., He, T., et al. (2024) Genetic Causality between Modifiable Risk Factors and the Risk of Rheumatoid Arthritis: Evidence from Mendelian Randomization. International Journal of Rheumatic Diseases, 27, e15315. https://doi.org/10.1111/1756-185x.15315
|
[71]
|
Li, N., Wang, H. and Zhu, L. (2025) Impact of Pathogen Status on Sepsis-Associated Acute Respiratory Distress Syndrome Outcomes. Medical Science Monitor, 31, e947681. https://doi.org/10.12659/msm.947681
|
[72]
|
Espat, N.N., Lee, P., Baum, S., Chin, B., Zagales, R., Yates, Z., et al. (2025) Optimizing Early Surgical Sepsis Management in the Emergency Department: Risk Factors, Early Detection, and Management: A Scoping Review. The American Journal of Emergency Medicine, 95, 133-139. https://doi.org/10.1016/j.ajem.2025.05.048
|
[73]
|
Bai, Y., Xia, J., Huang, X., Chen, S. and Zhan, Q. (2022) Using Machine Learning for the Early Prediction of Sepsis-Associated ARDS in the ICU and Identification of Clinical Phenotypes with Differential Responses to Treatment. Frontiers in Physiology, 13, Article ID: 1050849. https://doi.org/10.3389/fphys.2022.1050849
|
[74]
|
Kalfa, D., Karamichalis, J.M., Singh, S.K., Jiang, P., Anderson, B.R., Vargas, D., et al. (2023) Operative Mortality after Society of Thoracic Surgeons-European Association for Cardio-Thoracic Surgery Mortality Category 1 to 3 Procedures: Deficiencies and Opportunities for Quality Improvement. The Journal of Thoracic and Cardiovascular Surgery, 166, 325-333.E3. https://doi.org/10.1016/j.jtcvs.2022.11.022
|
[75]
|
Alassaf, A., Gharaibeh, L., Odeh, R., Ibrahim, S. and Ajlouni, K. (2022) Predictors of Glycemic Control in Children and Adolescents with Type 1 Diabetes at 12 Months after Diagnosis. Pediatric Diabetes, 23, 729-735. https://doi.org/10.1111/pedi.13342
|
[76]
|
Olier, I., Ortega-Martorell, S., Pieroni, M. and Lip, G.Y.H. (2021) How Machine Learning Is Impacting Research in Atrial Fibrillation: Implications for Risk Prediction and Future Management. Cardiovascular Research, 117, 1700-1717. https://doi.org/10.1093/cvr/cvab169
|
[77]
|
Zhou, K., Qin, L., Chen, Y., Gao, H., Ling, Y., Qin, Q., et al. (2025) A Machine Learning Model for Predicting Acute Respiratory Distress Syndrome Risk in Patients with Sepsis Using Circulating Immune Cell Parameters: A Retrospective Study. BMC Infectious Diseases, 25, Article No. 568. https://doi.org/10.1186/s12879-025-10974-8
|