[1]
|
李宏锋. 地铁轨道波浪形磨耗检测系统研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2014.
|
[2]
|
Hopkins, B.M. and Taheri, S. (2010) Track Health Monitoring Using Wavelets. ASME 2010 Rail Transportation Division Fall Technical Conference, Roanoke, 12-13 October 2010, 9-15. https://doi.org/10.1115/rtdf2010-42004
|
[3]
|
周志青, 胡茑庆, 黄玉, 等. 基于支持向量机的轨道波磨检测方法研究[C]//中国振动工程学会. 第十三届全国振动理论及应用学术会议论文集. 2019: 193-197.
|
[4]
|
Li, J. and Shi, H. (2020) Rail Corrugation Diagnosis of High-Speed Railway Based on Dynamic Responses of the Vehicle. 2020 Prognostics and Health Management Conference (PHM-Besançon), Besancon, 4-7 May 2020, 148-152. https://doi.org/10.1109/phm-besancon49106.2020.00031
|
[5]
|
Pang, G., Shen, C., Cao, L. and Hengel, A.V.D. (2021) Deep Learning for Anomaly Detection. ACM Computing Surveys, 54, 1-38. https://doi.org/10.1145/3439950
|
[6]
|
段雪源, 付钰, 王坤. 基于VAE-WGAN的多维时间序列异常检测方法[J]. 通信学报, 2022, 43(3): 1-13.
|
[7]
|
Aggarwal, C.C. (2017) Outlier Analysis. Springer.
|
[8]
|
陈红松, 刘新蕊, 陶子美, 等. 基于深度学习的时序数据异常检测研究综述[J]. 信息网络安全, 2025, 25(3): 364-391.
|
[9]
|
石静雯, 侯立群. 基于一维卷积注意力门控循环网络和迁移学习的轴承故障诊断[J]. 振动与冲击, 2023, 42(3): 159-164+173.
|
[10]
|
李雪艳, 苏博, 陈铭, 等. 基于双向LSTM自动编码器的新型无监督深度学习结构损伤识别[J/OL]. 计算力学学报, 1-8. http://kns.cnki.net/kcms/detail/21.1373.o3.20250319.1610.004.html, 2025-07-04.
|
[11]
|
刘同干, 杨洪武, 陆晔, 等. 基于1D-2D-CNN-BiLSTM滚动轴承故障诊断[J]. 工业控制计算机, 2025, 38(5): 46-48.
|
[12]
|
Zamanzadeh Darban, Z., Webb, G.I., Pan, S., Aggarwal, C. and Salehi, M. (2024) Deep Learning for Time Series Anomaly Detection: A Survey. ACM Computing Surveys, 57, 1-42. https://doi.org/10.1145/3691338
|
[13]
|
尹春勇, 赵峰. 基于双层注意力和深度自编码器的时间序列异常检测模型[J]. 计算机工程与科学, 2024, 46(5): 826-835.
|
[14]
|
陈世伟, 李静, 玄佳兴, 等. LSTM-GAN: 融合GAN和Bi-LSTM的无监督时间序列异常检测[J]. 小型微型计算机系统, 2024, 45(1): 123-131.
|
[15]
|
蔡美玲, 汪家喜, 刘金平, 等. 基于Transformer GAN架构的多变量时间序列异常检测[J]. 中国科学: 信息科学, 2023, 53(5): 972-992.
|
[16]
|
Larese, D.C., Cerrada, A.B., Tomei, G.D., Guerrero-López, A., Olmos, P.M. and García, M.J.G. (2025) Transformer Vibration Forecasting for Advancing Rail Safety and Maintenance 4.0. arXiv: 2501.11730.
|
[17]
|
Gui, J., Chen, T., Zhang, J., Cao, Q., Sun, Z., Luo, H., et al. (2024) A Survey on Self-Supervised Learning: Algorithms, Applications, and Future Trends. IEEE Transactions on Pattern Analysis and Machine Intelligence, 46, 9052-9071. https://doi.org/10.1109/tpami.2024.3415112
|
[18]
|
Shen, L., Li, Z. and Kwok, J.T. (2020) Timeseries Anomaly Detection Using Temporal Hierarchical One-Class Network. Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS ‘20), Vancouver, 6-12 December 2020, 13016-13026.
|
[19]
|
Zerveas, G., Jayaraman, S., Patel, D., Bhamidipaty, A. and Eickhoff, C. (2021) A Transformer-Based Framework for Multivariate Time Series Representation Learning. Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, Singapore, 14-18 August 2021, 2114-2124. https://doi.org/10.1145/3447548.3467401
|
[20]
|
Li, K. and Lee, J. (2024) Self-Supervised Contrastive Representation Learning for Time-Series Classification. 2024 21st International SoC Design Conference (ISOCC), Sapporo, 19-22 August 2024, 1-2. https://doi.org/10.1109/isocc62682.2024.10762741
|
[21]
|
Audibert, J., Michiardi, P., Guyard, F., Marti, S. and Zuluaga, M.A. (2020) USAD: UniSuper-Vised Anomaly Detection on Multivariate Time Series. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, California, 6-10 July 2020, 3395-3404. https://doi.org/10.1145/3394486.3403392
|
[22]
|
Xu, J., Wu, H., Wang, J. and Long, M. (2021) Anomaly Transformer: Time Series Anomaly Detection with Association Discrepancy. arXiv.2110.02642.
|
[23]
|
Chen, M., Zhai, W., Zhu, S., Xu, L. and Sun, Y. (2021) Vibration-Based Damage Detection of Rail Fastener Using Fully Convolutional Networks. Vehicle System Dynamics, 60, 2191-2210. https://doi.org/10.1080/00423114.2021.1896010
|
[24]
|
Xie, Q., Tao, G., He, B. and Wen, Z. (2022) Rail Corrugation Detection Using One-Dimensional Convolution Neural Network and Data-Driven Method. Measurement, 200, Article 111624. https://doi.org/10.1016/j.measurement.2022.111624
|
[25]
|
Xie, Q., Tao, G., Lo, S.M., Yang, X. and Wen, Z. (2023) A Data-Driven Convolutional Regression Scheme for On-Board and Quantitative Detection of Rail Corrugation Roughness. Wear, 524, Article 204770. https://doi.org/10.1016/j.wear.2023.204770
|
[26]
|
彭佳宁, 池茂儒, 梁树林, 等. 基于特征融合变维卷积神经网络的高铁轮轨不良状态识别方法[J/OL]. 铁道标准设计, 1-13. https://doi.org/10.13238/j.issn.1004-2954.202311120001, 2025-07-05.
|
[27]
|
徐文龙. 高铁轨道动检数据配准及异常检测算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2021.
|
[28]
|
Yuan, Z., Zhu, S., Chang, C., Yuan, X., Zhang, Q. and Zhai, W. (2021) An Unsupervised Method Based on Convolutional Variational Auto-Encoder and Anomaly Detection Algorithms for Light Rail Squat Localization. Construction and Building Materials, 313, Article 125563. https://doi.org/10.1016/j.conbuildmat.2021.125563
|
[29]
|
王思博. 基于Transformer的高铁动检数据异常检测与分类算法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2023.
|
[30]
|
杨森, 刘金朝, 刘钰, 等. 基于Anomaly Transformer的轨道几何不平顺异常检测方法[J]. 铁道学报, 2025, 47(6): 122-131.
|
[31]
|
Origlia, A., Di Martino, S. and Battista, E. (2023) Rail Anomalies Detection: A Comparative Analysis of Three Self-Supervised Models on Real Data. Computers in Industry, 148, Article 103909. https://doi.org/10.1016/j.compind.2023.103909
|
[32]
|
马超智, 王阳, 张淑芳, 等. 基于车厢内部噪声的地铁钢轨波磨自监督快速识别方法[J]. 振动与冲击, 2025, 44(6): 282-290.
|
[33]
|
郑宁. 基于多源数据的高速铁路轨道几何异常状态检测方法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2021.
|
[34]
|
赵原野. 基于生成对抗网络的高铁轨道异常状态检测与分类方法研究[D]: [硕士学位论文]. 北京: 北京交通大学, 2022.
|