[1]
|
Bianco, A.C. (2024) Emerging Therapies in Hypothyroidism. Annual Review of Medicine, 75, 307-319. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Calissendorff, J. and Falhammar, H. (2020) To Treat or Not to Treat Subclinical Hypothyroidism, What Is the Evidence? Medicina, 56, Article 40. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Jonklaas, J., Bianco, A.C., Bauer, A.J., Burman, K.D., Cappola, A.R., Celi, F.S., et al. (2014) Guidelines for the Treatment of Hypothyroidism: Prepared by the American Thyroid Association Task Force on Thyroid Hormone Replacement. Thyroid, 24, 1670-1751. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Maraka, S., Ospina, N.M.S., O'Keeffe, D.T., Espinosa De Ycaza, A.E., Gionfriddo, M.R., Erwin, P.J., et al. (2016) Subclinical Hypothyroidism in Pregnancy: A Systematic Review and Meta-Analysis. Thyroid, 26, 580-590. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Chen, J., Zhu, J., Huang, X., Zhao, S., Xiang, H., Zhou, P., et al. (2022) Subclinical Hypothyroidism with Negative for Thyroid Peroxidase Antibodies in Pregnancy: Intellectual Development of Offspring. Thyroid, 32, 449-458. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Xie, L., Huang, Y., Ma, X., Ma, X., Wang, J., Gao, T., et al. (2025) Effects of Subclinical Hypothyroidism during Pregnancy on mtDNA Methylation in the Brain of Rat Offspring. BMC Neuroscience, 26, Article No. 6. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Duan, J., Xu, P., Luan, X., Ji, Y., He, X., Song, N., et al. (2022) Hormone-And Antibody-Mediated Activation of the Thyrotropin Receptor. Nature, 609, 854-859. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
McLachlan, S.M. and Rapoport, B. (2013) Thyrotropin-Blocking Autoantibodies and Thyroid-Stimulating Autoantibodies: Potential Mechanisms Involved in the Pendulum Swinging from Hypothyroidism to Hyperthyroidism or Vice Versa. Thyroid, 23, 14-24. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Beumer, W., Effraimidis, G., Drexhage, R.C., Wiersinga, W.M. and Drexhage, H.A. (2013) Changes in Serum Adhesion Molecules, Chemokines, Cytokines, and Tissue Remodeling Factors in Euthyroid Women without Thyroid Antibodies Who Are at Risk for Autoimmune Thyroid Disease: A Hypothesis on the Early Phases of the Endocrine Autoimmune Reaction. The Journal of Clinical Endocrinology & Metabolism, 98, 2460-2468. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Antonelli, A., Ferrari, S.M., Frascerra, S., Di Domenicantonio, A., Nicolini, A., Ferrari, P., et al. (2011) Increase of Circulating CXCL9 and CXCL11 Associated with Euthyroid or Subclinically Hypothyroid Autoimmune Thyroiditis. The Journal of Clinical Endocrinology & Metabolism, 96, 1859-1863. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Han, C., Xia, X., Liu, A., et al. (2016) Circulating Betatrophin Is Increased in Patients with Overt and Subclinical Hypothyroidism. BioMed Research International, 2016, Article ID: 5090852. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Merakchi, K., Djerbib, S., Soleimani, M., Dumont, J., Miot, F. and De Deken, X. (2022) Murine Thyroid IL-4 Expression Worsens Hypothyroidism on Iodine Restriction and Mitigates Graves Disease Development. Endocrinology, 163, bqac107. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Zhang, Y., Zhang, H., Shi, W. and Wang, W. (2020) Mief1 Augments Thyroid Cell Dysfunction and Apoptosis through Inhibiting AMPK-PTEN Signaling Pathway. Journal of Receptors and Signal Transduction, 40, 15-23. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Clausen, C.L., Rasmussen, Å.K., Johannsen, T.H., Hilsted, L.M., Skakkebæk, N.E., Szecsi, P.B., et al. (2021) Thyroid Function in COVID-19 and the Association with Cytokine Levels and Mortality. Endocrine Connections, 10, 1234-1242. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Birney, E. (2022) Mendelian Randomization. Cold Spring Harbor Perspectives in Medicine, 12, a041302. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Ahola-Olli, A.V., Würtz, P., Havulinna, A.S., Aalto, K., Pitkänen, N., Lehtimäki, T., et al. (2017) Genome-Wide Association Study Identifies 27 Loci Influencing Concentrations of Circulating Cytokines and Growth Factors. The American Journal of Human Genetics, 100, 40-50. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Burgess, S., Butterworth, A. and Thompson, S.G. (2013) Mendelian Randomization Analysis with Multiple Genetic Variants Using Summarized Data. Genetic Epidemiology, 37, 658-665. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Li, P., Wang, H., Guo, L., Gou, X., Chen, G., Lin, D., et al. (2022) Association between Gut Microbiota and Preeclampsia-Eclampsia: A Two-Sample Mendelian Randomization Study. BMC Medicine, 20, Article No. 443. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Bowden, J., Davey Smith, G. and Burgess, S. (2015) Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias Detection through Egger Regression. International Journal of Epidemiology, 44, 512-525. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Hartwig, F.P., Davey Smith, G. and Bowden, J. (2017) Robust Inference in Summary Data Mendelian Randomization via the Zero Modal Pleiotropy Assumption. International Journal of Epidemiology, 46, 1985-1998. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Wu, F., Huang, Y., Hu, J. and Shao, Z. (2020) Mendelian Randomization Study of Telomere Length and Bone Mineral Density. Aging, 13, 2015-2030. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Verbanck, M., Chen, C., Neale, B. and Do, R. (2018) Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from Mendelian Randomization between Complex Traits and Diseases. Nature Genetics, 50, 693-698. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Chen, J., Zhou, Y., Sun, Y., Yuan, S., Kalla, R., Sun, J., et al. (2023) Bidirectional Mendelian Randomisation Analysis Provides Evidence for the Causal Involvement of Dysregulation of CXCL9, CCL11 and CASP8 in the Pathogenesis of Ulcerative Colitis. Journal of Crohn's and Colitis, 17, 777-785. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Tarique, A.A., Logan, J., Thomas, E., Holt, P.G., Sly, P.D. and Fantino, E. (2015) Phenotypic, Functional, and Plasticity Features of Classical and Alternatively Activated Human Macrophages. American Journal of Respiratory Cell and Molecular Biology, 53, 676-688. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Shao, Y., Lan, Y., Chai, X., Gao, S., Zheng, J., Huang, R., et al. (2023) CXCL8 Induces M2 Macrophage Polarization and Inhibits CD8+ T Cell Infiltration to Generate an Immunosuppressive Microenvironment in Colorectal Cancer. The FASEB Journal, 37, e23173. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Kurimoto, C., Inaba, H., Ariyasu, H., Iwakura, H., Ueda, Y., Uraki, S., et al. (2020) Predictive and Sensitive Biomarkers for Thyroid Dysfunctions during Treatment with Immune-Checkpoint Inhibitors. Cancer Science, 111, 1468-1477. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Li, Y., Liu, H., He, C., Lin, Y., Ma, L. and Xue, H. (2023) Il-9-Producing Th9 Cells Participate in the Occurrence and Development of Iodine-Induced Autoimmune Thyroiditis. Biological Trace Element Research, 201, 5298-5308. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Zivancevic-Simonovic, S., Mihaljevic, O., Majstorovic, I., Popovic, S., Markovic, S., Milosevic-Djordjevic, O., et al. (2015) Cytokine Production in Patients with Papillary Thyroid Cancer and Associated Autoimmune Hashimoto Thyroiditis. Cancer Immunology, Immunotherapy, 64, 1011-1019. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Gauthier, B.R., Sola-García, A., Cáliz-Molina, M.Á., Lorenzo, P.I., Cobo-Vuilleumier, N., Capilla-González, V., et al. (2020) Thyroid Hormones in Diabetes, Cancer, and Aging. Aging Cell, 19, e13260. [Google Scholar] [CrossRef] [PubMed]
|