中药大黄通过调节肠道菌群–代谢物–炎症轴改善胰岛素抵抗相关慢性病的研究进展
Research Progress on the Improvement of Insulin Resistance-Related Chronic Diseases by Rhubarb (Rheum palmatum L.) through Regulation of the Gut Microbiota-Metabolite-Inflammation Axis
摘要: 背景:胰岛素抵抗(IR)是2型糖尿病(T2DM)、非酒精性脂肪肝(NAFLD)等慢性病的核心病理机制,与肠道菌群失调和系统性炎症密切相关。中药大黄及其活性成分(如大黄素、大黄酸)展现出通过调控肠道菌群结构、抑制炎症信号通路(如JNK/NF-κB)和改善代谢紊乱的多重作用。方法:本文系统综述了大黄有效成分对IR相关信号通路(MAPK, PI3K/Akt, AMPK, PPAR)、氧化应激、内质网应激及铁死亡的调控机制,并探讨其通过重塑肠道菌群(如增加阿克曼氏菌、拟杆菌门)和代谢产物(短链脂肪酸)改善IR的潜在路径。结果:大黄中的蒽醌类成分通过以下途径发挥作用:(1) 抑制JNK/IKK介导的IRS-1丝氨酸磷酸化,恢复胰岛素信号传导;(2) 激活AMPK/Nrf2通路缓解氧化应激;(3) 调节PPARγ/NF-κB轴减轻炎症;(4) 通过增加Akkermansia muciniphila丰度增强肠道屏障功能,减少内毒素入血。结论:大黄通过“肠道菌群–代谢物–器官轴”多靶点干预IR相关慢性病,其纳米化改造(如碳量子点修饰)可进一步提高生物利用度和靶向性,为开发新型抗IR药物提供理论依据。
Abstract: Background: Insulin resistance (IR) is a core pathological mechanism of chronic diseases such as type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD), closely associated with gut microbiota dysbiosis and systemic inflammation. The traditional Chinese herb Rheum palmatum (rhubarb) and its active components (e.g., emodin, rhein) exhibit multi-target effects by modulating gut microbiota composition, inhibiting inflammatory signaling pathways (e.g., JNK/NF-κB), and improving metabolic disorders. Methods: This review systematically summarizes the regulatory mechanisms of rhubarb’s active components on IR-related pathways (MAPK, PI3K/Akt, AMPK, PPAR), oxidative stress, endoplasmic reticulum stress, and ferroptosis, while exploring their potential to ameliorate IR by reshaping gut microbiota (e.g., increasing Akkermansia muciniphila and Bacteroidetes) and metabolites (e.g., short-chain fatty acids). Results: Anthraquinones in rhubarb exert therapeutic effects via: (1) inhibiting JNK/IKK-mediated serine phosphorylation of IRS-1 to restore insulin signaling; (2) activating AMPK/Nrf2 pathway to alleviate oxidative stress; (3) modulating PPARγ/NF-κB axis to reduce inflammation; and (4) enhancing gut barrier function by enriching Akkermansia muciniphila, thereby decreasing endotoxin translocation. Conclusion: Rhubarb intervenes in IR-related diseases through the “gut microbiota-metabolite-organ axis.” Nanomodification (e.g., carbon quantum dots) may further improve its bioavailability and targeting efficacy, providing a theoretical basis for developing novel anti-IR therapeutics.
文章引用:陆昕扬, 吴亮. 中药大黄通过调节肠道菌群–代谢物–炎症轴改善胰岛素抵抗相关慢性病的研究进展[J]. 临床医学进展, 2025, 15(10): 99-108. https://doi.org/10.12677/acm.2025.15102732

1. 前言

慢性非传染性疾病(以下简称慢性病,noncommunicable chronic disease, NCD)是威胁人类生命健康的杀手之一,报告显示NCD占中国所有死亡人数的91%。NCD具有病程长、病隐匿和迁延不愈的特点,包括2型糖尿病(T2DM),多囊卵巢综合征(POCS),非酒精性脂肪肝(NAFLD)和动脉粥样硬化(AS)等。许多NCD患者出现了不同程度的胰岛素抵抗,虽然部分机制仍在探究之中,但缓解胰岛素抵抗是一条治疗NCD的新思路。

中药大黄首载于《神农本草经》,味苦寒,归脾、胃、大肠、肝、心包经,具有泻下攻积、清热泻火、等功效,临床主要用于治疗积滞便秘、瘀血证、湿热痢疾等。现代研究发现,大黄的有效成分有大黄素和大黄酸等,它们本身可以减少炎症因子与炎症小体NLPR3的表达,调控MAPK、IKK等炎症信号通路等改善炎症。肠道菌群可以降低葡萄糖耐量与胰岛素敏感性导致胰岛素抵抗[1]。研究发现大黄通过增加拟杆菌门,减少厚壁菌门来调节肠道菌群的结构与丰度,进而减少硫酸吲哚氧基、硫酸对甲酚和三甲胺等有毒代谢产物,同时增加短链脂肪酸,借助血液循环,以肠肾轴、肠肝轴等改善各器官组织的炎症与胰岛素抵抗。

本文综述了大黄对肠道菌群的调节作用以及肠道菌群与胰岛素抵抗的关联。

2. IR与“肠道菌群–代谢物–炎症”轴

IR状态下,肠道菌群结构失调(厚壁菌门/拟杆菌门比率升高,阿克曼氏菌等有益菌减少),导致肠道屏障受损,脂多糖(LPS)入血,并引起代谢物谱改变。关键代谢物如短链脂肪酸(SCFAs)减少和氧化三甲胺(TMAO)增多,通过多种途径激活免疫系统,引发慢性低度炎症。炎症因子(如TNF-α,IL-6)通过激活JNK、IKKβ/NF-κB等信号通路,促使胰岛素受体底物(IRS)丝氨酸磷酸化,中断胰岛素信号转导,是IR的核心分子机制。

3. 大黄调节菌群–代谢物–炎症轴改善IR的机制

3.1. 大黄的主要活性成分

3.1.1. 大黄酸

大黄酸对肠道菌群具有调控作用,可提高疣微菌属、阿克曼氏菌属和拟杆菌门菌属丰度[2]。在抗炎方面,大黄酸通过MAPK、PI3K和TGF-β信号通路抑制炎症介质表达,调节细胞功能,并降低NF-κB、IKK及NLRP3的活性[3] [4]。此外,它通过调控PPAR-γ/NF-κB/HDAC3轴减轻炎症反应[5]

在脂代谢方面,大黄酸经由LXR抑制SREBP-1c转录活性[6],改善脂质积累,并抑制PPAR-γ和C/EBP-α以阻断FAS与ACC生成[7]。同时,它还可上调内质网应激水平,并通过多种信号通路交叉互作发挥广泛的药理学效应[8]

3.1.2. 大黄素

大黄素可刺激有益菌(如AkkermansiaClostridium等)生长,并抑制BacteroidesPrevotella的增殖[9]。在糖代谢方面,它通过HMGB1/TLR4/NF-κB通路改善胰岛素敏感性,提升GLUT4、IRS2等表达,并可抑制PTP1B活性[10]。对于脂代谢,大黄素能够降血脂、改善肝脏脂质堆积,其机制可能与抑制SREBP及脂肪生成因子PPARγ有关[11]。此外,大黄素还具有免疫调节作用,可增加Treg与Foxp3+表达以抗炎[9],并通过激活FXR通路缓解非酒精性脂肪肝[12]

3.1.3. 大黄酚

大黄酚具有一定的降糖作用,主要通过抑制PTP-1B活性并增强Akt磷酸化,促进葡萄糖利用[13]。在抗炎方面,它可抑制NF-κB和caspase-1活化,降低TNF-α、IL-6及COX-2的表达[14]。该成分还能通过激活SIRT6/AMPK通路改善肥胖和胰岛素敏感性。

对糖尿病并发症,大黄酚通过抑制TGF-β/EMT信号,JNK/Cx43通路和NKD2/NF-κB通路缓解肾纤维化,并通过Keap1/Nrf2信号通路改善糖尿病肾病小鼠的氧化应激和细胞焦亡[15]。此外,它还可改善糖尿病脑病相关的神经炎症和认知损伤[16]。目前,大黄酚研究多集中于信号通路,与其肠道菌群的相互作用尚少见报道。

3.1.4. 大黄素甲醚

大黄素甲醚(Physcion, PY)通过抑制氧化应激和内质网应激途径来预防高脂肪饮食诱导的内皮功能障碍,被推测与eNOS/Nrf2信号通路的激活相关[17]。PY还可抑制JAK2/STAT3通路改善IFN-β诱导的HAPI细胞损伤[18],通过TLR-4/NF-кB信号传导减轻成年小鼠LPS诱导的神经炎症,改善氧化应激与记忆障碍,启示我们探索胰岛素抵抗中PY与相关通路的关系[19]。目前研究主要集中于Physcion 8-O-β-吡喃葡萄糖苷的抗癌作用[20] [21],对抗急性淋巴细胞白血病,调控SIRT/NF-κB/p65等通路抗肝纤维化,以及神经保护作用[19] [22] [23]

3.1.5. 芦荟大黄素

芦荟大黄素(AE)可调控肠道菌群,其靶点集中于PI3K-Akt、AGE-RAGE、MAPK及EGFR等信号通路。研究表明,AE能保护胰腺β细胞免受高糖损伤,并抑制铁死亡[24],但目前该作用多集中于心脏保护,在胰岛素抵抗中的研究尚不充分[25]。此外,AE可上调PI3K/AKT/mTOR表达、抑制NF-κB [26],并靶向NLRP3小体减轻细胞焦亡[1] [27],为改善胰岛素抵抗提供了新思路。

3.2. 大黄对肠道菌群结构的整体调控

大黄能显著优化IR模型动物的肠道菌群结构。其活性成分(如大黄素、大黄酸)可 增加有益菌丰度,如拟杆菌门(Bacteroidetes)、阿克曼氏菌(Akkermansia muciniphila)和产SCFAs的毛螺菌科(Lachnospiraceae);同时减少条件致病菌,如厚壁菌门(Firmicutes)。这种结构调整是功能改变的基础。

3.2.1. 阿克曼菌对IR的调控机制

嗜黏蛋白阿克曼氏菌(Akkermansia muciniphila)是肠道中唯一属于疣微菌门的细菌,能够降解黏蛋白并产生短链脂肪酸,如醋酸盐和丙酸盐。研究表明,该菌在消瘦型2型糖尿病患者肠道中丰度降低,且与胰岛素分泌减少呈正相关。此外,它还能改善胰岛素敏感性、降低血胰岛素和总胆固醇水平,修复肠道屏障,维持其完整性。

A. muciniphila可通过多种机制缓解胰岛素抵抗(IR)。例如,提高其丰度可抑制JNK通路活性,降低相关基因表达;抑制IKKβ/NF-κB通路可能与其外膜蛋白Amuc_1100的抗炎作用有关。该蛋白作为TLR2激动剂,能促进5-HT合成并影响其再摄取,从而调节血清素水平。然而,其LPS成分也可通过TLR4/TLR2激活NF-κB,诱发炎症。

在能量代谢方面,该菌抑制脂肪生成相关基因(如PPARγ、CD36等)的表达,减少脂质积累,并促进瘦素表达以抑制食欲。同时,它可增加产短链脂肪酸菌(如毛螺菌科)的丰度,进一步调节代谢。

A. muciniphila还能增强肠道屏障功能:通过增加黏蛋白厚度和调节紧密连接蛋白,改善肠道通透性。其衍生的细胞外囊泡及外膜蛋白Amuc_1100均被证实参与这一过程。

此外,该菌的细胞膜磷脂可调控免疫细胞因子分泌,重置树突状细胞活化阈值,但其作为革兰氏阴性菌所释放的LPS也可能诱导炎症反应。

3.2.2. 乳酸杆菌对IR相关疾病的调控机制

双歧杆菌(Bifidobacterium)是一类广泛存在的共生菌,具有免疫调节功能,包括上调调节性T细胞(Tregs)、增强肠道屏障以及抑制Th2和Th17免疫反应。其主要代谢产物乙酸盐在免疫和能量调节中起重要作用。

双歧杆菌代谢物可通过多种机制影响胰岛素抵抗(IR)。作为免疫调节剂,其胞外多糖能抑制树突细胞成熟及CD4+ T细胞的抗原激活;菌毛则参与营养摄取、黏蛋白生成及免疫信号传递。

作为免疫介质,该菌通过分解膳食或宿主来源的碳水化合物产生乙酸盐,进而促进丁酸盐生成。此外,它还能代谢色氨酸产生吲哚-3-乳酸(ILA)等芳香乳酸,减少肠道上皮细胞中IL-8等炎症因子表达。

3.3. 大黄对关键代谢物的调控

3.3.1. 短链脂肪酸(SCFAs)

SCFAs是膳食纤维和抗性淀粉经肠道微生物发酵产生的主要代谢产物,包括乙酸(拟杆菌属产生)、丙酸(毛螺杆菌属产生)和丁酸(霍氏真杆菌产生) [28]。它们经小肠和结肠转运体吸收后进入门静脉,主要被肝脏摄取。而大黄灌胃可显著提高盲肠和血清中短链脂肪酸水平[29]

(1) SCFAs对胰岛素抵抗的改善作用

SCFAs通过激活G蛋白偶联受体(GPR41/43)和抑制组蛋白去乙酰化酶(HDACs) [30],发挥以下作用:(1) 刺激肠道L细胞分泌胰高血糖素样肽-1 (GLP-1)和肽YY(PYY),促进胰岛素分泌、抑制食欲;(2) 增强肠道紧密连接蛋白表达,修复肠道屏障,减少LPS易位;(3) 激活AMPK通路,改善肝脏和肌肉的胰岛素敏感性[31]

值得注意的是,某些研究发现SCFAs可降低空腹胰岛素和HOMA-IR,但不影响空腹血糖,具体机制仍需深入研究[32]

(2) SCFAs对炎症的改善作用

丁酸盐通过抑制NF-κB通路和组蛋白去乙酰化酶(HDAC)发挥抗炎作用。乙酸和丁酸可抑制HDAC1和HDAC3,增加组蛋白乙酰化水平,改变染色质结构,其表观遗传调控效应与糖尿病和IR相关[33]。丁酸激活GPR109A后,可促进结肠巨噬细胞和树突状细胞调控Treg细胞分化和IL-10生成,增强抗炎响应[34]。研究发现短链脂肪酸可以激活GPR41和GPR43,进而激活上皮细胞中的细胞外信号调节激酶1/2和p38丝裂原活化蛋白激酶信号通路,以诱导免疫反应期间趋化因子和细胞因子的产生[35]。此外,在SCFA增加的个体中,CD4+和CD8+ T细胞中TNF和IFNγ的产生,显示出一定的免疫调节潜力[36]

3.3.2. 氧化三甲胺(TMAO)

大黄灌肠可降低血浆TMAO水平[37]。TMAO由肠道菌群代谢胆碱产生,可通过激活NLRP3炎症小体和诱发内质网应激促进IR。大黄通过抑制产TMA菌群(如变形菌门)和调节胆汁酸代谢,减少TMAO生成,减轻其毒性。

(1) TMAO对胰岛素抵抗的调节作用

TMAO可升高空腹胰岛素水平,加重高脂饮食小鼠的胰岛素抵抗和葡萄糖不耐受。其机制包括:通过内质网应激激酶PERK激活FoxO1,促进IR;直接干扰糖异生和葡萄糖转运;通过N-硝基化合物引起DNA表观遗传改变[38]。抑制FMO3可降低TMAO生成,并通过SREBP-2/FoxO1通路改善糖耐量和IR,提示FMO3是潜在治疗靶点[39]

(2) TMAO对炎症的改善

TMAO能激活炎症通路:通过NF-κB促进血管炎症基因表达,参与慢性肾脏病血管炎症;在THP-1细胞中上调IL-12A的表达,增强炎症反应;并激活NLRP3炎症小体导致炎症产生。RNA测序和功能分析显示,小鼠补充胆碱或TMAO处理人血管平滑肌细胞增强的基因通路与内质网应激反应相关[40]。最新研究发现,肠道IL-33通过对缺氧诱导因子-1α的双重调控,增强肠道菌群来源的三甲胺N-氧化物合成,加重脂肪性肝病进展。靶向IL-33及其相关微生物群可能为管理脂肪性肝病提供潜在的治疗策略[41]

在肾脏中,TMAO通过诱导肾成纤维细胞释放多种细胞因子(IL-6, LAP TGF-β-1)、趋化因子(CXCL-6, MCP-3)、炎症和生长介质(VEGFA, CD40, HGF)来增强TNF-α介导的肾脏炎症;在结肠中,TMAO在各个层面破坏了肠道屏障的结构和功能,进一步激活了TLR4/MyD88/NF-κB通路,抑制了WNT/β-catenin通路。在肝脏中,TMAO诱导内皮功能障碍,肝窦内皮细胞毛细血管化,同时调节巨噬细胞极化;TMAO亦可促进HepG2脂肪肝细胞中的脂质沉积,加剧NAFLD大鼠的肝脂肪变性[42]

然而亦有学者持有反对意见,他们认为TMAO可能调节肠道菌群,抑制肠道胆固醇吸收,改善胆固醇超负荷下的肝脏内质网应激和细胞死亡,从而减轻高脂高胆固醇饮食诱导的大鼠脂肪性肝炎。

3.3.3. 其他代谢物

大黄灌肠通过减轻硫酸哚氧酯超负荷,来减轻5/6肾切除大鼠肾小管间质纤维化[43]

肠道菌群代谢色氨酸产生具有抗炎和抗氧化作用的产物,如吲哚-3-乳酸(ILA)和吲哚丙酸,能减少IL-8等炎性因子产生。其代谢物(如5-HIAA)还可通过激活芳香烃受体(AhR),增强肠道屏障功能并改善肝脏胰岛素敏感性,间接抑制炎症通路。

BCAAs水平升高与胰岛素抵抗强烈相关。它们可激活mTORC1-S6K1信号通路,导致胰岛素信号受损。适当水平可能有益,但过量会促进氧化应激和炎症,加剧IR [44]

作为革兰氏阴性菌的细胞壁成分,LPS易位进入循环会触发炎症。它通过激活TLR4/NF-κB通路,促进IL-6、TNF-α等炎性因子释放,直接导致胰岛素抵抗。已有研究证明抑制LPS/TLR4/MyD88/NF-κB炎症通路以减轻胰岛素抵抗。已有研究证明大黄可以通过PPAR-γ依赖性途径、通过HSP70抑制RAW264.7细胞中LPS诱导的炎症[45]

ImP是一种由微生物组产生的组氨酸代谢物,与全身性低度炎症和2型糖尿病相关。它通过激活p38γ/MAPK-mTORC1通路,损害胰岛素信号传导,促进胰岛素抵抗[46]

4. 大黄的临床转化:挑战与策略

4.1. 临床研究现状与挑战

有研究表明,长期高剂量使用大黄治疗可能导致剧烈泻下并潜在损伤肠粘膜,长期高剂量大黄素、芦荟大黄素会导致肝毒性、肾毒性和生殖毒性。药代动力学研究表明,芦荟大黄素肠道吸收差、消除半衰期短、生物利用度低;而大黄素的水溶性低,生物利用度也较为有限。而来源、加工和提取方法的差异导致大黄制剂的成分和功效不一致,因此质量控制和标准化也是临床转化的主要挑战。此外,个体肠道菌群的初始结构存在巨大差异,这可能影响对大黄治疗的反应。未来研究需结合宏基因组学、代谢组学等技术,寻找预测疗效的生物标志物,实现个性化治疗。

4.2. 未来研发策略

4.2.1. 从“单体”到“全方”或“有效部位群”

研究大黄总蒽醌、结合型蒽醌与其他成分(如鞣质)的协同作用,可能比单一成分更具优势,疗效更好且毒性更低。含有大黄的汤神宁配方通过Sestrin2/AMPK/PGC-1α轴以及SLC7A11/GSH/GPX4轴缓解糖尿病肾病肾小管损伤,并能恢复线粒体功能,抑制铁死亡[47]。大黄附子汤(RAD)能在体外缓解内毒素诱导的Caco-2细胞氧化应激损伤和炎症反应[48]。这些复方通过多靶点(同时作用于能量代谢和细胞死亡通路)来缓解疾病,体现了“全方”的综合治疗优势。

4.2.2. 纳米递送系统

利用脂质体、聚合物胶束、碳量子点等纳米技术对大黄成分进行封装,可显著提高其生物利用度、稳定性和靶向性(如肠道靶向),实现增效减毒。Guo等人构建了一种大黄素和丁君碱共同装配的脂质纳米递送系统(E-T/LNPs)用于治疗肝纤维化;Yan等人开发一种含有大黄素的三靶向纳米颗粒(NPs)/热敏水凝胶(Gel)直肠给药系统;亦有学者将β-1,3-d-葡聚糖的微载体酵母细胞壁微粒(YPs)作为载体,负载大黄素和大黄酸,开发了一种基于食物来源的纳米微量口服给药系统[49]。以上创新研究提示我们可根据治疗靶点特异性选取并修饰载体,实现药物的精准递送,但目前纳米递送系统尚未进入临床,且关于靶向递送大黄治疗胰岛素相关慢性病的研究极少。

4.2.3. 伴随诊断与个性化医疗

结合宏基因组学和代谢组学技术,筛选预测疗效的生物标志物(如基线Akk菌丰度),实现患者分层和个性化用药。不同种族的人的胰岛素抵抗程度可用甘油三酯葡萄糖(TyG)指数来衡量[50]

胰岛素抵抗相关慢性病的治疗需综合干预代谢异常、炎症和肠道微生态。本文综述表明,大黄的主要活性成分(大黄素、大黄酸等)通过以下机制发挥作用:

① 直接调控信号通路:靶向MAPK、PI3K/Akt和AMPK通路,抑制炎症因子(TNF-α, IL-6)释放,恢复胰岛素敏感性。

② 改善肠道菌群:增加有益菌(如Akkermansia、双歧杆菌)并减少厚壁菌门比例,降低硫酸吲哚酚等毒性代谢物,促进短链脂肪酸(如丁酸)生成,通过肠–肝/肾轴缓解全身炎症。

③ 抗氧化与细胞保护:通过Nrf2/GPx4通路抑制铁死亡,减轻线粒体和内质网应激对胰岛β细胞的损伤。

未来研究应聚焦于:(1) 大黄成分的纳米递送系统(如Emo-CDs)以增强靶向性和安全性;(2) 明确特定菌株(如A. muciniphila)与大黄协同作用的分子机制;(3) 开展临床转化研究验证其疗效。大黄的多组分、多靶点特性使其成为治疗IR相关疾病的潜在策略,但仍需通过严格的大规模临床试验进一步验证。

基金项目

课题资助:受江苏大学大学生科研立项资助(Y23A151)。

参考文献

[1] Jarmakiewicz-Czaja, S., Sokal, A. and Filip, R. (2020) What Was First, Obesity or Inflammatory Bowel Disease? What Does the Gut Microbiota Have to Do with It? Nutrients, 12, Article 3073. [Google Scholar] [CrossRef] [PubMed]
[2] Liu, S., Yin, R., Yang, Z., Wei, F. and Hu, J. (2022) The Effects of Rhein on D-GalN/LPS-Induced Acute Liver Injury in Mice: Results from Gut Microbiome-Metabolomics and Host Transcriptome Analysis. Frontiers in Immunology, 13, Article 971409. [Google Scholar] [CrossRef] [PubMed]
[3] Wang, L., Yu, X., Li, H., He, D., Zeng, S. and Xiang, Z. (2023) Cell and Rat Serum, Urine and Tissue Metabolomics Analysis Elucidates the Key Pathway Changes Associated with Chronic Nephropathy and Reveals the Mechanism of Action of Rhein. Chinese Medicine, 18, Article No. 158. [Google Scholar] [CrossRef] [PubMed]
[4] Zhou, Y., Gao, C., Vong, C.T., Tao, H., Li, H., Wang, S., et al. (2022) Rhein Regulates Redox-Mediated Activation of NLRP3 Inflammasomes in Intestinal Inflammation through Macrophage-Activated Crosstalk. British Journal of Pharmacology, 179, 1978-1997. [Google Scholar] [CrossRef] [PubMed]
[5] Wen, Q., Miao, J., Lau, N., Zhang, C., Ye, P., Du, S., et al. (2020) Rhein Attenuates Lipopolysaccharide-Primed Inflammation through NF-κB Inhibition in RAW264.7 Cells: Targeting the PPAR-γ Signal Pathway. Canadian Journal of Physiology and Pharmacology, 98, 357-365. [Google Scholar] [CrossRef] [PubMed]
[6] Sheng, X., Zhu, X., Zhang, Y., Cui, G., Peng, L., Lu, X., et al. (2012) Rhein Protects against Obesity and Related Metabolic Disorders through Liver X Receptor-Mediated Uncoupling Protein 1 Upregulation in Brown Adipose Tissue. International Journal of Biological Sciences, 8, 1375-1384. [Google Scholar] [CrossRef] [PubMed]
[7] Fang, J.Y., Huang, T.H., Chen, W.J., et al. (2022) Rhubarb Hydroxyanthraquinones Act as Antiobesity Agents to Inhibit Adipogenesis and Enhance Lipolysis. Biomedicine & Pharmacotherapy, 146, Article 112497. [Google Scholar] [CrossRef] [PubMed]
[8] Ji, L. and Gu, H. (2021) The Anti-Obesity Effects of Rhein on Improving Insulin Resistance (IR) and Blood Lipid Levels Are Involved in Endoplasmic Reticulum Stress (ERs), Inflammation, and Oxidative Stress in Vivo and Vitro. Bioengineered, 12, 5797-5813. [Google Scholar] [CrossRef] [PubMed]
[9] Mabwi, H.A., Lee, H.J., Hitayezu, E., Mauliasari, I.R., Pan, C., Mwaikono, K.S., et al. (2023) Emodin Modulates Gut Microbial Community and Triggers Intestinal Immunity. Journal of the Science of Food and Agriculture, 103, 1273-1282. [Google Scholar] [CrossRef] [PubMed]
[10] Otoo, A., Czika, A., Lamptey, J., et al. (2023) Emodin Improves Glucose Metabolism and Ovarian Function in PCOS Mice via the HMGB1/TLR4/NF-κB Molecular Pathway. Reproduction, 166, 323-336. [Google Scholar] [CrossRef] [PubMed]
[11] Li, J., Ding, L., Song, B., Xiao, X., Qi, M., Yang, Q., et al. (2016) Emodin Improves Lipid and Glucose Metabolism in High Fat Diet-Induced Obese Mice through Regulating SREBP Pathway. European Journal of Pharmacology, 770, 99-109. [Google Scholar] [CrossRef] [PubMed]
[12] Shen, C., Pan, Z., Wu, S., Zheng, M., Zhong, C., Xin, X., et al. (2021) Emodin Palliates High-Fat Diet-Induced Nonalcoholic Fatty Liver Disease in Mice via Activating the Farnesoid X Receptor Pathway. Journal of Ethnopharmacology, 279, Article 114340. [Google Scholar] [CrossRef] [PubMed]
[13] Lee, M.S. and Sohn, C.B. (2008) Anti-Diabetic Properties of Chrysophanol and Its Glucoside from Rhubarb Rhizome. Biological and Pharmaceutical Bulletin, 31, 2154-2157. [Google Scholar] [CrossRef] [PubMed]
[14] Kim, S.J., Kim, M.C., Lee, B.J., et al. (2010) Anti-Inflammatory Activity of Chrysophanol through the Suppression of NF-KappaB/Caspase-1 Activation in Vitro and in Vivo. Molecules, 15, 6436-6451. [Google Scholar] [CrossRef] [PubMed]
[15] Gu, M., Zhou, Y., Liao, N., Wei, Q., Bai, Z., Bao, N., et al. (2022) Chrysophanol, a Main Anthraquinone from Rheum palmatum L. (rhubarb), Protects against Renal Fibrosis by Suppressing NKD2/NF-κB Pathway. Phytomedicine, 105, Article 154381. [Google Scholar] [CrossRef] [PubMed]
[16] Chu, X., Zhou, S., Sun, R., Wang, L., Xing, C., Liang, R., et al. (2018) Chrysophanol Relieves Cognition Deficits and Neuronal Loss through Inhibition of Inflammation in Diabetic Mice. Neurochemical Research, 43, 972-983. [Google Scholar] [CrossRef] [PubMed]
[17] Wang, Y.H., Liu, Y.P., Zhu, J.Q., et al. (2023) Physcion Prevents High-Fat Diet-Induced Endothelial Dysfunction by Inhibiting Oxidative Stress and Endoplasmic Reticulum Stress Pathways. European Journal of Pharmacology, 943, Article 175554. [Google Scholar] [CrossRef] [PubMed]
[18] Li, J., Zhu, Y., Xu, M., et al. (2023) Physcion Prevents Induction of Optic Nerve Injury in Rats via Inhibition of the JAK2/STAT3 Pathway. Experimental and Therapeutic Medicine, 26, Article 381.
[19] Ahmad, S., Choe, K., Badshah, H., Ahmad, R., Ali, W., Rehman, I.U., et al. (2024) Physcion Mitigates LPS-Induced Neuroinflammation, Oxidative Stress, and Memory Impairments via TLR-4/NF-κB Signaling in Adult Mice. Pharmaceuticals, 17, Article 1199. [Google Scholar] [CrossRef] [PubMed]
[20] Khuda, F., Zahir, I., Khalil, A.A.K., Ali, S., Ullah, N., Albariqi, A.H., et al. (2023) Preparation, Characterization, and Evaluation of Physcion Nanoparticles for Enhanced Oral Bioavailability: An Attempt to Improve Its Antioxidant and Anticancer Potential. ACS Omega, 8, 33955-33965. [Google Scholar] [CrossRef] [PubMed]
[21] Zhang, L., Dong, R., Wang, Y., Wang, L., Zhou, T., Jia, D., et al. (2021) The Anti-Breast Cancer Property of Physcion via Oxidative Stress-Mediated Mitochondrial Apoptosis and Immune Response. Pharmaceutical Biology, 59, 301-308. [Google Scholar] [CrossRef] [PubMed]
[22] Liu, J., Yang, Y., Zeng, Y., Qin, X., Guo, L. and Liu, W. (2023) Exploring the Mechanism of Physcion-1-O-β-D-Monoglucoside against Acute Lymphoblastic Leukaemia Based on Network Pharmacology and Experimental Validation. Heliyon, 9, e14009. [Google Scholar] [CrossRef] [PubMed]
[23] Chen, C., Gu, J., Wang, J., Wu, Y., Yang, A., Chen, T., et al. (2021) Physcion 8-O-β-Glucopyranoside Ameliorates Liver Fibrosis through Inflammation Inhibition by Regulating SIRT3-Mediated NF-κB P65 Nuclear Expression. International Immunopharmacology, 90, Article 107206. [Google Scholar] [CrossRef] [PubMed]
[24] He, Y., Xi, J., Fang, J., Zhang, B. and Cai, W. (2023) Aloe-Emodin Alleviates Doxorubicin-Induced Cardiotoxicity via Inhibition of Ferroptosis. Free Radical Biology and Medicine, 206, 13-21. [Google Scholar] [CrossRef] [PubMed]
[25] Alshatwi, A.A. and Subash-Babu, P. (2016) Aloe-Emodin Protects RIN-5F (Pancreatic β-Cell) Cell from Glucotoxicity via Regulation of Pro-Inflammatory Cytokine and Downregulation of Bax and Caspase 3. Biomolecules & Therapeutics, 24, 49-56. [Google Scholar] [CrossRef] [PubMed]
[26] Xian, M., Cai, J., Zheng, K., et al. (2021) Aloe-Emodin Prevents Nerve Injury and Neuroinflammation Caused by Ischemic Stroke via the PI3K/AKT/mTOR and NF-κB Pathway. Food & Function, 12, 8056-8067. [Google Scholar] [CrossRef] [PubMed]
[27] Li, X., Yao, M., Li, L., Ma, H., Sun, Y., Lu, X., et al. (2024) Aloe-Emodin Alleviates Cerebral Ischemia-Reperfusion Injury by Regulating Microglial Polarization and Pyroptosis through Inhibition of NLRP3 Inflammasome Activation. Phytomedicine, 129, Article 155578. [Google Scholar] [CrossRef] [PubMed]
[28] Martin-Gallausiaux, C., Marinelli, L., Blottière, H.M., Larraufie, P. and Lapaque, N. (2020) SCFA: Mechanisms and Functional Importance in the Gut. Proceedings of the Nutrition Society, 80, 37-49. [Google Scholar] [CrossRef] [PubMed]
[29] Ji, C., Lu, F., Wu, Y., Lu, Z., Mo, Y., Han, L., et al. (2022) Rhubarb Enema Increasing Short-Chain Fatty Acids That Improves the Intestinal Barrier Disruption in CKD May Be Related to the Regulation of Gut Dysbiosis. BioMed Research International, 2022, Article 1896781. [Google Scholar] [CrossRef] [PubMed]
[30] Zhou, J., Yang, Q., Wei, W., Huo, J. and Wang, W. (2025) Codonopsis pilosula Polysaccharide Alleviates Ulcerative Colitis by Modulating Gut Microbiota and SCFA/GPR/NLRP3 Pathway. Journal of Ethnopharmacology, 337, Article 118928. [Google Scholar] [CrossRef] [PubMed]
[31] Ji, C., Deng, Y., Yang, A., Lu, Z., Chen, Y., Liu, X., et al. (2020) Rhubarb Enema Improved Colon Mucosal Barrier Injury in 5/6 Nephrectomy Rats May Associate with Gut Microbiota Modification. Frontiers in Pharmacology, 11, Article 1092. [Google Scholar] [CrossRef] [PubMed]
[32] Pham, N.H.T., Joglekar, M.V., Wong, W.K.M., Nassif, N.T., Simpson, A.M. and Hardikar, A.A. (2024) Short-Chain Fatty Acids and Insulin Sensitivity: A Systematic Review and Meta-Analysis. Nutrition Reviews, 82, 193-209. [Google Scholar] [CrossRef] [PubMed]
[33] Yang, W., Yu, T., Huang, X., Bilotta, A.J., Xu, L., Lu, Y., et al. (2020) Intestinal Microbiota-Derived Short-Chain Fatty Acids Regulation of Immune Cell IL-22 Production and Gut Immunity. Nature Communications, 11, Article No. 4457. [Google Scholar] [CrossRef] [PubMed]
[34] Singh, N., Gurav, A., Sivaprakasam, S., Brady, E., Padia, R., Shi, H., et al. (2014) Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis. Immunity, 40, 128-139. [Google Scholar] [CrossRef] [PubMed]
[35] Kim, M.H., Kang, S.G., Park, J.H., Yanagisawa, M. and Kim, C.H. (2013) Short-Chain Fatty Acids Activate GPR41 and GPR43 on Intestinal Epithelial Cells to Promote Inflammatory Responses in Mice. Gastroenterology, 145, 396-406.e10. [Google Scholar] [CrossRef] [PubMed]
[36] Tan, J., Ribeiro, R.V., Barker, C., Daien, C., De Abreu Silveira, E., Holmes, A., et al. (2023) Functional Profiling of Gut Microbial and Immune Responses toward Different Types of Dietary Fiber: A Step toward Personalized Dietary Interventions. Gut Microbes, 15, Article 2274127. [Google Scholar] [CrossRef] [PubMed]
[37] Ji, C., Li, Y., Mo, Y., Lu, Z., Lu, F., Lin, Q., et al. (2021) Rhubarb Enema Decreases Circulating Trimethylamine N-Oxide Level and Improves Renal Fibrosis Accompanied with Gut Microbiota Change in Chronic Kidney Disease Rats. Frontiers in Pharmacology, 12, Article 780924. [Google Scholar] [CrossRef] [PubMed]
[38] Chen, S., Henderson, A., Petriello, M.C., Romano, K.A., Gearing, M., Miao, J., et al. (2019) Trimethylamine N-Oxide Binds and Activates PERK to Promote Metabolic Dysfunction. Cell Metabolism, 30, 1141-1151.e5. [Google Scholar] [CrossRef] [PubMed]
[39] Miao, J., Ling, A.V., Manthena, P.V., Gearing, M.E., Graham, M.J., Crooke, R.M., et al. (2015) Flavin-Containing Monooxygenase 3 as a Potential Player in Diabetes-Associated Atherosclerosis. Nature Communications, 6, Article No. 6498. [Google Scholar] [CrossRef] [PubMed]
[40] Benson, T.W., Conrad, K.A., Li, X.S., Wang, Z., Helsley, R.N., Schugar, R.C., et al. (2023) Gut Microbiota-Derived Trimethylamine N-Oxide Contributes to Abdominal Aortic Aneurysm through Inflammatory and Apoptotic Mechanisms. Circulation, 147, 1079-1096. [Google Scholar] [CrossRef] [PubMed]
[41] Hai, S., Li, X., Xie, E., Wu, W., Gao, Q., Yu, B., et al. (2025) Intestinal IL-33 Promotes Microbiota-Derived Trimethylamine N-Oxide Synthesis and Drives Metabolic Dysfunction-Associated Steatotic Liver Disease Progression by Exerting Dual Regulation on Hif-1α. Hepatology, 82, 184-198. [Google Scholar] [CrossRef] [PubMed]
[42] Nian, F., Chen, Y., Xia, Q., Zhu, C., Wu, L. and Lu, X. (2024) Gut Microbiota Metabolite Trimethylamine N-Oxide Promoted NAFLD Progression by Exacerbating Intestinal Barrier Disruption and Intrahepatic Cellular Imbalance. International Immunopharmacology, 142, Article 113173. [Google Scholar] [CrossRef] [PubMed]
[43] Lu, Z., Zeng, Y., Lu, F., Liu, X. and Zou, C. (2015) Rhubarb Enema Attenuates Renal Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats by Alleviating Indoxyl Sulfate Overload. PLOS ONE, 10, e0144726. [Google Scholar] [CrossRef] [PubMed]
[44] Adeva, M.M., Calviño, J., Souto, G. and Donapetry, C. (2012) Insulin Resistance and the Metabolism of Branched-Chain Amino Acids in Humans. Amino Acids, 43, 171-181. [Google Scholar] [CrossRef] [PubMed]
[45] Zhu, T., Zhang, W., Feng, S. and Yu, H. (2016) Emodin Suppresses LPS-Induced Inflammation in RAW264.7 Cells through a PPARγ-Dependent Pathway. International Immunopharmacology, 34, 16-24. [Google Scholar] [CrossRef] [PubMed]
[46] Du, W., Jiang, S., Yin, S., et al. (2024) The Microbiota-Dependent Tryptophan Metabolite Alleviates High-Fat Diet-Induced Insulin Resistance through the Hepatic AhR/TSC2/mTORC1 Axis. Proceedings of the National Academy of Sciences, 121, e2400385121. [Google Scholar] [CrossRef] [PubMed]
[47] Shan, X.M., Lu, C., Chen, C.W., et al. (2025) Tangshenning Formula Alleviates Tubular Injury in Diabetic Kidney Disease via the Sestrin2/AMPK/PGC-1α Axis: Restoration of Mitochondrial Function and Inhibition of Ferroptosis. Journal of Ethnopharmacology, 345, Article 119579. [Google Scholar] [CrossRef] [PubMed]
[48] Du, X.H., Chen, Q.J., Song, J.B., et al. (2020) Rhubarb‐Aconite Decoction (RAD) Drug‐Containing Serum Alleviated Endotoxin‐Induced Oxidative Stress Injury and Inflammatory Response in Caco‐2 Cells in Vitro. Evidence-Based Complementary and Alternative Medicine, 2020, Article 5834502. [Google Scholar] [CrossRef] [PubMed]
[49] Wang, Y., Zhong, S., Yang, K., Luo, R., Dai, L., Zhong, W., et al. (2024) β-1,3-d-Glucan Particles-Based “Nest” Protected Co-Loaded Rhein and Emodin Regulates Microbiota and Intestinal Immunity for Ulcerative Colitis Treatment. International Journal of Biological Macromolecules, 260, Article 128818. [Google Scholar] [CrossRef] [PubMed]
[50] Ramdas Nayak, V.K., Satheesh, P., Shenoy, M.T., et al. (2022) Triglyceride Glucose (TyG) Index: A Surrogate Biomarker of Insulin Resistance. Journal of the Pakistan Medical Association, 72, 986-988. [Google Scholar] [CrossRef] [PubMed]