[1]
|
Zhao, Y., Huang, Z., Zhai, Y., Shi, Y., Du, C., Zhai, J., et al. (2021) Polylysine-Bilirubin Conjugates Maintain Functional Islets and Promote M2 Macrophage Polarization. Acta Biomaterialia, 122, 172-185. https://doi.org/10.1016/j.actbio.2020.12.047
|
[2]
|
Shan, L., Fan, W., Wang, W., Tang, W., Yang, Z., Wang, Z., et al. (2019) Organosilica-Based Hollow Mesoporous Bilirubin Nanoparticles for Antioxidation-Activated Self-Protection and Tumor-Specific Deoxygenation-Driven Synergistic Therapy. ACS Nano, 13, 8903-8916. https://doi.org/10.1021/acsnano.9b02477
|
[3]
|
Wei, Z.H., Yannan, S., Yuan, Y.Z., et al. (2021) Hyaluronic Acid Coated Bilirubin Nanoparticles Attenuate Ischemia Reperfusion-Induced Acute Kidney Injury. Journal of Controlled Release, 334, 275-289.
|
[4]
|
Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N. and Ames, B.N. (1987) Bilirubin Is an Antioxidant of Possible Physiological Importance. Science, 235, 1043-1046. https://doi.org/10.1126/science.3029864
|
[5]
|
Oroojalian, F., Charbgoo, F., Hashemi, M., Amani, A., Yazdian-Robati, R., Mokhtarzadeh, A., et al. (2020) Recent Advances in Nanotechnology-Based Drug Delivery Systems for the Kidney. Journal of Controlled Release, 321, 442-462. https://doi.org/10.1016/j.jconrel.2020.02.027
|
[6]
|
Yao, Q., Kou, L., Tu, Y. and Zhu, L. (2018) MMP-Responsive ‘Smart’ Drug Delivery and Tumor Targeting. Trends in Pharmacological Sciences, 39, 766-781. https://doi.org/10.1016/j.tips.2018.06.003
|
[7]
|
马宇轩, 于威, 朱吕明, 等. 刺激响应性聚肽纳米材料及其肿瘤药物递送中的应用[J]. 纳米技术, 2021, 11(3): 184-190.
|
[8]
|
Ding, Y., Wang, C., Ma, Y., Zhu, L., Lu, B., Wang, Y., et al. (2022) PH/ROS Dual-Responsive Supramolecular Polypeptide Prodrug Nanomedicine Based on Host-Guest Recognition for Cancer Therapy. Acta Biomaterialia, 143, 381-391. https://doi.org/10.1016/j.actbio.2022.03.004
|
[9]
|
Chen, P., Huang, P., Chen, J., Shi, Q., Zhu, Y., Chen, Y., et al. (2022) A Self-Delivery Chimeric Peptide for High Efficient Cell Membrane-Targeting Low-Temperature Photothermal/photodynamic Combinational Therapy and Metastasis Suppression of Tumor. Biomaterials, 286, Article ID: 121593. https://doi.org/10.1016/j.biomaterials.2022.121593
|
[10]
|
Lee, Y., Kim, H., Kang, S., Lee, J., Park, J. and Jon, S. (2016) Bilirubin Nanoparticles as a Nanomedicine for Anti‐Inflammation Therapy. Angewandte Chemie International Edition, 55, 7460-7463. https://doi.org/10.1002/anie.201602525
|
[11]
|
Xie, Y., Zheng, L., Chen, T. and Ding, Y. (2025) Hypoxia-Responsive Bilirubin Supramolecular Nanoprodrugs for Targeted Photothermal-Chemotherapy. Chemical Communications, 61, 3512-3515. https://doi.org/10.1039/d4cc06433j
|
[12]
|
Yao, Q., Lan, Q., Jiang, X., Du, C., Zhai, Y., Shen, X., et al. (2020) Bioinspired Biliverdin/Silk Fibroin Hydrogel for Antiglioma Photothermal Therapy and Wound Healing. Theranostics, 10, 11719-11736. https://doi.org/10.7150/thno.47682
|
[13]
|
Xing, R., Zou, Q., Yuan, C., Zhao, L., Chang, R. and Yan, X. (2019) Self‐Assembling Endogenous Biliverdin as a Versatile Near‐Infrared Photothermal Nanoagent for Cancer Theranostics. Advanced Materials, 31, Article ID: 1900822. https://doi.org/10.1002/adma.201900822
|
[14]
|
Xie, H., Yang, M., He, X., Zhan, Z., Jiang, H., Ma, Y., et al. (2023) Polydopamine‐Modified 2D Iron (II) Immobilized Mnps3 Nanosheets for Multimodal Imaging‐guided Cancer Synergistic Photothermal‐Chemodynamic Therapy. Advanced Science, 11, Article ID: 2306494. https://doi.org/10.1002/advs.202306494
|
[15]
|
Wang, M., Zhang, Z., Li, Q., Liu, R., Li, J. and Wang, X. (2024) Multifunctional Nanoplatform with Near-Infrared Triggered Nitric-Oxide Release for Enhanced Tumor Ferroptosis. Journal of Nanobiotechnology, 22, Article No. 656. https://doi.org/10.1186/s12951-024-02942-2
|
[16]
|
Zhu, X., Zhang, S., Cao, Y., Ge, X., Huang, Y., Mao, F., et al. (2023) Black Phosphorus Nanosheets-Based Tumor Microenvironment Responsive Multifunctional Nanosystem for Highly Efficient Photo-/Sono-Synergistic Therapy of Non-Hodgkin Lymphoma. Chinese Chemical Letters, 34, Article ID: 108234. https://doi.org/10.1016/j.cclet.2023.108234
|
[17]
|
Zhang, J., Zhang, K., Hao, Y., Yang, H., Wang, J., Zhang, Y., et al. (2023) Polydopamine Nanomotors Loaded Indocyanine Green and Ferric Ion for Photothermal and Photodynamic Synergistic Therapy of Tumor. Journal of Colloid and Interface Science, 633, 679-690. https://doi.org/10.1016/j.jcis.2022.11.099
|
[18]
|
Wang, X., Li, Z., Ding, Y., Wang, K., Xing, Z., Sun, X., et al. (2020) Enhanced Photothermal-Photodynamic Therapy for Glioma Based on Near-Infrared Dye Functionalized Fe3O4 Superparticles. Chemical Engineering Journal, 381, Article ID: 122693. https://doi.org/10.1016/j.cej.2019.122693
|
[19]
|
Liu, S., Ren, Z., Yan, M., Ye, W. and Hu, Y. (2025) Strategies to Enhance the Penetration of Nanomedicine in Solid Tumors. Biomaterials, 321, Article ID: 123315. https://doi.org/10.1016/j.biomaterials.2025.123315
|
[20]
|
Ling, T., Huang, X., Xie, Y., Zheng, L., Ding, Y., Du, C., et al. (2025) A Dendritic Drug-Drug Conjugate Self-Assembled Hypoxia-Responsive Supramolecular Nanoparticle for Combination Therapy. Journal of Materials Chemistry B, 13, 1961-1968. https://doi.org/10.1039/d4tb02400a
|
[21]
|
Zhu, J., Zhang, Y., Li, Z., Bao, X., Zhou, Y., Ma, B., et al. (2023) Tumor-Microenvironment-Responsive Poly-Prodrug Encapsulated Semiconducting Polymer Nanosystem for Phototherapy-Boosted Chemotherapy. Materials Horizons, 10, 3014-3023. https://doi.org/10.1039/d3mh00242j
|