高尿酸血症与心血管疾病相关性的研究进展
Research Progress on the Correlation between Hyperuricemia and Cardiovascular Diseases
摘要: 高尿酸血症是一种慢性代谢性疾病,其特点是血尿酸水平升高,部分人群可发展为痛风。随着生活水平的提高,高尿酸血症已经成为一种常见病,并有逐渐年轻化的趋势。高尿酸血症目前已被证实与心血管疾病的发生密切相关,许多的前瞻性和临床研究均发现高尿酸血症为心血管疾病的危险因素。高尿酸血症与诸多临床疾病之间有着密切的联系和复杂的分子生物学机制。本文就高尿酸血症与心血管疾病的相关性,引起心血管疾病的潜在机制进行阐述,旨在为同时患有高尿酸血症和心血管疾病患者的诊治提供参考。
Abstract: Hyperuricemia is a chronic metabolic disease characterized by elevated blood uric acid levels, and some people may develop gout. With the improvement of living standards, hyperuricemia has become a common disease and is showing a trend of gradually affecting younger people. Hyperuricemia has been confirmed to be closely related to the occurrence of cardiovascular diseases. Many prospective and clinical studies have found that hyperuricemia is a risk factor for cardiovascular diseases. Hyperuricemia has a close connection and complex molecular biological mechanism with many clinical diseases. This article elaborates on the correlation between hyperuricemia and cardiovascular diseases and the potential mechanisms causing cardiovascular diseases, aiming to provide references for the diagnosis and treatment of patients with both hyperuricemia and cardiovascular diseases.
文章引用:黄丽媛. 高尿酸血症与心血管疾病相关性的研究进展[J]. 临床医学进展, 2025, 15(10): 209-216. https://doi.org/10.12677/acm.2025.15102746

1. 引言

高尿酸血症(Hyperuricemia, HUA)是由于肾脏或肾外途径的尿酸排泄减少或者尿酸生成过多所致。其发生受到尿酸转运蛋白相关遗传倾向的影响,同时与内脏脂肪堆积密切相关。该疾病的典型并发症为痛风,由尿酸单钠晶体沉积所诱发。尿酸(UA)主要通过肾脏随尿液排出及肠道随粪便排泄的途径清除体外。当持续摄入高嘌呤食物、长期饮酒,或出现肾脏功能障碍、肿瘤性疾病时,易引发体内尿酸排泄通道受阻,进而导致尿酸在体内的异常蓄积,最终导致HUA。血清尿酸(SUA)由几个显著的相互作用引起:膳食嘌呤摄入量、嘌呤代谢程度以及尿液和胃肠道排泄/分解率。黄嘌呤氧化酶(XOD)存在于小肠的肠粘膜以及肝脏中,当饮食通过胃肠道吸收时,黄嘌呤氧化酶将饮食中的嘌呤转化为UA [1]

2. 高尿酸血症及其与心血管病相关性的概述

随着社会的进展,人们生活方式及饮食结构的不断改变,HUA逐渐成为危害人们身体健康的又一慢性代谢性疾病。流行病学研究显示,2018~2019年我国成人HUA的总体患病率约为14.0% [2]。HUA是一个慢性、持续进展的病理生理过程,多数患者在疾病早期可无明显症状或症状不具备典型特征,但随着病程的延长和病情的不断加重,其临床表现可能逐渐显现并恶化,可出现心血管、肾脏、关节等组织系统的受累。2019年我国指南建议依据24 h尿尿酸测定将HUA分为生成过多型、排泄减少型、其他型、混合型4种类型,以指导HUA患者的个体化治疗[3]。HUA不仅能诱发痛风,也是心血管疾病(cardiovascular disease, CVD),糖尿病(Diabetes Mellitus, DM),慢性肾病(Chronic Kidney Disease, CKD)的又一危险因素[4]

根据世界卫生组织的数据,2015年约有50万人死于某种形式的CVD。截至目前来说CVD的发生风险仍然很高,仍是导致死亡的主要原因,在一般人群中,到45岁时,患CVD的风险高达9% [2]。CVD的危险因素包括吸烟、高血压、糖尿病、胆固醇和血脂升高、营养不良和肥胖。血清尿酸升高,引发机体内氧化应激、内皮功能障碍、炎症反应和激活肾素–血管紧张素–醛固酮(RAAS)系统,与冠心病(Coyonary Heart Disease, CHD)、高血压(Hypertension, HTN)、心力衰竭(Heart Failure, HF)、心房颤动(Atrial Fibrillation, AF)和肺动脉高压(Pulmonary Hypertension, PH)等疾病均密切相关[5]

2.1. 高尿酸血症与冠状动脉粥样硬化性心脏病

HUA与CHD的发展密切相关,有一研究花费了平均约16年的时间随访五千多例25~74岁的患者,结果显示SUA的升高与CHD的死亡风险相关[6]。CHD的严重程度与SUA的升高存在显著相关性,尤其是在年龄大于80岁的群体中,女性患CHD的概率明显大于男性,且女性随着年龄增长,SUA水平及患痛风的概率也逐渐升高,男性则相反[7]。一项研究强调了SUA与原发性高血压患者患急性冠脉综合征(ACS)之间的密切关系,随着SUA水平升高,ACS的风险显著增加,SUA水平高于452.63 umol/L的患者比低于310.43 umol/L的患者患ACS 的风险高出62% [8]。并且,SUA > 8.0 mg/dL已被确定为2年内心源性死亡的重要标志物,其部分原因是SUA升高对ACS个体斑块的变化有一定影响[9]。在非ST段抬高型ACS (NSTE-ACS)患者中,SUA升高对于患者短期、中期以及长期预后均有一定的负面影响,与低水平SUA的个体相比,高水平SUA个体住院、死亡和中风的风险更高[10]。此外,在ACS以及脂蛋白(a) (Lp(a))和低密度脂蛋白胆固醇(LDL-c)水平升高的患者中,高水平的SUA可能会降低心肌血运重建,但在ACS急性期,高尿酸还具有保护作用,但需要进一步研究来证实这一假设[11]。综合而言,UA不能完全作为CHD的结局和预后的判断标准,还需综合考虑性别及年龄特异性的影响。

2.2. 高尿酸血症与心肌梗死

心肌梗死(AMI)的特征是心肌不可逆性坏死,其主要原因是冠状动脉长时间缺血和缺氧,与CAD最相关。先前的许多研究提出,HUA与急性AMI的发生之间存在潜在关联,SUA水平升高也有可能增加AMI的风险。SUA水平可以作为女性人群CAD严重程度的替代标志物[12]。对SUA变化的动态监测有助于早期识别有AMI风险和因其死亡风险的亚组[13]。在某项前瞻性队列研究中,招募了无AMI病史的参与者并对其进行了长时间随访,结合SUA水平的变化和CVD发生率的监测表明:SUA同等水平升高,是否早期暴露于HUA环境,对AMI的发生和总体死亡率有很大的影响[14]。随后有研究对诊断为ST段抬高型AMI患者3~5天和4~6个月的心脏磁共振成像进行分析,显示患有HUA的患者在两个阶段中AMI的程度都更严重,这项研究的结果表明,SUA水平升高与冠状动脉病变的严重程度之间存在统计学上的显着关联[15]。这些研究共同表明长期暴露于高水平的SUA可能会增加未来患AMI的风险,促进CHD的进展。

2.3. 高尿酸血症与心力衰竭

SUA可作为预测AMI(急性心肌梗死)HF发生的潜在指标。在HF患者中,不仅观察到SUA与心室功能之间存在相互作用,而且还与死亡率和预后结局增加有关[16]。在没有明显心脏疾病的一般人群中,SUA水平升高与亚临床左心衰竭独立相关[17]。Huang等人对因急性HF入院的患者进行研究,发现SUA与HF患者的死亡风险呈正相关[18]。一项关于心肾代谢运动独立数据库的研究显示,中至重度慢性HF患者的SUA水平升高表明预后更差[19]。随后的一项RELAX实验结果显示,SUA较高的心力衰竭患者相比于SUA较低的患者,更易发生合并症且其心肺运动测试的水平更低[20]。Wu等人对HUA无症状老年组随访4年发现,HUA组发生HF事件的可能性比对照组高2.34倍,这表明SUA可以作为一种预测老年患者充血性HF发作可能性的潜在生物标志物[21],并且SUA与其他心肌损伤标志物(包括脉压和N端B型钠尿肽前体(pro-BNP))联合使用可显著提高HF患者的预后价值[22]。虽然目前尚无确凿的实验证据表明HUA与HF进展之间存在直接相关性,但临床数据检查表明,降低SUA水平可降低HF患者的死亡率[23]并增强血管内皮功能[24]

2.4. 高尿酸血症与高血压

SUA的升高可引起血压的升高,降低SUA水平后血压也会随之下降。有研究显示,在排除一些影响因素后,SUA每升高1 mg/dL,HTN的发病率升高1.13% [25]。2001年,一项动物实验证实了SUA与HTN发展之间的正相关关系,给予SD大鼠活性尿酸酶竞争性抑制剂诱导HUA,SUA升高后,血压随之升高,SUA每升高10.0 mg/dL,血压就会增加5 mmHg,但使用黄嘌呤氧化酶抑制剂或尿酸排泄药物可阻止该组高血压的发生[26]。Feig等人招募30名年龄在11~17岁之间,且SUA ≥ 6 mg/dL的新诊断的HTN患者,给予别嘌呤醇治疗后患者平均收缩压降低6.9 mmHg,舒张压降低5.1 mmHg [27]

2.5. 高尿酸血症与心房颤动

AF是最常见的心律失常形式,HUA已被公认为AF的独立危险因素[28]。SUA水平每增加1 mg/dL,男性患AF的风险增加15%,女性增加35% [29]。Kuwabara等人进行了一项大型横断面研究,观察到与非AF组相比,AF组的SUA水平明显更高,此外,在没有肾功能损害和慢性基础疾病的情况下,并发HUA的患者发生AF风险的比值比为3.19 [30]。在Mantovani等的一项横断面研究,纳入了诊断为T2DM并发HUA的患者,其24小时动态心电图监测数据显示,合并DM和HUA的个体发生阵发性AF的可能性显著增加4倍[31]。此外,研究显示超过5.0 mg/dL的SUA会显着增加AF的风险,表明SUA和AF正相关[32]。因此,解决HUA或痛风可能为AF患者提供潜在益处。

3. 高尿酸血症引起心血管病的可能机制

UA本身作为一种抗氧化物质,当其在人体中维持适宜浓度时,能够有效抵御氧化应激反应,对维持生理平衡具有重要意义[33]。但有越来越多的证据表明,SUA升高可引起细胞内氧化应激、血管炎症和内皮功能障碍等。尽管详细的机制尚无定论,但一些动物实验和人体研究都表明,SUA的升高可能通过增加氧化应激和炎症来诱导内皮功能障碍。另外,血管平滑肌细胞的增殖和氧化应激也有可能是UA激活RAAS系统所导致,这对各种CVD的发展也具有重要影响。

3.1. 内皮功能障碍

内皮功能障碍即是内皮细胞介导的血管舒张与收缩功能之间平衡的破坏,导致其调节机制失调。尿酸单钠(MSU)沉积在血管壁,直接损伤内皮细胞和平滑肌细胞,诱导并加速动脉粥样硬化。一氧化氮(NO)是血管内皮细胞合成释放的活性分子,发挥舒张血管、降低血压、维持内皮细胞正常功能的重要作用,HUA通过诱导炎症反应、氧化应激等方式,抑制内皮NO的释放,进而导致血管内皮功能受损,冠状动脉血流速度也随之降低,增加CVD的发病风险。有实验研究表明,UA通过尿酸转运蛋白吸收到内皮细胞中,并诱导氧化应激、炎症或血管平滑肌细胞增殖,降低内皮NO生物利用度,从而导致内皮功能障碍[34]。还有研究表明,高UA导致血管紧张素II及氧化应激增加,引起内皮细胞衰老及死亡,进而导致内皮功能障碍[35]

3.2. 炎症

HUA会引起全身各个器官的炎症反应。波士顿某医疗中心研究发现,痛风急性发作期间炎症因子增加(如红细胞沉降率和C反应蛋白等),且炎症因子的增加与涉及的关节数量存在一定相关性[36]。Li H等[37]发现尿酸通过NLRP3炎症小体介导的VSMC增殖诱导炎症,AMPK和NF-κB是介导炎症反应和参与UA诱导的炎症因子表达的主要通路。MSU在滑膜中沉积引起的炎症反应可被Toll样受体(TLR)识别,进而激活NALP3炎症小体,这是IL-1β分泌最重要的机制,MSU触发的中性粒细胞还可粘附在内皮细胞上,穿过血管壁并到达炎症部位,通过产生免疫介质促进促炎反应。一项研究纳入64例HUA患者,观测患者C反应蛋白及血脂水平,结果显示患者体内浆C反应蛋白升高、血脂代谢紊乱,这与患者体内UA水平升高有密切关系,动脉粥样硬化实质为慢性炎症的过程,脂代谢紊乱同样是CVD的危险因素,故SUA长期升高可促进动脉粥样硬化的发生,还作为预测冠状动脉事件的重要信号[38]

3.3. 氧化应激

嘌呤是产生UA的主要物质,在人体内经过黄嘌呤氧化酶(XOD)以及次黄嘌呤氧化酶的代谢最终生成尿酸,XOD是人体内ROS产生的主要来源,上调的XOD可通过其衍生的UA和ROS诱导的氧化应激促进诸多CVD的发生发展。有证据表明,UA可能通过产生NADPH氧化酶而促进细胞内环境的氧化应激,并且UA可以反映XOD的潜在活性[39]。ROS和UA水平的升高会引发过度的氧化应激反应,促使蛋白质和脂质发生过氧化损伤,诱导DNA突变,并最终造成心肌细胞无法逆转的损害。Yu MA等人[40]发现血管内皮细胞中RAAS系统的激活是UA诱导的内皮功能障碍–氧化应激的另一机制。ROS与内皮细胞衍生的一氧化氮(NO)相互作用,降低NO的生物利用度[41],产生一系列氧化应激过程,导致血管内皮功能障碍。另一项研究[42]报道,HUA患者体内大量ROS可以抑制肌浆网的Ca2+ ATP酶,诱导心脏收缩力降低。

4. 降尿酸治疗的心血管获益

当前临床实践中,降尿酸药物主要分为两大治疗策略:(1) 通过抑制尿酸生成机制,以黄嘌呤氧化酶抑制剂为主,如别嘌呤醇、非布司他等;(2) 通过促进尿酸排泄途径,代表性药物包括苯溴马隆、丙磺舒等。

别嘌呤醇在一些研究中已被证明有助于降低血压。Feig等人招募30名年龄在11至17岁之间,且SUA大于或等于6 mg/dL的新诊断HTN患者,给予别嘌呤醇治疗后患者平均收缩压降低6.9 mmHg,舒张压降低5.1 mmHg [27]。Beattie等人的一项回顾性队列研究纳入了年龄超过65岁的HTN患者,在治疗前服用别嘌呤醇,并随访血压读数,结果显示别嘌呤醇的使用对降低收缩压和舒张压独立相关,高剂量别嘌呤醇组的降压效果更显著,但血压的变化与基线尿酸水平无关,这项研究显示了降SUA与降血压之间的关系,使人们更加相信SUA升高与HTN的发生有关[43]。研究表明,别嘌呤醇可以显著降低左室射血分数并改善肾小球滤过率[44]。在一项包含65例冠状动脉疾病患者的随机对照试验中,别嘌呤醇显著减短心绞痛时间,延长总运动时间和ST段压低的时间[45]

非布司他是一种非嘌呤类似物黄嘌呤氧化酶抑制剂,可减少UA的产生量。一研究发现,经非布司他标准治疗且尿酸达标后,痛风合并CHD患者内皮功能显著改善,1年内重大不良心血管事件发生率显著降低,且患者SUA降低水平与内皮细胞微粒(EMPs)降低水平呈正相关[46]。非布司他与别嘌呤醇一样,已被证明可以降低伴有HTN且肾功能正常的HUA患者的收缩压。一项实验将121名同时患有HUA和HTN的受试者随机分为两组,一组每天接受80 mg非布司他,另一组服用安慰剂药丸,治疗六周后,治疗组的患者中,血尿酸,收缩压和舒张压均有统计学意义下降,分别为6.6 mmHg和3.3 mmHg [47]

5. 小结

综上所述,高尿酸血症与心血管疾病的发生及进展存在紧密关联,二者在病理机制上互为影响。尿酸作为心血管疾病的重要风险因素,定期检测尿酸水平并及时进行干预,是心血管疾病防治策略中不可或缺的一环。在今后的临床研究中可进一步探索降尿酸幅度及不同类型降尿酸药物对于心血管系统的获益程度;或通过抑制炎症或内皮细胞损伤等方式降低高尿酸对于心血管系统的损伤等。现如今对高尿酸血症与心血管疾病之间的内在机制仍无定论,但内皮功能障碍一直都是心血管疾病发生发展的重要环节,可就此方面在动物实验中详细论证。

参考文献

[1] So, A. and Thorens, B. (2010) Uric Acid Transport and Disease. Journal of Clinical Investigation, 120, 1791-1799. [Google Scholar] [CrossRef] [PubMed]
[2] Freilich, M., Arredondo, A., Zonnoor, S.L. and McFarlane, I.M. (2022) Elevated Serum Uric Acid and Cardiovascular Disease: A Review and Potential Therapeutic Interventions. Cureus, 14, e23582. [Google Scholar] [CrossRef] [PubMed]
[3] 李长贵, 吕朝晖, 孙明姝, 等. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
[4] Liu, J., Chen, L., Yuan, H., Huang, K., Li, G., Sun, N., et al. (2021) Survey on Uric Acid in Chinese Subjects with Essential Hypertension (SUCCESS): A Nationwide Cross-Sectional Study. Annals of Translational Medicine, 9, Article 27. [Google Scholar] [CrossRef] [PubMed]
[5] Zhou, Y., Chen, M., Zheng, J., et al. (2023) Insights into the Relationship between Serum Uric Acid and Pulmonary Hypertension. Molecular Medicine Reports, 29, Article No. 10.
[6] Fang, J. and Alderman, M.H. (2000) Serum Uric Acid and Cardiovascular Mortality: The NHANES I Epidemiologic Follow-Up Study, 1971-1992. Journal of the American Medical Association, 283, 2404-2410. [Google Scholar] [CrossRef] [PubMed]
[7] Guo, G., Huang, Z., Wang, S. and Chen, X. (2020) Sex Differences in Uric Acid and NT-Pro BNP Assessments during Coronary Severity. Medicine, 99, e19653. [Google Scholar] [CrossRef] [PubMed]
[8] Shen, G., Huang, J., Yu, Y., Liu, L., Chen, C., Zhang, B., et al. (2019) J-Shaped Association between Serum Uric Acid and Acute Coronary Syndrome in Patients with Essential Hypertension. Postgraduate Medical Journal, 96, 73-78. [Google Scholar] [CrossRef] [PubMed]
[9] Kobayashi, N., Asai, K., Tsurumi, M., Shibata, Y., Okazaki, H., Shirakabe, A., et al. (2018) Impact of Accumulated Serum Uric Acid on Coronary Culprit Lesion Morphology Determined by Optical Coherence Tomography and Cardiac Outcomes in Patients with Acute Coronary Syndrome. Cardiology, 141, 190-198. [Google Scholar] [CrossRef] [PubMed]
[10] Dyrbuś, M., Desperak, P., Pawełek, M., et al. (2023) Serum Uric Acid Is an Independent Risk Factor of Worse Mid-and Long-Term Outcomes in Patients with Non-ST-Segment Elevation Acute Coronary Syndromes. Cardiology Journal, 30, 984-994.
[11] Lin, Y., Hidru, T.H., Fan, R., Gao, J., Li, H., Yang, X., et al. (2021) The Relationship between Serum Uric Acid at Different Concentrations of Lipid Indices and the Risk of Myocardial Revascularization in Patients with Acute Coronary Syndrome: A Retrospective Analysis. Frontiers in Cardiovascular Medicine, 8, Article 732715. [Google Scholar] [CrossRef] [PubMed]
[12] Casiglia, E., Tikhonoff, V., Virdis, A., Masi, S., Barbagallo, C.M., Bombelli, M., et al. (2020) Serum Uric Acid and Fatal Myocardial Infarction: Detection of Prognostic Cut-Off Values: The URRAH (Uric Acid Right for Heart Health) Study. Journal of Hypertension, 38, 412-419. [Google Scholar] [CrossRef] [PubMed]
[13] Tian, X., Zuo, Y., Chen, S., Wu, S., Wang, A. and Luo, Y. (2022) High Serum Uric Acid Trajectories Are Associated with Risk of Myocardial Infarction and All-Cause Mortality in General Chinese Population. Arthritis Research & Therapy, 24, Article No. 149. [Google Scholar] [CrossRef] [PubMed]
[14] Tian, X., Wang, A., Wu, S., Zuo, Y., Chen, S., Zhang, L., et al. (2021) Cumulative Serum Uric Acid and Its Time Course Are Associated with Risk of Myocardial Infarction and All-Cause Mortality. Journal of the American Heart Association, 10, e020180. [Google Scholar] [CrossRef] [PubMed]
[15] Mandurino-Mirizzi, A., Crimi, G., Raineri, C., Pica, S., Ruffinazzi, M., Gianni, U., et al. (2018) Elevated Serum Uric Acid Affects Myocardial Reperfusion and Infarct Size in Patients with St-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Journal of Cardiovascular Medicine, 19, 240-246. [Google Scholar] [CrossRef] [PubMed]
[16] Deng, X., Yi, H., Xiao, J., Zhang, X., Zhao, J., Sun, M., et al. (2023) Serum Uric Acid: A Risk Factor for Right Ventricular Dysfunction and Prognosis in Heart Failure with Preserved Ejection Fraction. Frontiers in Endocrinology, 14, Article 1143458. [Google Scholar] [CrossRef] [PubMed]
[17] Nakanishi, K., Daimon, M., Yoshida, Y., Ishiwata, J., Sawada, N., Hirokawa, M., et al. (2020) Serum Uric Acid Level and Subclinical Left Ventricular Dysfunction: A Community-Based Cohort Study. ESC Heart Failure, 7, 1031-1038. [Google Scholar] [CrossRef] [PubMed]
[18] Huang, W., Hsu, P., Cheng, H., Lu, D., Cheng, Y., Guo, C., et al. (2016) Determinants and Prognostic Impact of Hyperuricemia in Hospitalization for Acute Heart Failure. Circulation Journal, 80, 404-410. [Google Scholar] [CrossRef] [PubMed]
[19] Piepoli, M.F., Salvioni, E., Corrà, U., Doni, F., Bonomi, A., La Gioia, R., et al. (2020) Increased Serum Uric Acid Level Predicts Poor Prognosis in Mildly Severe Chronic Heart Failure with Reduced Ejection Fraction. An Analysis from the MECKI Score Research Group. European Journal of Internal Medicine, 72, 47-52. [Google Scholar] [CrossRef] [PubMed]
[20] Carnicelli, A.P., Sun, J., Alhanti, B., Bjursell, M., Perl, S., Lytle, B., et al. (2020) Elevated Uric Acid Prevalence and Clinical Outcomes in Patients with Heart Failure with Preserved Ejection Fraction: Insights from Relax. The American Journal of Medicine, 133, e716-e721. [Google Scholar] [CrossRef] [PubMed]
[21] Wu, X., Jian, G., Tang, Y., Cheng, H., Wang, N. and Wu, J. (2020) Asymptomatic Hyperuricemia and Incident Congestive Heart Failure in Elderly Patients without Comorbidities. Nutrition, Metabolism and Cardiovascular Diseases, 30, 666-673. [Google Scholar] [CrossRef] [PubMed]
[22] Yılmaz Öztekin, G.M., Genç, A., Çağırcı, G. and Arslan, Ş. (2022) Prognostic Value of the Combination of Uric Acid and NT-proBNP in Patients with Chronic Heart Failure. Hellenic Journal of Cardiology, 65, 35-41. [Google Scholar] [CrossRef] [PubMed]
[23] Nishino, M., Egami, Y., Kawanami, S., et al. (2022) Lowering Uric Acid May Improve Prognosis in Patients with Hyperuricemia and Heart Failure with Preserved Ejection Fraction. Journal of the American Heart Association, 11, e026301.
[24] Naganuma, J., Sakuma, M., Kitahara, K., Kato, T., Yokomachi, J., Yamauchi, F., et al. (2023) Optimal Uric Acid Reduction to Improve Vascular Endothelial Function in Patients with Chronic Heart Failure Complicated by Hyperuricemia. Hypertension Research, 46, 688-696. [Google Scholar] [CrossRef] [PubMed]
[25] Yanai, H., Adachi, H., Hakoshima, M. and Katsuyama, H. (2021) Molecular Biological and Clinical Understanding of the Pathophysiology and Treatments of Hyperuricemia and Its Association with Metabolic Syndrome, Cardiovascular Diseases and Chronic Kidney Disease. International Journal of Molecular Sciences, 22, Article 9221. [Google Scholar] [CrossRef] [PubMed]
[26] Mazzali, M., Hughes, J., Kim, Y., Jefferson, J.A., Kang, D., Gordon, K.L., et al. (2001) Elevated Uric Acid Increases Blood Pressure in the Rat by a Novel Crystal-Independent Mechanism. Hypertension, 38, 1101-1106. [Google Scholar] [CrossRef] [PubMed]
[27] Feig, D.I., Soletsky, B. and Johnson, R.J. (2008) Effect of Allopurinol on Blood Pressure of Adolescents with Newly Diagnosed Essential Hypertension. Journal of the American Medical Association, 300, 924-932. [Google Scholar] [CrossRef] [PubMed]
[28] Hong, M., Park, J., Yang, P., Hwang, I., Kim, T., Yu, H.T., et al. (2020) A Mendelian Randomization Analysis: The Causal Association between Serum Uric Acid and Atrial Fibrillation. European Journal of Clinical Investigation, 50, e13300. [Google Scholar] [CrossRef] [PubMed]
[29] Xiong, J., Shao, W., Yu, P., Ma, J., Liu, M., Huang, S., et al. (2022) Hyperuricemia Is Associated with the Risk of Atrial Fibrillation Independent of Sex: A Dose-Response Meta-Analysis. Frontiers in Cardiovascular Medicine, 9, Article 865036. [Google Scholar] [CrossRef] [PubMed]
[30] Kuwabara, M., Niwa, K., Nishihara, S., Nishi, Y., Takahashi, O., Kario, K., et al. (2017) Hyperuricemia Is an Independent Competing Risk Factor for Atrial Fibrillation. International Journal of Cardiology, 231, 137-142. [Google Scholar] [CrossRef] [PubMed]
[31] Mantovani, A., Rigolon, R., Civettini, A., Bolzan, B., Morani, G., Bonapace, S., et al. (2017) Hyperuricemia Is Associated with an Increased Prevalence of Paroxysmal Atrial Fibrillation in Patients with Type 2 Diabetes Referred for Clinically Indicated 24-H Holter Monitoring. Journal of Endocrinological Investigation, 41, 223-231. [Google Scholar] [CrossRef] [PubMed]
[32] Zhang, J., Zheng, R., Li, H. and Guo, J. (2020) Serum Uric Acid and Incident Atrial Fibrillation: A Systematic Review and Dose-Response Meta-Analysis. Clinical and Experimental Pharmacology and Physiology, 47, 1774-1782. [Google Scholar] [CrossRef] [PubMed]
[33] 蔺雅娟, 杨晓蕾, 夏云龙. 不同尿酸水平与心血管疾病之间的关系[J]. 心血管病学进展, 2020, 41(9): 911-913+921.
[34] Maruhashi, T., Hisatome, I., Kihara, Y. and Higashi, Y. (2018) Hyperuricemia and Endothelial Function: From Molecular Background to Clinical Perspectives. Atherosclerosis, 278, 226-231. [Google Scholar] [CrossRef] [PubMed]
[35] Li, P., Zhang, L., Zhang, M., et al. (2016) Uric Acid Enhances PKC-Dependent eNOS Phosphorylation and Mediates Cellular ER Stress: A Mechanism for Uric Acid-Induced Endothelial Dysfunction. International Journal of Molecular Medicine, 37, 989-997.
[36] Roseff, R., Wohlgethan, J.R., Sipe, J.D., et al. (1987) The Acute Phase Response in Gout. The Journal of Rheumatology, 14, 974-977.
[37] Li, H., Qian, F., Liu, H., et al. (2019) Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via a Nod-Like Receptor Protein 3 (NLRP3)-Inflammasome-Dependent Mechanism. Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, 25, Article 8457.
[38] 于同芳, 郭永生, 王璠, 等. 无症状高尿酸血症患者血尿酸浓度分层与血脂, 血糖的关系[J]. 河北医科大学学报, 2021, 42(3): 344-347.
[39] Battelli, M.G., Bortolotti, M., Polito, L. and Bolognesi, A. (2018) The Role of Xanthine Oxidoreductase and Uric Acid in Metabolic Syndrome. Biochimica et Biophysica ActaMolecular Basis of Disease, 1864, 2557-2565. [Google Scholar] [CrossRef] [PubMed]
[40] Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. [Google Scholar] [CrossRef] [PubMed]
[41] Karantalis, V., Schulman, I.H. and Hare, J.M. (2013) Nitroso-Redox Imbalance Affects Cardiac Structure and Function. Journal of the American College of Cardiology, 61, 933-935. [Google Scholar] [CrossRef] [PubMed]
[42] Gladden, J.D., Zelickson, B.R., Guichard, J.L., Ahmed, M.I., Yancey, D.M., Ballinger, S., et al. (2013) Xanthine Oxidase Inhibition Preserves Left Ventricular Systolic but Not Diastolic Function in Cardiac Volume Overload. American Journal of Physiology-Heart and Circulatory Physiology, 305, H1440-H1450. [Google Scholar] [CrossRef] [PubMed]
[43] Beattie, C.J., Fulton, R.L., Higgins, P., Padmanabhan, S., McCallum, L., Walters, M.R., et al. (2014) Allopurinol Initiation and Change in Blood Pressure in Older Adults with Hypertension. Hypertension, 64, 1102-1107. [Google Scholar] [CrossRef] [PubMed]
[44] Erdogan, D., Tayyar, S., Uysal, B.A., Icli, A., Karabacak, M., Ozaydin, M., et al. (2012) Effects of Allopurinol on Coronary Microvascular and Left Ventricular Function in Patients with Idiopathic Dilated Cardiomyopathy. Canadian Journal of Cardiology, 28, 721-727. [Google Scholar] [CrossRef] [PubMed]
[45] Noman, A., Ang, D.S., Ogston, S., Lang, C.C. and Struthers, A.D. (2010) Effect of High-Dose Allopurinol on Exercise in Patients with Chronic Stable Angina: A Randomised, Placebo Controlled Crossover Trial. The Lancet, 375, 2161-2167. [Google Scholar] [CrossRef] [PubMed]
[46] 周玮, 邓毅凡, 张晶. 降尿酸治疗对痛风合并冠心病患者外周血内皮微粒含量及主要不良心血管事件的影响[J]. 实用临床医药杂志, 27(3): 60-63.
[47] Gunawardhana, L., McLean, L., Punzi, H.A., Hunt, B., Palmer, R.N., Whelton, A., et al. (2017) Effect of Febuxostat on Ambulatory Blood Pressure in Subjects with Hyperuricemia and Hypertension: A Phase 2 Randomized Placebo‐Controlled Study. Journal of the American Heart Association, 6, e006683. [Google Scholar] [CrossRef] [PubMed]