[1]
|
Sterner, R.C. and Sterner, R.M. (2021) CAR-T Cell Therapy: Current Limitations and Potential Strategies. Blood Cancer Journal, 11, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Brudno, J.N. and Kochenderfer, J.N. (2024) Current Understanding and Management of CAR T Cell-Associated Toxicities. Nature Reviews Clinical Oncology, 21, 501-521. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Peng, X., Zhang, X., Zhao, M., Chang, D., Yang, L., Mei, H., et al. (2024) Coagulation Abnormalities Associated with CAR-T-Cell Therapy in Haematological Malignancies: A Review. British Journal of Haematology, 205, 420-428. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Mei, H., Chen, F., Han, Y., Hou, M., Huang, H., Huang, X., et al. (2022) Chinese Expert Consensus on the Management of Chimeric Antigen Receptor T Cell Therapy-Associated Coagulopathy. Chinese Medical Journal, 135, 1639-1641. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Liu, R., Lv, Y., Hong, F., Zhao, W., Lei, B., Liu, J., et al. (2023) A Comprehensive Analysis of Coagulopathy during Anti‐B Cell Maturation Antigen Chimeric Antigen Receptor‐t Therapy in Multiple Myeloma, a Retrospective Study Based on LEGEND‐2. Hematological Oncology, 41, 704-717. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Arai, Y. (2022) Coagulopathy Related to CAR-T Cell Therapy. Rinsho Ketsueki, 63, 1205-1211.
|
[7]
|
Jiang, H., Liu, L., Guo, T., Wu, Y., Ai, L., Deng, J., et al. (2019) Improving the Safety of CAR-T Cell Therapy by Controlling Crs-Related Coagulopathy. Annals of Hematology, 98, 1721-1732. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Yamasaki-Morita, M., Arai, Y., Ishihara, T., Onishi, T., Shimo, H., Nakanishi, K., et al. (2022) Relative Hypercoagulation Induced by Suppressed Fibrinolysis after Tisagenlecleucel Infusion in Malignant Lymphoma. Blood Advances, 6, 4216-4223. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Jess, J., Yates, B., Dulau-Florea, A., Parker, K., Inglefield, J., Lichtenstein, D., et al. (2023) CD22 CAR T-Cell Associated Hematologic Toxicities, Endothelial Activation and Relationship to Neurotoxicity. Journal for ImmunoTherapy of Cancer, 11, e005898. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Bindal, P., Patell, R., Chiasakul, T., Lauw, M.N., Ko, A., Wang, T., et al. (2024) A Meta-Analysis to Assess the Risk of Bleeding and Thrombosis Following Chimeric Antigen Receptor T-Cell Therapy: Communication from the ISTH SSC Subcommittee on Hemostasis and Malignancy. Journal of Thrombosis and Haemostasis, 22, 2071-2080. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Schorr, C., Forindez, J., Espinoza-Gutarra, M., Mehta, R., Grover, N. and Perna, F. (2023) Thrombotic Events Are Unusual Toxicities of Chimeric Antigen Receptor T-Cell Therapies. International Journal of Molecular Sciences, 24, Article No. 8349. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Johnsrud, A., Craig, J., Baird, J., Spiegel, J., Muffly, L., Zehnder, J., et al. (2021) Incidence and Risk Factors Associated with Bleeding and Thrombosis Following Chimeric Antigen Receptor T-Cell Therapy. Blood Advances, 5, 4465-4475. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Wang, Y., Qi, K., Cheng, H., Cao, J., Shi, M., Qiao, J., et al. (2020) Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy: Analysis of 100 Patients with Relapsed and Refractory Hematologic Malignancies. Biology of Blood and Marrow Transplantation, 26, 865-875. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Song, Z., Tu, D., Tang, G., Liu, N., Tai, Z., Yang, J., et al. (2023) Hemophagocytic Lymphohistiocytosis and Disseminated Intravascular Coagulation Are Underestimated, but Fatal Adverse Events in Chimeric Antigen Receptor T-Cell Therapy. Haematologica, 108, 2067-2079. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Wang, J. and Doran, J. (2021) The Many Faces of Cytokine Release Syndrome-Related Coagulopathy. Clinical Hematology International, 3, 3-12. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Yang, Y., Peng, H., Wang, J. and Li, F. (2024) New Insights into CAR T-Cell Hematological Toxicities: Manifestations, Mechanisms, and Effective Management Strategies. Experimental Hematology & Oncology, 13, Article No. 110. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Dong, R., Wang, Y., Lin, Y., Sun, X., Xing, C., Zhang, Y., et al. (2022) The Correlation Factors and Prognostic Significance of Coagulation Disorders after Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies: A Cohort Study. Annals of Translational Medicine, 10, 975-975. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Perna, F., Parekh, S., Diorio, C., Smith, M., Subklewe, M., Mehta, R., et al. (2024) CAR T-Cell Toxicities: From Bedside to Bench, How Novel Toxicities Inform Laboratory Investigations. Blood Advances, 8, 4348-4358. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Iba, T. and Levy, J.H. (2018) Inflammation and Thrombosis: Roles of Neutrophils, Platelets and Endothelial Cells and Their Interactions in Thrombus Formation during Sepsis. Journal of Thrombosis and Haemostasis, 16, 231-241. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Hay, K.A., Hanafi, L., Li, D., Gust, J., Liles, W.C., Wurfel, M.M., et al. (2017) Kinetics and Biomarkers of Severe Cytokine Release Syndrome after CD19 Chimeric Antigen Receptor-Modified T-Cell Therapy. Blood, 130, 2295-2306. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Mackall, C.L. and Miklos, D.B. (2017) CNS Endothelial Cell Activation Emerges as a Driver of CAR T Cell-Associated Neurotoxicity. Cancer Discovery, 7, 1371-1373. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Gust, J., Hay, K.A., Hanafi, L., Li, D., Myerson, D., Gonzalez-Cuyar, L.F., et al. (2017) Endothelial Activation and Blood-Brain Barrier Disruption in Neurotoxicity after Adoptive Immunotherapy with CD19 CAR-T Cells. Cancer Discovery, 7, 1404-1419. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Jing, H., Zuo, N., Novakovic, V.A. and Shi, J. (2022) The Central Role of Extracellular Vesicles in the Mechanisms of Thrombosis in COVID-19 Patients with Cancer and Therapeutic Strategies. Frontiers in Cell and Developmental Biology, 9, Article ID: 792335. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Shafaghat, Z., Ghomi, A.K., Khorramdelazad, H. and Safari, E. (2023) Purinergic Signaling: Decoding Its Role in COVID-19 Pathogenesis and Promising Treatment Strategies. Inflammopharmacology, 31, 3005-3020. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Higuchi, Y., Kubota, T., Koyanagi, M., Maeda, T., Feldman, A.M. and Makino, N. (2012) Upregulation of Anticoagulant Proteins, Protein S and Tissue Factor Pathway Inhibitor, in the Mouse Myocardium with Cardio-Specific TNF-α Overexpression. American Journal of Physiology-Heart and Circulatory Physiology, 302, H2352-H2362. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Wojtukiewicz, M.Z., Mysliwiec, M., Matuszewska, E., Sulkowski, S., Zimnoch, L., Politynska, B., et al. (2021) Imbalance in Coagulation/Fibrinolysis Inhibitors Resulting in Extravascular Thrombin Generation in Gliomas of Varying Levels of Malignancy. Biomolecules, 11, Article No. 663. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Wu, Z., Liu, M., Liang, M. and Fu, J. (2012) Sirt1 Protects against Thrombomodulin Down-Regulation and Lung Coagulation after Particulate Matter Exposure. Blood, 119, 2422-2429. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Perl, M., Herfeld, K., Harrer, D.C., Höpting, M., Schweiger, M., Sterz, U., et al. (2024) Tocilizumab Administration in Cytokine Release Syndrome Is Associated with Hypofibrinogenemia after Chimeric Antigen Receptor T-Cell Therapy for Hematologic Malignancies. Haematologica, 109, 2969-2977. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Xia, Y., Tang, L. and Hu, Y. (2023) The Risk Factors for Coagulation Disorder of Chimeric Antigen Receptor-T Cell Therapy in Patients with Hematological Tumors: A Systematic Review and Meta-Analysis. Technology and Health Care, 31, 2363-2380. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Wang, X., Li, C., Luo, W., Zhang, Y., Huang, Z., Xu, J., et al. (2023) IL-10 plus the EASIX Score Predict Bleeding Events after Anti-Cd19 CAR T-Cell Therapy. Annals of Hematology, 102, 3575-3585. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Liang, E.C., Huang, J.J., Portuguese, A.J., Ortiz-Maldonado, V., Albittar, A., Wuliji, N., et al. (2025) Development and Validation of Predictive Models of Early Immune Effector Cell-Associated Hematotoxicity. Blood Advances, 9, 606-616. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Li, Z., Que, Y., Wang, D., Lu, J., Li, C., Xu, M., et al. (2023) Recovery-Model: A Model for CAR T-Cell-Related Thrombocytopenia in Relapsed/refractory Multiple Myeloma. Thrombosis Research, 227, 62-70. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Ponnapalli, A., Arora, A.K. and Soubani, A.O. (2025) Critical Care Considerations of Chimeric Antigen Receptor (CAR) T-Cell Therapy. Respiratory Medicine, 238, Article ID: 107958. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Shao, M., Yu, Q., Teng, X., Guo, X., Wei, G., Xu, H., et al. (2021) CRS-Related Coagulopathy in BCMA Targeted CAR-T Therapy: A Retrospective Analysis in a Phase I/II Clinical Trial. Bone Marrow Transplantation, 56, 1642-1650. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Hu, K., Huang, Y., Hu, Y. and Huang, H. (2022) Progress on CAR-T Cell Therapy for Hematological Malignancies. Journal of Zhejiang University (Medical Sciences), 51, 192-203. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Keshavarz, A., Salehi, A., Khosravi, S., Shariati, Y., Nasrabadi, N., Kahrizi, M.S., et al. (2022) Recent Findings on Chimeric Antigen Receptor (CAR)-Engineered Immune Cell Therapy in Solid Tumors and Hematological Malignancies. Stem Cell Research & Therapy, 13, Article No. 482. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Su, M., Zhang, Z., Jiang, P., Wang, X., Tong, X. and Wu, G. (2024) CAR-T-Cell Therapy Based on Immune Checkpoint Modulation in the Treatment of Hematologic Malignancies. Cell Transplantation, 33, 1-11. [Google Scholar] [CrossRef] [PubMed]
|