[1]
|
Singer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810. https://jamanetwork.com/journals/jama/fullarticle/2492881
|
[2]
|
Rudd, K.E., et al. (2020) Global, Regional, and National Sepsis Incidence and Mortality, 1990-2017: Analysis for the Global Burden of Disease Study. The Lancet, 395, 200-211. https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(19)32989-7/fulltext
|
[3]
|
预防住院患者静脉血栓栓塞的行动呼吁: 美国心脏协会的政策声明|流通[Z]. 2025-05-11.
|
[4]
|
Raskob, G.E., et al. (2014) Thrombosis: A Major Contributor to Global Disease Burden. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 2363-2371.
|
[5]
|
Saghazadeh, A., Hafizi, S. and Rezaei, N. (2015) Inflammation in Venous Thromboembolism: Cause or Consequence? International Immunopharmacology, 28, 655-665. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
脓毒症相关细胞因子风暴的机制与治疗策略[EB/OL]. https://kns.cnki.net/nzkhtml/xmlRead/xml.html?pageType=web&fileName=JCYL202502023&tableName=CJFDTOTAL&dbCode=CJFD&fileSourceType=1&appId=KNS_BASIC_PSMC&invoice=tb7q6FNQXHOqb2I2UXY4jzhOZom0ufulJU9Sjpxcmv4OS5VftkL2bKQHUQ8e9agxizm6PLXjjmAIgX0pKrZ9bDUKTk4Yn/7l8QQdnPMx3feaqzcaeFowYlBth5tLMIlHiimoFLYkzKaf0pIQ16zzwaNNOabh3oRuN/ekEtr1osc=, 2025-04-15.
|
[7]
|
Hu, P., Chen, Y., Pang, J. and Chen, X. (2019) Association between IL-6 Polymorphisms and Sepsis. Innate Immunity, 25, 465-472. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Yu, H., et al. (2020) Targeting NF-κB Pathway for the Therapy of Diseases: Mechanism and Clinical Study. Signal Transduction and Targeted Therapy, 5, Article No. 209. https://www.nature.com/articles/s41392-020-00312-6
|
[9]
|
Ma, Y., Du, H., Zheng, S., Zhou, Z., Zhang, H., Ma, Y., et al. (2025) High-Entropy Approach vs. Traditional Doping Strategy for Layered Oxide Cathodes in Alkali-Metal-Ion Batteries: A Comparative Study. Energy Storage Materials, 79, Article ID: 104295. [Google Scholar] [CrossRef]
|
[10]
|
王夕妍, 杨仁池. 内皮细胞蛋白c受体在造血干细胞中作用的研究进展[J]. 国际输血及血液学杂志, 2019, 42(3): 259-263.
|
[11]
|
Xu, W.H., Mo, L.C., Shi, M.H., Rao, H., Zhan, X. and Yang, M. (2022) Correlation between Thrombopoietin and Inflammatory Factors, Platelet Indices, and Thrombosis in Patients with Sepsis: A Retrospective Study. World Journal of Clinical Cases, 10, 4072-4083. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Zakynthinos, S.G., Papanikolaou, S., Theodoridis, T., Zakynthinos, E.G., Christopoulou-Kokkinou, V., Katsaris, G., et al. (2004) Sepsis Severity Is the Major Determinant of Circulating Thrombopoietin Levels in Septic Patients. Critical Care Medicine, 32, 1004-1010. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
van Loo, G. and Bertrand, M.J.M. (2022) Death by TNF: A Road to Inflammation. Nature Reviews Immunology, 23, 289-303. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Etulain, J., Martinod, K., Wong, S.L., Cifuni, S.M., Schattner, M. and Wagner, D.D. (2015) P-Selectin Promotes Neutrophil Extracellular Trap Formation in Mice. Blood, 126, 242-246. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Ribeiro, L.S., Migliari Branco, L. and Franklin, B.S. (2019) Regulation of Innate Immune Responses by Platelets. Frontiers in Immunology, 10, Article No. 1320. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Guo, R. and Ward, P.A. (2005) Role of C5A in Inflammatory Responses. Annual Review of Immunology, 23, 821-852. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Kang, S., Tanaka, T., Inoue, H., Ono, C., Hashimoto, S., Kioi, Y., et al. (2020) IL-6 Trans-Signaling Induces Plasminogen Activator Inhibitor-1 from Vascular Endothelial Cells in Cytokine Release Syndrome. Proceedings of the National Academy of Sciences, 117, 22351-22356. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Yuki, K. and Koutsogiannaki, S. (2021) Pattern Recognition Receptors as Therapeutic Targets for Bacterial, Viral and Fungal Sepsis. International Immunopharmacology, 98, Article ID: 107909. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Man, C., An, Y., Wang, G., Mao, E. and Ma, L. (2025) Recent Advances in Pathogenesis and Anticoagulation Treatment of Sepsis-Induced Coagulopathy. Journal of Inflammation Research, 18, 737-750. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Østerud, B. and Bjørklid, E. (2001) The Tissue Factor Pathway in Disseminated Intravascular Coagulation. Seminars in Thrombosis and Hemostasis, 27, 605-618. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Egorina, E.M., Sovershaev, M.A., Bjørkøy, G., Gruber, F.X.E., Olsen, J.O., Parhami-Seren, B., et al. (2005) Intracellular and Surface Distribution of Monocyte Tissue Factor: Application to Intersubject Variability. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1493-1498. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Kälsch, T., Elmas, E., Nguyen, X.D., Suvajac, N., Klüter, H., Borggrefe, M., et al. (2007) Endotoxin-Induced Effects on Platelets and Monocytes in an in Vivo Model of Inflammation. Basic Research in Cardiology, 102, 460-466. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Riewald, M. and Ruf, W. (2001) Mechanistic Coupling of Protease Signaling and Initiation of Coagulation by Tissue Factor. Proceedings of the National Academy of Sciences, 98, 7742-7747. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Papayannopoulos, V. (2017) Neutrophil Extracellular Traps in Immunity and Disease. Nature Reviews Immunology, 18, 134-147. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Abrams, S.T., Morton, B., Alhamdi, Y., Alsabani, M., Lane, S., Welters, I.D., et al. (2019) A Novel Assay for Neutrophil Extracellular Trap Formation Independently Predicts Disseminated Intravascular Coagulation and Mortality in Critically Ill Patients. American Journal of Respiratory and Critical Care Medicine, 200, 869-880. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Dyer, M.R., Chen, Q., Haldeman, S., Yazdani, H., Hoffman, R., Loughran, P., et al. (2018) Deep Vein Thrombosis in Mice Is Regulated by Platelet HMGB1 through Release of Neutrophil-Extracellular Traps and DNA. Scientific Reports, 8, Article No. 2068. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Zambrano, F., Uribe, P., Schulz, M., Hermosilla, C., Taubert, A. and Sánchez, R. (2025) Antioxidants as Modulators of Netosis: Mechanisms, Evidence, and Therapeutic Potential. International Journal of Molecular Sciences, 26, Article No. 5272. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Saffarzadeh, M., Juenemann, C., Queisser, M.A., et al. (2012) Neutrophil Extracellular Traps Directly Induce Epithelial and Endothelial Cell Death: A Predominant Role of Histones. PLOS ONE, 7, e32366.
|
[29]
|
Maneta, E., Aivalioti, E., Tual-Chalot, S., Emini Veseli, B., Gatsiou, A., Stamatelopoulos, K., et al. (2023) Endothelial Dysfunction and Immunothrombosis in Sepsis. Frontiers in Immunology, 14, Article ID: 1144229. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
von Brühl, M., Stark, K., Steinhart, A., Chandraratne, S., Konrad, I., Lorenz, M., et al. (2012) Monocytes, Neutrophils, and Platelets Cooperate to Initiate and Propagate Venous Thrombosis in Mice in Vivo. Journal of Experimental Medicine, 209, 819-835. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Folco, E.J., Mawson, T.L., Vromman, A., et al. (2018) Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production through Interleukin-1α and Cathepsin G. Arteriosclerosis, Thrombosis, and Vascular Biology, 38, 1901-1912.
|
[32]
|
Gould, T.J., Vu, T.T., Swystun, L.L., Dwivedi, D.J., Mai, S.H.C., Weitz, J.I., et al. (2014) Neutrophil Extracellular Traps Promote Thrombin Generation through Platelet-Dependent and Platelet-Independent Mechanisms. Arteriosclerosis, Thrombosis, and Vascular Biology, 34, 1977-1984. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Ammollo, C.T., Semeraro, F., Xu, J., Esmon, N.L. and Esmon, C.T. (2011) Extracellular Histones Increase Plasma Thrombin Generation by Impairing Thrombomodulin‐Dependent Protein C Activation. Journal of Thrombosis and Haemostasis, 9, 1795-1803. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Galli, E., Maggio, E. and Pomero, F. (2022) Venous Thromboembolism in Sepsis: From Bench to Bedside. Biomedicines, 10, Article No. 1651. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Guven, G., Hilty, M.P. and Ince, C. (2019) Microcirculation: Physiology, Pathophysiology, and Clinical Application. Blood Purification, 49, 143-150. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Aksu, U., Yavuz-Aksu, B. and Goswami, N. (2024) Microcirculation: Current Perspective in Diagnostics, Imaging, and Clinical Applications. Journal of Clinical Medicine, 13, Article No. 6762. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
中心静脉导管堵塞因素分析及护理进展[EB/OL]. 中国期刊网. http://www.chinaqking.com/yc/2021/3224016.html, 2025-06-03.
|
[38]
|
Becerra-Bolaños, Á., et al. (2025) Assessing Infection Related to Short-Term Central Venous Catheters in the Perioperative Setting. Scientific Reports, 15, Article No. 1642. https://www.nature.com/articles/s41598-025-85836-z
|
[39]
|
袁法伟, 郑鲲. 血清总胆红素、D-二聚体及IL-6在老年脓毒症患者病情及预后评估中的价值分析[J]. 国际医药卫生导报, 2022, 28(20): 2924-2928.
|
[40]
|
Qian, X., Zhang, S., Duan, L., Yang, F., Zhang, K., Yan, F., et al. (2021) Periodontitis Deteriorates Cognitive Function and Impairs Neurons and Glia in a Mouse Model of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 79, 1785-1800. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Taneja, I., et al. (2021) Diagnostic and Prognostic Capabilities of a Biomarker and EMR‐Based Machine Learning Algorithm for Sepsis. Clinical and Translational Science, 14, 1578-1589.
|
[42]
|
Kumar, N.R., Balraj, T.A., Kempegowda, S.N. and Prashant, A. (2024) Multidrug-Resistant Sepsis: A Critical Healthcare Challenge. Antibiotics, 13, Article No. 46. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Tong, R., Ding, X., Liu, F., Li, H., Liu, H., Song, H., et al. (2023) Classification of Subtypes and Identification of Dysregulated Genes in Sepsis. Frontiers in Cellular and Infection Microbiology, 13, Article ID: 1226159. https://www.frontiersin.org/journals/cellular-and-infection-microbiology/articles/10.3389/fcimb.2023.1226159/full [Google Scholar] [CrossRef]
|