[1]
|
Harreiter, J. and Roden, M. (2023) Diabetes Mellitus—Definition, Klassifikation, Diagnose, Screening Und Prävention (Update 2023). Wiener klinische Wochenschrift, 135, 7-17. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Trierweiler, H., Kisielewicz, G., Hoffmann Jonasson, T., Rasmussen Petterle, R., Aguiar Moreira, C. and Zeghbi Cochenski Borba, V. (2018) Sarcopenia: A Chronic Complication of Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 10, Article No. 25. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Liccini, A.P. and Malmstrom, T.K. (2016) Frailty and Sarcopenia as Predictors of Adverse Health Outcomes in Persons with Diabetes Mellitus. Journal of the American Medical Directors Association, 17, 846-851. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Cao, L. and Morley, J.E. (2016) Sarcopenia Is Recognized as an Independent Condition by an International Classification of Disease, Tenth Revision, Clinical Modification (ICD-10-CM) Code. Journal of the American Medical Directors Association, 17, 675-677. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Shin, J.Y. (2022) Low Serum Creatinine to Cystatin C Ratio Is Independently Associated with Sarcopenia and High Carotid Plaque Score in Patients with Type 2 Diabetes. Nutrition, Metabolism and Cardiovascular Diseases, 32, 1454-1462. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Nakanishi, S., Iwamoto, M., Shinohara, H., Iwamoto, H. and Kaneto, H. (2020) Impact of Sarcopenia on Glycemic Control and Atherosclerosis in Japanese Patients with Type 2 Diabetes: Cross‐sectional Study Using Outpatient Clinical Data. Geriatrics & Gerontology International, 20, 1196-1201. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Bhasin, S., Travison, T.G., Manini, T.M., Patel, S., Pencina, K.M., Fielding, R.A., et al. (2020) Sarcopenia Definition: The Position Statements of the Sarcopenia Definition and Outcomes Consortium. Journal of the American Geriatrics Society, 68, 1410-1418. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Gandham, A., Mesinovic, J., Jansons, P., Zengin, A., Bonham, M.P., Ebeling, P.R., et al. (2021) Falls, Fractures, and Areal Bone Mineral Density in Older Adults with Sarcopenic Obesity: A Systematic Review and Meta‐Analysis. Obesity Reviews, 22, e13187. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Jang, H.C. (2016) Sarcopenia, Frailty, and Diabetes in Older Adults. Diabetes & Metabolism Journal, 40, 182-189. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Ogama, N., Sakurai, T., Kawashima, S., Tanikawa, T., Tokuda, H., Satake, S., et al. (2019) Association of Glucose Fluctuations with Sarcopenia in Older Adults with Type 2 Diabetes Mellitus. Journal of Clinical Medicine, 8, Article 319. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Seo, D.H., Lee, Y.H., Suh, Y.J., et al. (2020) Low Muscle Mass Is Associated with Carotid Atherosclerosis in Patients with Type 2 Diabetes. Atherosclerosis, 305, 19-25.
|
[12]
|
He, N., Zhang, Y., Zhang, L., Zhang, S. and Ye, H. (2021) Relationship between Sarcopenia and Cardiovascular Diseases in the Elderly: An Overview. Frontiers in Cardiovascular Medicine, 8, Article 743710. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
von Haehling, S., Ebner, N., dos Santos, M.R., Springer, J. and Anker, S.D. (2017) Muscle Wasting and Cachexia in Heart Failure: Mechanisms and Therapies. Nature Reviews Cardiology, 14, 323-341. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Huang, Y., Li, J., Chen, J., Zhou, Y., Cai, A., Huang, C., et al. (2017) The Association of Circulating miR-29b and Interleukin-6 with Subclinical Atherosclerosis. Cellular Physiology and Biochemistry, 44, 1537-1544. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Palanca, A., Castelblanco, E., Betriu, À., Perpiñán, H., Soldevila, B., Valdivielso, J.M., et al. (2019) Subclinical Atherosclerosis Burden Predicts Cardiovascular Events in Individuals with Diabetes and Chronic Kidney Disease. Cardiovascular Diabetology, 18, Article No. 93. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Kashani, K.B., Frazee, E.N., Kukrálová, L., Sarvottam, K., Herasevich, V., Young, P.M., et al. (2017) Evaluating Muscle Mass by Using Markers of Kidney Function: Development of the Sarcopenia Index. Critical Care Medicine, 45, e23-e29. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Kashani, K., Rosner, M.H. and Ostermann, M. (2020) Creatinine: From Physiology to Clinical Application. European Journal of Internal Medicine, 72, 9-14. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Herget-Rosenthal, S., Trabold, S., Huesing, J., Heemann, U., Philipp, T. and Kribben, A. (2000) Cystatin C—An Accurate Marker of Glomerular Filtration Rate after Renal Transplantation? Transplant International, 13, 285-289. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Barreto, E.F., Kanderi, T., DiCecco, S.R., Lopez‐Ruiz, A., Poyant, J.O., Mara, K.C., et al. (2018) Sarcopenia Index Is a Simple Objective Screening Tool for Malnutrition in the Critically Ill. Journal of Parenteral and Enteral Nutrition, 43, 780-788. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
韩雪, 陈明明, 张露, 等. 肌肉减少症指数在慢性阻塞性肺疾病中的研究进展[J]. 临床肺科杂志, 2025, 30(2): 301-304.
|
[21]
|
马凌, 于燕. 肌少症指数与老年2型糖尿病肾病的相关性分析[J]. 中外女性健康研究, 2024(9): 49-51, 102.
|