[1]
|
Revercomb, L., Hanmandlu, A., Wareing, N., Akkanti, B. and Karmouty-Quintana, H. (2021) Mechanisms of Pulmonary Hypertension in Acute Respiratory Distress Syndrome (ARDS). Frontiers in Molecular Biosciences, 7, Article 624093. https://doi.org/10.3389/fmolb.2020.624093
|
[2]
|
Ji, M., Zhu, L., Chen, M., Wang, Y., Qiu, W. and Zhang, N. (2024) Predictive Value of Mnutric Score for Chronic Critical Illness in Patients of Sepsis Complicated with Ards. Technology and Health Care, 33, 831-837. https://doi.org/10.1177/09287329241296430
|
[3]
|
Cusack, R., Bos, L.D., Povoa, P. and Martin-Loeches, I. (2023) Endothelial Dysfunction Triggers Acute Respiratory Distress Syndrome in Patients with Sepsis: A Narrative Review. Frontiers in Medicine, 10, Article 120387. https://doi.org/10.3389/fmed.2023.1203827
|
[4]
|
Luo, L., Zhuang, X., Fu, L., Dong, Z., Yi, S., Wang, K., et al. (2024) The Role of the Interplay between Macrophage Glycolytic Reprogramming and NLRP3 Inflammasome Activation in Acute Lung Injury/Acute Respiratory Distress Syndrome. Clinical and Translational Medicine, 14, e70098. https://doi.org/10.1002/ctm2.70098
|
[5]
|
Huang, Q., Le, Y., Li, S. and Bian, Y. (2024) Signaling Pathways and Potential Therapeutic Targets in Acute Respiratory Distress Syndrome (ARDS). Respiratory Research, 25, Article No. 30. https://doi.org/10.1186/s12931-024-02678-5
|
[6]
|
Zhou, K., Qin, Q. and Lu, J. (2025) Pathophysiological Mechanisms of ARDS: A Narrative Review from Molecular to Organ-Level Perspectives. Respiratory Research, 26, Article No. 54. https://doi.org/10.1186/s12931-025-03137-5
|
[7]
|
Russo, C., Evans, A., Sullivan, C., Wands, K., Hudson, A. and Bedocs, P. (2024) Bronchoalveolar Lavage and Oleic Acid Two-Hit Model for Inducing Acute Respiratory Distress Syndrome in Swine Models. Military Medicine, 189, e2439-e2446. https://doi.org/10.1093/milmed/usae191
|
[8]
|
Livingstone, S.A., Wildi, K.S., Dalton, H.J., Usman, A., Ki, K.K., Passmore, M.R., et al. (2021) Coagulation Dysfunction in Acute Respiratory Distress Syndrome and Its Potential Impact in Inflammatory Subphenotypes. Frontiers in Medicine, 8, Article 723217. https://doi.org/10.3389/fmed.2021.723217
|
[9]
|
Bavuso, M., Miller, N., Sill, J.M., Dobrian, A. and Colunga Biancatelli, R.M.L. (2024) Extracellular Vesicles in Acute Respiratory Distress Syndrome: Understanding Protective and Harmful Signaling for the Development of New Therapeutics. Histology and Histopathology, 39, 131-144.
|
[10]
|
Xie, R., Tan, D., Liu, B., Xiao, G., Gong, F., Zhang, Q., et al. (2025) Acute Respiratory Distress Syndrome (ARDS): From Mechanistic Insights to Therapeutic Strategies. MedComm, 6, e70074. https://doi.org/10.1002/mco2.70074
|
[11]
|
Yehya, N., Fazelinia, H., Lawrence, G.G., Spruce, L.A., Mai, M.V., Worthen, G.S., et al. (2021) Plasma Nucleosomes Are Associated with Mortality in Pediatric Acute Respiratory Distress Syndrome. Critical Care Medicine, 49, 1149-1158. https://doi.org/10.1097/ccm.0000000000004923
|
[12]
|
Ma, S., Li, C., Gao, Z., Xie, J., Qiu, H., Yang, Y., et al. (2023) Effects of Intravenous Sivelestat Sodium on Prevention of Acute Respiratory Distress Syndrome in Patients with Sepsis: Study Protocol for a Double-Blind Multicentre Randomised Controlled Trial. BMJ Open, 13, e074756. https://doi.org/10.1136/bmjopen-2023-074756
|
[13]
|
Zhang, X., Hu, H., Li, Z., Zhang, P., Pan, L., Wang, L., et al. (2025) Population Pharmacokinetics of Sivelestat in Chinese Patients with Severe Pneumonia. Fundamental & Clinical Pharmacology, 39, e70001. https://doi.org/10.1111/fcp.70001
|
[14]
|
Wu, T., Wang, T., Jiang, J., Tang, Y., Zhang, L., Jiang, Z., et al. (2025) Effect of Neutrophil Elastase Inhibitor (Sivelestat Sodium) on Oxygenation in Patients with Sepsis-Induced Acute Respiratory Distress Syndrome. Journal of Inflammation Research, 18, 4449-4458. https://doi.org/10.2147/jir.s506549
|
[15]
|
Zeng, W., Song, Y., Wang, R., He, R. and Wang, T. (2023) Neutrophil Elastase: From Mechanisms to Therapeutic Potential. Journal of Pharmaceutical Analysis, 13, 355-366. https://doi.org/10.1016/j.jpha.2022.12.003
|
[16]
|
Zhou, Y., Wang, H., Liu, A., Pu, Z., Ji, Q., Xu, J., et al. (2024) Sivelestat Improves Acute Lung Injury by Inhibiting PI3K/Akt/mTOR Signaling Pathway. PLOS ONE, 19, e0302721. https://doi.org/10.1371/journal.pone.0302721
|
[17]
|
Zhang, R., Gao, X., Hu, F., Chen, Q., Lei, Z., Yang, Y., et al. (2022) Myocardial Protective Effect of Sivelestat Sodium in Rat Models with Sepsis-Induced Myocarditis. Journal of Thoracic Disease, 14, 4003-4011. https://doi.org/10.21037/jtd-22-1309
|
[18]
|
Geng, H., Zhang, H., Cheng, L. and Dong, S. (2024) Sivelestat Ameliorates Sepsis-Induced Myocardial Dysfunction by Activating the PI3K/Akt/mTOR Signaling Pathway. International Immunopharmacology, 128, Article ID: 111466. https://doi.org/10.1016/j.intimp.2023.111466
|
[19]
|
Liu, Y., Xin, Y., Yuan, M., Liu, Y., Song, Y., Shen, L., et al. (2025) Sivelestat Sodium Protects against Renal Ischemia/Reperfusion Injury by Reduction of Nets Formation. Archives of Biochemistry and Biophysics, 765, Article ID: 110318. https://doi.org/10.1016/j.abb.2025.110318
|
[20]
|
Wang, J., Wu, Y., Mao, M., Bing, H., Sun, L., Xu, W., et al. (2024) Sivelestat Sodium Alleviates Ischemia-Reperfusion-Induced Acute Kidney Injury via Suppressing TLR4/Myd88/NF-κB Signaling Pathway in Mice. Drug Design, Development and Therapy, 18, 4449-4458. https://doi.org/10.2147/dddt.s480148
|
[21]
|
Zhou, Y., Li, X., Chen, H., Zhong, X. and Ren, H. (2022) Efficacy and Safety of Sivelestat Sodium for the Treatment of Inflammatory Response in Acute Stanford Type A Aortic Dissection: A Retrospective Cohort Study. Journal of Thoracic Disease, 14, 3975-3982. https://doi.org/10.21037/jtd-22-1220
|
[22]
|
Che, X., Hu, W., Zhang, Z., Wang, L., Xu, Z. and Wang, F. (2024) Efficacy Analysis and Prognostic Impact of Sivelestat Sodium in Coronavirus Disease 2019-Related Acute Respiratory Distress Syndrome. Pharmaceuticals, 17, Article 368. https://doi.org/10.3390/ph17030368
|
[23]
|
Zhu, W., Ou, Y., Wang, C., An, R., Lai, J., Shen, Y., et al. (2024) A Neutrophil Elastase Inhibitor, Sivelestat, Attenuates Sepsis-Induced Acute Kidney Injury by Inhibiting Oxidative Stress. Heliyon, 10, e29366. https://doi.org/10.1016/j.heliyon.2024.e29366
|
[24]
|
Sun, J., Li, J., Deng, Y., Yin, X., Huangfu, X., Ye, Z., et al. (2024) The Beneficial Effects of Neutrophil Elastase Inhibitor on Gastrointestinal Dysfunction in Sepsis. Clinical and Translational Science, 17, e13829. https://doi.org/10.1111/cts.13829
|
[25]
|
Tang, Y., Fan, Z., Li, J., Pan, H., Su, W., Matniyaz, Y., et al. (2024) Sivelestat in Patients at a High Risk of Postoperative Acute Lung Injury after Scheduled Cardiac Surgery: A Prospective Cohort Study. Journal of Inflammation Research, 17, 591-601. https://doi.org/10.2147/jir.s442208
|
[26]
|
Yang, S., Sun, Q., Yuan, X., Wang, J., Wang, H., Hu, W., et al. (2025) Effect of Prone Position on Ventilation-Perfusion Matching in Patients with Moderate to Severe ARDS with Different Clinical Phenotypes. Respiratory Research, 26, Article No. 70. https://doi.org/10.1186/s12931-025-03154-4
|
[27]
|
Dos Santos Rocha, A., Diaper, J., Balogh, A.L., Marti, C., Grosgurin, O., Habre, W., et al. (2022) Effect of Body Position on the Redistribution of Regional Lung Aeration during Invasive and Non-Invasive Ventilation of COVID-19 Patients. Scientific Reports, 12, Article No. 11085. https://doi.org/10.1038/s41598-022-15122-9
|
[28]
|
Fossali, T., Pavlovsky, B., Ottolina, D., Colombo, R., Basile, M.C., Castelli, A., et al. (2022) Effects of Prone Position on Lung Recruitment and Ventilation-Perfusion Matching in Patients with COVID-19 Acute Respiratory Distress Syndrome: A Combined CT Scan/Electrical Impedance Tomography Study. Critical Care Medicine, 50, 723-732. https://doi.org/10.1097/ccm.0000000000005450
|
[29]
|
Théry, G., Scemama, A., Roblin, E., Caplan, M., Mourvillier, B. and Goury, A. (2024) Impact of Prone Position on Dead-Space Fraction in COVID-19 Related Acute Respiratory Distress Syndrome. BMC Pulmonary Medicine, 24, Article No. 17. https://doi.org/10.1186/s12890-024-02845-w
|
[30]
|
Dardeir, A., Marudhai, S., Patel, M., Ghani, M.R. and Busa, V. (2020) Factors Influencing Prone Positioning in Treating Acute Respiratory Distress Syndrome and the Effect on Mortality Rate. Cureus, 12, e10767. https://doi.org/10.7759/cureus.10767
|
[31]
|
Paul, V., Patel, S., Royse, M., Odish, M., Malhotra, A. and Koenig, S. (2020) Proning in Non-Intubated (PINI) in Times of COVID-19: Case Series and a Review. Journal of Intensive Care Medicine, 35, 818-824. https://doi.org/10.1177/0885066620934801
|
[32]
|
Firstiogusran, A.M.F., Yoshida, T., Hashimoto, H., Iwata, H. and Fujino, Y. (2022) Positive End-Expiratory Pressure and Prone Position Alter the Capacity of Force Generation from Diaphragm in Acute Respiratory Distress Syndrome: An Animal Experiment. BMC Anesthesiology, 22, Article No. 373. https://doi.org/10.1186/s12871-022-01921-0
|
[33]
|
Karlis, G., Markantonaki, D., Kakavas, S., Bakali, D., Katsagani, G., Katsarou, T., et al. (2023) Prone Position Ventilation in Severe ARDS Due to COVID-19: Comparison between Prolonged and Intermittent Strategies. Journal of Clinical Medicine, 12, Article 3526. https://doi.org/10.3390/jcm12103526
|
[34]
|
Hafner, S., Lepper, P.M., Muellenbach, R.M., Wrigge, H., Moerer, O., Spieth, P., et al. (2024) [Prone Positioning for Acute Respiratory Distress Syndrome in Adults: Update on the Physiological Effects, Indications and Implementation]. Die Anaesthesiologie, 73, 556-568. https://doi.org/10.1007/s00101-024-01439-9
|
[35]
|
Langer, T., Brioni, M., Guzzardella, A., Carlesso, E., Cabrini, L., Castelli, G., et al. (2021) Prone Position in Intubated, Mechanically Ventilated Patients with COVID-19: A Multi-Centric Study of More than 1000 Patients. Critical Care, 25, Article No. 128. https://doi.org/10.1186/s13054-021-03552-2
|
[36]
|
Wells, C., Zhang, Z., Huelskamp, S., Hughes, E., Aguila, D., Sevillano, M., et al. (2021) Prone Team: A Large-Scale Prone Position Initiative During COVID-19 Pandemic. JONA: The Journal of Nursing Administration, 51, E13-E17. https://doi.org/10.1097/nna.0000000000001003
|
[37]
|
Marcos, G.N., Daniel Mauricio, V.R., Lillana, P.A., Maria, R.A., Griscelda, H.M., Iván Armando, O.P., et al. (2023) Hemodialysis Vascular Access in Prone Position for Critically Ill Patients with Ards. The Journal of Vascular Access, 25, 976-980. https://doi.org/10.1177/11297298231157106
|
[38]
|
Chen, X., Zhou, Y., Zhou, X., Su, P. and Yi, J. (2023) Knowledge, Attitudes, and Practice Related to the Prone Positioning of Patients among Intensive Care Unit Nurses Working in covid‐19 Units: A Cross‐sectional Study in China. Nursing in Critical Care, 28, 967-975. https://doi.org/10.1111/nicc.12908
|
[39]
|
Bai, Y., He, F., Yu, Y. and Li, J. (2024) Application of Prone Position Ventilation in Ventilation Strategies for Patients with Covid-19. Technology and Health Care, 32, 1835-1846. https://doi.org/10.3233/thc-230874
|
[40]
|
Lu, H., Zhang, P., Liu, X., Jin, L. and Zhu, H. (2021) Effect of Prone Position Ventilation on Right Heart Function in Patients with Acute Respiratory Distress Syndrome. The Clinical Respiratory Journal, 15, 1229-1238. https://doi.org/10.1111/crj.13431
|
[41]
|
Yue, W., Ai, X., Li, Y. and Ye, H. (2024) Assessing the Impact of Prone Positioning on Mortality and Adverse Events among Patients with Acute Respiratory Distress Syndrome: A Meta-Analysis. Alternative Therapies in Health and Medicine, 30, 76-81.
|
[42]
|
Chang, K., Leu, S., Hu, H., Chan, M., Liang, S., Yang, K., et al. (2025) Journal of the Formosan Medical Association. https://doi.org/10.1016/j.jfma.2025.06.020
|
[43]
|
Zhang, Y., Zhou, W. and Ma, J. (2024) The Effects of Prone Position Ventilation on Patients with Acute Respiratory Distress Syndrome after Cardiac Surgery. Perfusion. https://doi.org/10.1177/02676591241228972
|
[44]
|
de Jongh, M.C., Bax, M., Ayan, K. and Akin, S. (2024) Proning the Extracorporeal Membrane Oxygenation Plus Impella: A Case Report. European Heart Journal—Case Reports, 8, ytae165. https://doi.org/10.1093/ehjcr/ytae165
|
[45]
|
Qin, W., Mao, L., Shen, Y. and Zhao, L. (2024) Prone Position in the Mechanical Ventilation of Acute Respiratory Distress Syndrome Children: A Systematic Review and Meta-analysis. Frontiers in Pediatrics, 12, Article 1293453. https://doi.org/10.3389/fped.2024.1293453
|
[46]
|
Huang, C., Tsai, Y. and Lin, C. (2021) The Prone Position Ventilation (PPV) as an Approach in Pregnancy with Acute Respiratory Distress Syndrome (ARDS). 60, 574-576. https://doi.org/10.1016/j.tjog.2021.03.036
|
[47]
|
Xia, W., Yang, C., Chen, Z., Ouyang, C., Ouyang, G. and Li, Q. (2022) Clinical Evaluation of Prone Position Ventilation in the Treatment of Acute Respiratory Distress Syndrome Induced by Sepsis. World Journal of Clinical Cases, 10, 5577-5585. https://doi.org/10.12998/wjcc.v10.i17.5577
|
[48]
|
Ren, J., Deng, G., Li, R., Jin, X., Liu, J., Li, J., et al. (2024) Possible Pharmacological Targets and Mechanisms of Sivelestat in Protecting Acute Lung Injury. Computers in Biology and Medicine, 170, Article ID: 108080. https://doi.org/10.1016/j.compbiomed.2024.108080
|
[49]
|
Qian, J., Liu, K., Zhong, C., Xian, L. and Hu, Z. (2024) Sivelestat Sodium Alleviated Sepsis-Induced Acute Lung Injury by Inhibiting TGF-β/Smad Signaling Pathways through Upregulating MicroRNA-744-5p. Journal of Thoracic Disease, 16, 6616-6633. https://doi.org/10.21037/jtd-24-65
|
[50]
|
Gao, X., Zhang, R., Lei, Z., Guo, X., Yang, Y., Tian, J., et al. (2021) Efficacy, Safety, and Pharmacoeconomics of Sivelestat Sodium in the Treatment of Septic Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Annals of Palliative Medicine, 10, 11910-11917. https://doi.org/10.21037/apm-21-3164
|
[51]
|
Fujishima, S. (2023) Guideline-Based Management of Acute Respiratory Failure and Acute Respiratory Distress Syndrome. Journal of Intensive Care, 11, Article No. 10. https://doi.org/10.1186/s40560-023-00658-3
|
[52]
|
Uno, M., Hongo, T., Kobayashi, S. and Tamura, T. (2021) A Multidrug Therapy for Hydrocarbon Aspiration with Acute Respiratory Distress Syndrome after Exposure to Oral Benzine Intake: A Case Report. Cureus, 13, e19693. https://doi.org/10.7759/cureus.19693
|
[53]
|
Xu, J., Zhang, C., Wu, K., Qian, Y. and Hu, W. (2024) A Comparative Analysis of Sivelestat Sodium Hydrate and Ulinastatin Combination Therapy in the Treatment of Sepsis with Acute Respiratory Distress Syndrome. BMC Pulmonary Medicine, 24, Article No. 283. https://doi.org/10.1186/s12890-024-03083-w
|
[54]
|
Matera, M.G., Rogliani, P., Ora, J., Calzetta, L. and Cazzola, M. (2023) A Comprehensive Overview of Investigational Elastase Inhibitors for the Treatment of Acute Respiratory Distress Syndrome. Expert Opinion on Investigational Drugs, 32, 793-802. https://doi.org/10.1080/13543784.2023.2263366
|
[55]
|
Qadri, S.K., Ng, P., Toh, T.S.W., Loh, S.W., Tan, H.L., Lin, C.B., et al. (2020) Critically Ill Patients with COVID-19: A Narrative Review on Prone Position. Pulmonary Therapy, 6, 233-246. https://doi.org/10.1007/s41030-020-00135-4
|
[56]
|
Wang, Y., Wang, M., Zhang, H., Wang, Y., Du, Y., Guo, Z., et al. (2022) Sivelestat Improves Clinical Outcomes and Decreases Ventilator-Associated Lung Injury in Children with Acute Respiratory Distress Syndrome: A Retrospective Cohort Study. Translational Pediatrics, 11, 1671-1681. https://doi.org/10.21037/tp-22-441
|