[1]
|
Liu, X., Maleki, F., Muthukrishnan, N., Ovens, K., Huang, S.H., Pérez-Lara, A., et al. (2021) Site-Specific Variation in Radiomic Features of Head and Neck Squamous Cell Carcinoma and Its Impact on Machine Learning Models. Cancers, 13, Article 3723. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Lan, T., Kuang, S., Liang, P., Ning, C., Li, Q., Wang, L., et al. (2024) MRI-Based Deep Learning and Radiomics for Prediction of Occult Cervical Lymph Node Metastasis and Prognosis in Early-Stage Oral and Oropharyngeal Squamous Cell Carcinoma: A Diagnostic Study. International Journal of Surgery, 110, 4648-4659. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Keser, G., Pekiner, F.N., Bayrakdar, İ.Ş., Çelik, Ö. and Orhan, K. (2024) A Deep Learning Approach to Detection of Oral Cancer Lesions from Intra Oral Patient Images: A Preliminary Retrospective Study. Journal of Stomatology, Oral and Maxillofacial Surgery, 125, Article 101975. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Panigrahi, S., Das, J. and Swarnkar, T. (2022) Capsule Network Based Analysis of Histopathological Images of Oral Squamous Cell Carcinoma. Journal of King Saud University-Computer and Information Sciences, 34, 4546-4553. [Google Scholar] [CrossRef]
|
[5]
|
Ragab, M. and Asar, T.O. (2024) Deep Transfer Learning with Improved Crayfish Optimization Algorithm for Oral Squamous Cell Carcinoma Cancer Recognition Using Histopathological Images. Scientific Reports, 14, Article No. 25348. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Yang, S.Y., Li, S.H., Liu, J.L., Sun, X.Q., Cen, Y.Y., Ren, R.Y., et al. (2022) Histopathology-Based Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning. Journal of Dental Research, 101, 1321-1327. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Ahmad, M., Irfan, M.A., Sadique, U., Haq, I.u., Jan, A., Khattak, M.I., et al. (2023) Multi-Method Analysis of Histopathological Image for Early Diagnosis of Oral Squamous Cell Carcinoma Using Deep Learning and Hybrid Techniques. Cancers, 15, Article 5247. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Yao, Y., Jin, X., Peng, T., Song, P., Ye, Y., Song, L., et al. (2024) A Novel Nomogram for Predicting Overall Survival in Patients with Tongue Squamous Cell Carcinoma Using Clinical Features and MRI Radiomics Data: A Pilot Study. World Journal of Surgical Oncology, 22, Article No. 227. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Ito, K., Hirahara, N., Muraoka, H., Sawada, E., Tokunaga, S. and Kaneda, T. (2024) Texture Analysis Using Short-Tau Inversion Recovery Magnetic Resonance Images to Differentiate Squamous Cell Carcinoma of the Gingiva from Medication-Related Osteonecrosis of the Jaw. Oral Radiology, 40, 219-225. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Lin, H., Chen, H., Weng, L., Shao, J. and Lin, J. (2021) Automatic Detection of Oral Cancer in Smartphone-Based Images Using Deep Learning for Early Diagnosis. Journal of Biomedical Optics, 26, Article 086007. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Ahmed, I.A., Senan, E.M. and Shatnawi, H.S.A. (2023) Analysis of Histopathological Images for Early Diagnosis of Oral Squamous Cell Carcinoma by Hybrid Systems Based on CNN Fusion Features. International Journal of Intelligent Systems, 2023, Article ID: 2662719. [Google Scholar] [CrossRef]
|
[12]
|
Fati, S.M., Senan, E.M. and Javed, Y. (2022) Early Diagnosis of Oral Squamous Cell Carcinoma Based on Histopathological Images Using Deep and Hybrid Learning Approaches. Diagnostics, 12, Article 1899. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Jeyaraj, P.R. and Samuel Nadar, E.R. (2019) Computer-Assisted Medical Image Classification for Early Diagnosis of Oral Cancer Employing Deep Learning Algorithm. Journal of Cancer Research and Clinical Oncology, 145, 829-837. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Jubair, F., Al‐karadsheh, O., Malamos, D., Al Mahdi, S., Saad, Y. and Hassona, Y. (2022) A Novel Lightweight Deep Convolutional Neural Network for Early Detection of Oral Cancer. Oral Diseases, 28, 1123-1130. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Wang, W., Liu, Y. and Wu, J. (2023) Early Diagnosis of Oral Cancer Using a Hybrid Arrangement of Deep Belief Networkand Combined Group Teaching Algorithm. Scientific Reports, 13, Article No. 22073. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Shamim, M.Z.M., Syed, S., Shiblee, M., Usman, M., Ali, S.J., Hussein, H.S., et al. (2020) Automated Detection of Oral Pre-Cancerous Tongue Lesions Using Deep Learning for Early Diagnosis of Oral Cavity Cancer. The Computer Journal, 65, 91-104. [Google Scholar] [CrossRef]
|
[17]
|
Soni, A., Sethy, P.K., Dewangan, A.K., Nanthaamornphong, A., Behera, S.K. and Devi, B. (2024) Enhancing Oral Squamous Cell Carcinoma Detection: A Novel Approach Using Improved Efficientnet Architecture. BMC Oral Health, 24, Article No. 601. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Dutta, C., Sandhya, P., Vidhya, K., Rajalakshmi, R., Ramya, D. and Madhubabu, K. (2024) Effectiveness of Deep Learning in Early-Stage Oral Cancer Detections and Classification Using Histogram of Oriented Gradients. Expert Systems, 41, e13439. [Google Scholar] [CrossRef]
|
[19]
|
Xue, Z., Yu, K., Pearlman, P.C., Pal, A., Chen, T., Hua, C., et al. (2022) Automatic Detection of Oral Lesion Measurement Ruler toward Computer-Aided Image-Based Oral Cancer Screening. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Glasgow, 11-15 July 2022, 3218-3221. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Pham, T.D. (2024) Integrating Support Vector Machines and Deep Learning Features for Oral Cancer Histopathology Analysis. medRxiv.
|
[21]
|
Li, L., Pu, C., Tao, J., Zhu, L., Hu, S., Qiao, B., et al. (2024) Development of an Oral Cancer Detection System through Deep Learning. BMC Oral Health, 24, Article No. 1468. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Chen, R., Wang, Q. and Huang, X. (2024) Intelligent Deep Learning Supports Biomedical Image Detection and Classification of Oral Cancer. Technology and Health Care, 32, 465-475. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Yang, Z., Pan, H., Shang, J., Zhang, J. and Liang, Y. (2023) Deep-Learning-Based Automated Identification and Visualization of Oral Cancer in Optical Coherence Tomography Images. Biomedicines, 11, Article 802. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Albalawi, E., Thakur, A., Ramakrishna, M.T., Bhatia Khan, S., SankaraNarayanan, S., Almarri, B., et al. (2024) Oral Squamous Cell Carcinoma Detection Using Efficientnet on Histopathological Images. Frontiers in Medicine, 10, Article ID: 1349336. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Yuan, W., Yang, J., Yin, B., Fan, X., Yang, J., Sun, H., et al. (2023) Noninvasive Diagnosis of Oral Squamous Cell Carcinoma by Multi-Level Deep Residual Learning on Optical Coherence Tomography Images. Oral Diseases, 29, 3223-3231. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Yuan, W., Cheng, L., Yang, J., Yin, B., Fan, X., Yang, J., et al. (2022) Noninvasive Oral Cancer Screening Based on Local Residual Adaptation Network Using Optical Coherence Tomography. Medical & Biological Engineering & Computing, 60, 1363-1375. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Singha, D.B., Mayukha, P., Prasanta, K, P. and Asima, P. (2022) Supremacy of Attention Based Convolution Neural Network in Classification of Oral Cancer Using Histopathological Images. medRxiv.
|
[28]
|
Fu, Q., Chen, Y., Li, Z., Jing, Q., Hu, C., Liu, H., et al. (2020) A Deep Learning Algorithm for Detection of Oral Cavity Squamous Cell Carcinoma from Photographic Images: A Retrospective Study. eClinicalMedicine, 27, Article 100558. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Shavlokhova, V., Sandhu, S., Flechtenmacher, C., Koveshazi, I., Neumeier, F., Padrón-Laso, V., et al. (2021) Deep Learning on Oral Squamous Cell Carcinoma Ex Vivo Fluorescent Confocal Microscopy Data: A Feasibility Study. Journal of Clinical Medicine, 10, Article 5326. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Pandiar, D., Choudhari, S. and Poothakulath Krishnan, R. (2023) Application of Inceptionv3, Squeezenet, and VGG16 Convoluted Neural Networks in the Image Classification of Oral Squamous Cell Carcinoma: A Cross-Sectional Study. Cureus, 15, e49108. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Warin, K., Limprasert, W., Suebnukarn, S., Jinaporntham, S. and Jantana, P. (2021) Automatic Classification and Detection of Oral Cancer in Photographic Images Using Deep Learning Algorithms. Journal of Oral Pathology & Medicine, 50, 911-918. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Ananthakrishnan, B., Shaik, A., Kumar, S., Narendran, S.O., Mattu, K. and Kavitha, M.S. (2023) Automated Detection and Classification of Oral Squamous Cell Carcinoma Using Deep Neural Networks. Diagnostics, 13, Article 918. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Devindi G.A.I., Dissanayake D.M.D.R., Liyanage S.N., et al. (2024) Multimodal Deep Convolutional Neural Network Pipeline for AI-Assisted Early Detection of Oral Cancer. IEEE Access, 12, 124375-124390.
|
[34]
|
Mes, S.W., van Velden, F.H.P., Peltenburg, B., Peeters, C.F.W., te Beest, D.E., van de Wiel, M.A., et al. (2020) Outcome Prediction of Head and Neck Squamous Cell Carcinoma by MRI Radiomic Signatures. European Radiology, 30, 6311-6321. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Dhanya, K., Prasad, D.V.V. and Lokeswari, Y.V. (2024) Detection of Oral Squamous Cell Carcinoma Using Pre-Trained Deep Learning Models. Experimental Oncology, 46, 119-128. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Qayyum, A., Benzinou, A., Razzak, I., Mazher, M., Nguyen, T.T., Puig, D., et al. (2024) 3D-Incnet: Head and Neck (H&N) Primary Tumors Segmentation and Survival Prediction. IEEE Journal of Biomedical and Health Informatics, 28, 1185-1194. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Kaźmierska, J., Kaźmierski, M.R., Bajon, T., Winiecki, T., Bandurska-Luque, A., Ryczkowski, A., et al. (2022) Prediction of Incomplete Response of Primary Tumour Based on Clinical and Radiomics Features in Inoperable Head and Neck Cancers after Definitive Treatment. Journal of Personalized Medicine, 12, Article 1092. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Pan, X., Zhang, T., Yang, Q., Yang, D., Rwigema, J. and Qi, X.S. (2020) Survival Prediction for Oral Tongue Cancer Patients via Probabilistic Genetic Algorithm Optimized Neural Network Models. The British Journal of Radiology, 93, Article 20190825. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Yuan, W., Rao, J., Liu, Y., et al. (22024) Deep Radiomics-Based Prognostic Prediction of Oral Cancer Using Optical Coherence Tomography. BMC Oral Health, 4, Article No. 1117.
|
[40]
|
Song, Y., Tian, Y., Lu, X., Chen, G. and Lv, X. (2024) Prognostic Value of 18F‐FDG PET Radiomics and Sarcopenia in Patients with Oral Squamous Cell Carcinoma. Medical Physics, 51, 4907-4921. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Fujima, N., Andreu-Arasa, V.C., Meibom, S.K., Mercier, G.A., Salama, A.R., Truong, M.T., et al. (2020) Deep Learning Analysis Using FDG-PET to Predict Treatment Outcome in Patients with Oral Cavity Squamous Cell Carcinoma. European Radiology, 30, 6322-6330. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Uthoff, R.D., Song, B., Sunny, S., Patrick, S., Suresh, A., Kolur, T., et al. (2018) Point-of-Care, Smartphone-Based, Dual-Modality, Dual-View, Oral Cancer Screening Device with Neural Network Classification for Low-Resource Communities. PLOS ONE, 13, e0207493. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Wang, D., He, X., Huang, C., Li, W., Li, H., Huang, C., et al. (2024) Magnetic Resonance Imaging-Based Radiomics and Deep Learning Models for Predicting Lymph Node Metastasis of Squamous Cell Carcinoma of the Tongue. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 138, 214-224. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Kubo, K., Kawahara, D., Murakami, Y., Takeuchi, Y., Katsuta, T., Imano, N., et al. (2022) Development of a Radiomics and Machine Learning Model for Predicting Occult Cervical Lymph Node Metastasis in Patients with Tongue Cancer. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 134, 93-101. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Agheli, R., Siavashpour, Z., Reiazi, R., Azghandi, S., Cheraghi, S. and Paydar, R. (2024) Predicting Severe Radiation-Induced Oral Mucositis in Head and Neck Cancer Patients Using Integrated Baseline CT Radiomic, Dosimetry, and Clinical Features: A Machine Learning Approach. Heliyon, 10, e24866. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Liu, J., Corti, A., Calareso, G., Spadarella, G., Licitra, L., Corino, V.D.A., et al. (2024) Developing a Robust Two-Step Machine Learning Multiclassification Pipeline to Predict Primary Site in Head and Neck Carcinoma from Lymph Nodes. Heliyon, 10, e24377. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Prasse, G., Glaas, A., Meyer, H., Zebralla, V., Dietz, A., Hering, K., et al. (2023) A Radiomics-Based Machine Learning Perspective on the Parotid Gland as a Potential Surrogate Marker for HPV in Oropharyngeal Cancer. Cancers, 15, Article 5425. [Google Scholar] [CrossRef] [PubMed]
|