|
[1]
|
Fong, I.W. (2017) Animals and Mechanisms of Disease Transmission. In: Emerging Zoonoses, Springer, 15-38. [Google Scholar] [CrossRef]
|
|
[2]
|
Rindels, J.E. and Loman, B.R. (2024) Gut Microbiome—The Key to Our Pets’ Health and Happiness? Animal Frontiers, 14, 46-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Kuthyar, S. and Reese, A.T. (2021) Variation in Microbial Exposure at the Human-Animal Interface and the Implications for Microbiome-Mediated Health Outcome. mSystems, 6, e00567-21. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Hou, K., Wu, Z.X., Chen, X.Y., et al. (2022) Microbiota in Health and Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 135. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
AlShawaqfeh, M., Wajid, B., Minamoto, Y., Markel, M., Lidbury, J., Steiner, J., et al. (2017) A Dysbiosis Index to Assess Microbial Changes in Fecal Samples of Dogs with Chronic Inflammatory Enteropathy. FEMS Microbiology Ecology, 93, fix136. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Tian, T.T., Zhao, J.H., Yang, J., et al. (2016) Molecular Characterization of Clostridium Difficile Isolates from Human Subjects and the Environment. PLOS ONE, 11, e0151964. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Chaitman, J., Ziese, A., Pilla, R., Minamoto, Y., Blake, A.B., Guard, B.C., et al. (2020) Fecal Microbial and Metabolic Profiles in Dogs with Acute Diarrhea Receiving Either Fecal Microbiota Transplantation or Oral Metronidazole. Frontiers in Veterinary Science, 7, Article 192. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Guard, B.C., Honneffer, J.B., Jergens, A.E., Jonika, M.M., Toresson, L., Lawrence, Y.A., et al. (2019) Longitudinal Assessment of Microbial Dysbiosis, Fecal Unconjugated Bile Acid Concentrations, and Disease Activity in Dogs with Steroid-Responsive Chronic Inflammatory Enteropathy. Journal of Veterinary Internal Medicine, 33, 1295-1305. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Sung, C., Pilla, R., Marsilio, S., Chow, B., Zornow, K.A., Slovak, J.E., et al. (2023) Fecal Concentrations of Long-Chain Fatty Acids, Sterols, and Unconjugated Bile Acids in Cats with Chronic Enteropathy. Animals, 13, Article 2753. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Manchester, A.C., Webb, C.B., Blake, A.B., Sarwar, F., Lidbury, J.A., Steiner, J.M., et al. (2019) Long-Term Impact of Tylosin on Fecal Microbiota and Fecal Bile Acids of Healthy Dogs. Journal of Veterinary Internal Medicine, 33, 2605-2617. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Stavroulaki, E.M., Suchodolski, J.S., Pilla, R., Fosgate, G.T., Sung, C., Lidbury, J.A., et al. (2021) Short-and Long-Term Effects of Amoxicillin/Clavulanic Acid or Doxycycline on the Gastrointestinal Microbiome of Growing Cats. PLOS ONE, 16, e0253031. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Stokes, J.E., Price, J.M. and Whittemore, J.C. (2017) Randomized, Controlled, Crossover Trial of Prevention of Clindamycin-Induced Gastrointestinal Signs Using a Synbiotic in Healthy Research Cats. Journal of Veterinary Internal Medicine, 31, 1406-1413. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lin, H., Guo, Q., Wen, Z., Tan, S., Chen, J., Lin, L., et al. (2021) The Multiple Effects of Fecal Microbiota Transplantation on Diarrhea-Predominant Irritable Bowel Syndrome (IBS-D) Patients with Anxiety and Depression Behaviors. Microbial Cell Factories, 20, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Whittemore, J.C., Moyers, T.D. and Price, J.M. (2019) Randomized, Controlled, Crossover Trial of Prevention of Antibiotic-Induced Gastrointestinal Signs Using a Synbiotic Mixture in Healthy Research Dogs. Journal of Veterinary Internal Medicine, 33, 1619-1626. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Kubinyi, E., Bel Rhali, S., Sándor, S., Szabó, A. and Felföldi, T. (2020) Gut Microbiome Composition Is Associated with Age and Memory Performance in Pet Dogs. Animals, 10, Article 1488. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mondo, E., Barone, M., Soverini, M., D'Amico, F., Cocchi, M., Petrulli, C., et al. (2020) Gut Microbiome Structure and Adrenocortical Activity in Dogs with Aggressive and Phobic Behavioral Disorders. Heliyon, 6, e03311. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kirchoff, N.S., Udell, M.A.R. and Sharpton, T.J. (2019) The Gut Microbiome Correlates with Conspecific Aggression in a Small Population of Rescued Dogs (Canis familiaris). Peer Journal, 7, e6103. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Li, Q., Larouche-Lebel, É., Loughran, K.A., Huh, T.P., Suchodolski, J.S. and Oyama, M.A. (2021) Metabolomics Analysis Reveals Deranged Energy Metabolism and Amino Acid Metabolic Reprogramming in Dogs with Myxomatous Mitral Valve Disease. Journal of the American Heart Association, 10, e018923. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Karlin, E.T., Rush, J.E. and Freeman, L.M. (2019) A Pilot Study Investigating Circulating Trimethylaminen-Oxide and Its Precursors in Dogs with Degenerative Mitral Valve Disease with or without Congestive Heart Failure. Journal of Veterinary Internal Medicine, 33, 46-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Li, Q., Larouche-Lebel, É., Loughran, K.A., Huh, T.P., Suchodolski, J.S. and Oyama, M.A. (2021) Gut Dysbiosis and Its Associations with Gut Microbiota-Derived Metabolites in Dogs with Myxomatous Mitral Valve Disease. mSystems, 6, e00111-e00121. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Soontararak, S., Chow, L., Johnson, V., Coy, J., Webb, C., Wennogle, S., et al. (2019) Humoral Immune Responses against Gut Bacteria in Dogs with Inflammatory Bowel Disease. PLOS ONE, 14, e0220522. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Rossi, G., Pengo, G., Galosi, L., et al. (2020) Effects of the Probiotic Mixture Slab51® (SivoMixx®) as Food Supplement in Healthy Dogs: Evaluation of Fecal Microbiota, Clinical Parameters and Immune Function. Frontiers in Veterinary Science, 7, Article 613. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Pahumunto, N., Duangnumsawang, Y. and Teanpaisan, R. (2022) Effects of Potential Probiotics on the Expression of Cytokines and Human β-Defensins in Human Gingival Epithelial Cells and in Vivo Efficacy in a Dog Model. Archives of Oral Biology, 142, Article 105513. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
He, S., Yang, K., Wen, J., Kuang, T., Cao, Z., Zhang, L., et al. (2023) Antimicrobial Peptides Relieve Transportation Stress in Ragdoll Cats by Regulating the Gut Microbiota. Metabolites, 13, Article 326. [Google Scholar] [CrossRef] [PubMed]
|