氢吗啡酮PCIA的背景剂量在腹腔镜胆囊切除术后应用的研究进展
Research Progress on the Application of Background Dose of Hydromorphone PCIA after Laparoscopic Cholecystectomy
摘要: 腹腔镜胆囊切除术虽为微创术式,但术后因切口、胆囊床炎症及膈肌刺激等,约30%~50%患者24小时内会经历中重度疼痛,传统镇痛方法效果欠佳且不良反应多。患者自控静脉镇痛(PCIA)优势显著,而氢吗啡酮作为强效μ阿片受体激动剂,具有起效快、镇痛强、代谢产物无活性等特点,在PCIA中应用价值突出。本文循证评价氢吗啡酮PCIA,其通过激动中枢μ阿片受体发挥镇痛作用,药代动力学支持背景剂量设置需平衡镇痛与不良反应。临床显示其镇痛效果呈剂量依赖性,不良反应随剂量升高而增加,且在患者满意度和功能恢复上表现良好;与传统阿片类药物相比各有优劣,联合区域阻滞技术或多模式镇痛可优化效果;老年、肝肾功能异常、阿片耐受等特殊人群需个体化调整剂量。当前研究存在最佳背景剂量争议、研究异质性大、长期预后数据缺乏等问题,未来需聚焦精准剂量设置、AI辅助镇痛方案及多中心大样本研究。综上,氢吗啡酮PCIA是该术后多模式镇痛的重要组成,术后24小时内可考虑背景输注,后续需个体化调整,临床应用需标准化给药、密切监测并关注特殊人群。
Abstract: Although laparoscopic cholecystectomy is a minimally invasive surgical procedure, approximately 30% to 50% of patients experience moderate to severe pain within 24 hours postoperatively due to incisions, inflammation at the gallbladder bed, and diaphragmatic irritation. Traditional analgesic methods are less effective and associated with many adverse reactions. Patient-controlled intravenous analgesia (PCIA) has significant advantages, and hydromorphone, as a potent μ-opioid receptor agonist, features rapid onset, strong analgesic effect, and inactive metabolites, thus showing prominent application value in PCIA. This article conducts an evidence-based evaluation of hydromorphone-based PCIA: it exerts analgesic effects by activating central μ-opioid receptors, and its pharmacokinetics require balancing analgesia and adverse reactions when setting the background dose. Clinical studies have shown that its analgesic effect is dose-dependent, with adverse reactions increasing as the dose rises; additionally, it performs well in terms of patient satisfaction and functional recovery. Compared with traditional opioid drugs, each has its own advantages and disadvantages, and combining it with regional block techniques or multimodal analgesia can optimize the effect. For special populations such as the elderly, patients with abnormal liver or kidney function, and those with opioid tolerance, individualized dose adjustment is necessary. Current studies have limitations including controversies over the optimal background dose, high research heterogeneity, and lack of long-term prognosis data. Future research should focus on precise dose setting, AI-assisted analgesic regimens, and multi-center large-sample studies. In conclusion, hydromorphone-based PCIA is an important component of multimodal analgesia after laparoscopic cholecystectomy. Background infusion may be considered within 24 hours postoperatively, followed by individualized adjustment. For clinical application, standardized administration, close monitoring, and attention to special populations are required.
文章引用:屈妮妮. 氢吗啡酮PCIA的背景剂量在腹腔镜胆囊切除术后应用的研究进展[J]. 临床医学进展, 2025, 15(10): 243-252. https://doi.org/10.12677/acm.2025.15102751

1. 引言与研究价值定位

1.1. 腹腔镜胆囊切除术的临床特点与术后疼痛机制

腹腔镜胆囊切除术作为治疗胆囊结石疾病的金标准手术方式,虽然具有微创优势,但术后疼痛问题仍然显著[1]。这种疼痛主要来源于手术切口、胆囊床炎症反应以及膈肌刺激等多个方面[2]。研究表明,约30%~50%的患者在术后24小时内会经历中重度疼痛,这不仅影响患者早期康复,还可能增加慢性疼痛发生的风险[1] [3]。术后疼痛的复杂性体现在其多因素机制上,包括内脏痛、躯体痛和牵涉痛等多种成分的混合[2]。值得注意的是,即使采用腹腔镜技术,术后急性疼痛管理仍然是临床面临的重大挑战[1]

1.2. 术后疼痛管理的临床挑战与PCIA的应用价值

传统术后镇痛方法如静脉或肌肉注射非甾体抗炎药(NSAIDs)和阿片类药物存在镇痛效果不稳定、不良反应多等局限性[2]。相比之下,患者自控静脉镇痛(PCIA)技术通过允许患者根据自身疼痛程度调节药物剂量,实现了更精准的疼痛控制[4]。研究显示,PCIA在腹腔镜胆囊切除术后可显著改善镇痛效果,减少阿片类药物总用量,同时提高患者满意度[4] [5]。然而,不同阿片类药物在PCIA中的应用效果存在差异,如何选择最佳药物和剂量方案仍存在争议[6] [7]。此外,PCIA与区域阻滞技术(如腹横肌平面阻滞TAPB)的联合应用也显示出协同增效的潜力[5]

1.3. 氢吗啡酮的药理学特性及其在PCIA中的优势

氢吗啡酮作为一种强效μ阿片受体激动剂,具有起效快(5~10分钟)、镇痛效力强(吗啡的5~7倍)和代谢产物无活性等特点[8]。与芬太尼、舒芬太尼等其他阿片类药物相比,氢吗啡酮PCIA在提供同等镇痛效果的同时,可减少PCA按压次数和药物总消耗量[9] [10]。临床研究还发现,氢吗啡酮PCIA不仅能有效控制术后疼痛,还能改善患者术后情绪状态和睡眠质量,减少术后谵妄的发生[8] [11]。在不良反应方面,虽然氢吗啡酮可能导致较高比例的瘙痒和恶心发生率,但其呼吸抑制风险相对较低,安全性总体良好[6] [10]。这些特性使氢吗啡酮成为PCIA中极具临床应用价值的阿片类药物选择[6] [8]

2. 氢吗啡酮PCIA的作用机制研究进展

2.1. μ阿片受体激动剂的镇痛机制

氢吗啡酮是一种半合成阿片类药物,主要通过激动μ阿片受体发挥镇痛作用[7]μ阿片受体广泛分布于中枢神经系统,特别是在前腹侧被盖区(VTA)的谷氨酸神经元上表达丰富[12]。当μ阿片受体被激活后,会触发G蛋白介导的信号通路,产生镇痛效应[2]。这种机制不仅能有效缓解疼痛,还能调节应激反应,降低患者对疼痛刺激的“挑战性”感知[3]。值得注意的是,μ阿片受体激动剂还能抑制乙酰胆碱的释放,这可能是其产生镇静作用的药理学基础之一[13]

2.2. 氢吗啡酮的药代动力学特点

氢吗啡酮具有起效快、作用时间适中的特点,静脉给药后5分钟内即可起效,20分钟左右达到作用峰值[7]。这种快速起效的特性使其特别适合用于术后疼痛控制。氢吗啡酮可通过多种途径给药,包括口服、皮下和静脉注射等[14]。在药效学方面,氢吗啡酮表现出剂量依赖性的镇痛效果,能显著降低患者的疼痛评分[3] [15]。与其他μ阿片受体激动剂相比,氢吗啡酮在等效镇痛剂量下可能具有更好的安全性特征[16]。然而,其最常见的副作用包括低血压、心动过缓和呼吸抑制等[7]

2.3. 背景剂量设置的药理学基础

背景剂量的设置基于氢吗啡酮的药代动力学特性,旨在维持稳定的血药浓度[14]。研究表明,与传统阿片类药物如舒芬太尼相比,不含背景剂量的氢吗啡酮PCIA方案可减少患者自控镇痛的需求[9] [17]。这可能是由于氢吗啡酮具有较高的受体亲和力和较长的作用时间[7]。在临床实践中,背景剂量的设置需要权衡镇痛效果与不良反应之间的关系[18]。有研究发现,不同背景剂量方案下,氢吗啡酮的镇痛效果相似,但不良反应发生率存在差异[19]。因此,基于药代动力学模型的精准剂量设置可能是未来优化背景剂量的方向[14]

3. 不同背景剂量设置的临床效果评价

3.1. 镇痛效果的剂量–反应关系

研究表明氢吗啡酮PCIA在腹腔镜胆囊切除术后的镇痛效果呈现明显的剂量依赖性。一项包含1594例术后患者的回顾性分析显示,氢吗啡酮PCIA即使不设置背景剂量,其镇痛效果仍可与设置背景剂量的舒芬太尼PCIA相媲美[20]。然而,更高剂量的氢吗啡酮(16 mg~32 mg)在急性临床疼痛模型中显示出最佳的镇痛效果,但同时也伴随着更高的滥用风险[21]。值得注意的是,在鞘内给药途径的研究中发现,氢吗啡酮剂量(50 μg~300 μg)与术后镇痛效果之间未观察到明显的剂量反应关系,这可能反映了治疗偏倚的存在[22]。针对腹腔镜胆囊切除术的特殊性,研究建议术后24小时内应考虑将背景输注作为标准PCIA方案的一部分[23]

3.2. 不良反应(恶心、呕吐等)的剂量相关性

氢吗啡酮PCIA的不良反应发生率与剂量设置密切相关。多项研究证实,随着剂量的增加,恶心、呕吐、瘙痒和镇静等不良反应的发生率显著升高[21]。在鞘内给药的研究中,高剂量组(200~300 μg)患者出现严重阿片类药物相关不良事件的比例明显高于低剂量组(50 μg~100 μg) [22]。特别值得注意的是,一项关于腹腔镜胆囊切除术的研究发现,低剂量纳洛酮可有效减少接受全静脉麻醉患者的恶心呕吐发生率,同时对芬太尼PCIA的镇痛效果表现出一定的协同作用[24]。此外,研究还发现氢吗啡酮剂量是术后谵妄的独立危险因素,药物剂量越高,谵妄风险显著增加[25]

3.3. 患者满意度与功能恢复的评估

在患者满意度和功能恢复方面,氢吗啡酮PCIA显示出良好的临床效果。一项前瞻性随机对照试验评估了术后3天内患者的疼痛评分、阿片类药物需求和疼痛管理满意度,结果显示优化剂量方案可显著提高患者满意度[26]。在腹腔镜胆囊切除术中,与常规镇痛策略相比,氢吗啡酮不仅能提供更优的疼痛控制,还具有更好的安全性特征[11]。值得注意的是,一项关于结直肠癌手术的研究比较了氢吗啡酮与舒芬太尼IV-PCA在多模式围术期镇痛方案中的应用,结果显示两组患者在恢复方面无显著差异[10]。然而,也有研究发现,虽然不同背景剂量组的氢吗啡酮累计使用量无统计学差异,但个体化调整背景输注可能更符合患者实际需求[23] [27]

4. 氢吗啡酮PCIA与其他镇痛方案的比较

4.1. 与传统阿片类药物(如芬太尼、舒芬太尼)的比较

多项研究比较了氢吗啡酮与传统阿片类药物在PCIA中的应用效果。一项针对结直肠癌根治术患者的研究发现,在围术期多模式镇痛方案中,氢吗啡酮与舒芬太尼IV-PCA相比,虽然两者镇痛效果相似,但氢吗啡酮能显著改善患者术后情绪状态[15]。然而,氢吗啡酮组的瘙痒和恶心发生率较高[15]。另一项针对骨科手术患者的随机对照试验显示,氢吗啡酮PCIA不仅能提供良好的术后镇痛效果,还能减轻术后抑郁和睡眠障碍,同时降低头晕和嗜睡的发生率[28]。在癌症疼痛管理中,氢吗啡酮、舒芬太尼和羟考酮PCIA均能有效控制疼痛,但氢吗啡酮组的PCA按压次数和药物消耗量显著减少[8] [11]

4.2. 与区域阻滞技术(如TAPB、TQLB)的联合应用

区域阻滞技术与PCIA的联合应用已成为多模式镇痛的重要组成部分。一项研究比较了单纯吗啡PCIA、吗啡PCIA联合腹横肌平面阻滞(TAPB)、以及吗啡PCIA联合TAPB和右美托咪定的效果,结果显示联合组在镇痛效果和患者满意度方面表现更优[29]。在腹腔镜胆囊切除术中,氢吗啡酮PCIA与区域阻滞技术的联合应用显示出良好的协同效应,能显著降低术后谵妄发生率[23]。另一项针对经腹肾部分切除术患者的研究表明,多模式镇痛(包括区域阻滞)在镇痛效果上优于单纯鞘内吗啡或静脉PCIA [30]

4.3. 多模式镇痛策略中的优化组合

多模式镇痛策略通过联合不同机制的镇痛方法,可提高镇痛效果并减少不良反应。在腹腔镜胆囊切除术中,氢吗啡酮PCIA作为多模式镇痛的一部分,显示出优于传统镇痛方案的疼痛控制效果和安全性[1] [23]。一项针对肝切除术患者的研究表明,术前鞘内吗啡联合多模式静脉镇痛可显著改善术后恢复[31]。在脊柱侧弯矫形术后镇痛中,氢吗啡酮患者自控硬膜外镇痛(PCEA)也显示出良好的效果[25]。值得注意的是,不同镇痛药物的配伍也影响多模式镇痛的效果,如氢吗啡酮与酮咯酸、雷莫司琼的联合使用在体外研究中显示出良好的稳定性[32]

5. 特殊人群的剂量调整策略

5.1. 老年患者的剂量优化

老年患者由于生理功能减退,对阿片类药物的敏感性增加,需要特别注意氢吗啡酮PCIA的剂量调整。研究表明,老年患者术后阿片类药物消耗量显著低于年轻患者,在腹腔镜胆囊切除术后24小时内,老年患者的氢吗啡酮平均消耗量为0.18 mg/kg,较年轻患者减少约45% [17]。这提示对于65岁以上老年患者,初始背景剂量应降低至常规剂量的50%~70%,并密切监测镇静水平和呼吸功能[15]。药代动力学研究显示,老年患者对氢吗啡酮的清除率降低约30%,分布容积增加20%,因此需要延长给药间隔时间[15]。临床实践中建议采用“低起点、慢滴定”的策略,以0.1 mg/h~0.2 mg/h的背景剂量开始,根据疼痛评分和不良反应逐步调整[33]

5.2. 肝肾功能异常患者的剂量调整

肝功能异常显著影响氢吗啡酮的代谢,中度肝功能不全(Child-Pugh B级)患者的药物清除率下降40%~60%,因此背景剂量应减少50% [15]。严重肝功能不全(Child-Pugh C级)患者建议避免使用氢吗啡酮PCIA或采用极低剂量(0.05 mg/h)并加强监测[15]。肾功能不全患者(eGFR < 30 ml/min)由于氢吗啡酮代谢产物蓄积,可能增加神经毒性风险,建议将背景剂量调整为常规剂量的25%~50% [34]。对于同时存在肝肾功能异常的患者,需要根据最受损的器官功能进行剂量调整,并考虑延长锁定时间至15~20分钟[15] [34]。临床研究显示,肝肾功能异常患者的氢吗啡酮PCIA有效按压次数较健康患者减少30%~40%,提示这些患者对阿片类药物的需求降低[35]

5.3. 阿片类药物耐受患者的个体化方案

对于长期使用阿片类药物的患者,氢吗啡酮PCIA需要采用个体化剂量策略。研究表明,阿片类药物耐受患者在腹腔镜胆囊切除术后72小时内的氢吗啡酮消耗量可达46.7 mg,显著高于非耐受患者的5 mg [36]。这类患者的背景剂量应基于术前阿片类药物用量进行换算,通常按照吗啡:氢吗啡酮 = 5:1的等效剂量设置初始参数[37]。临床实践中建议采用“高背景剂量 + 短锁定时间”的模式,背景剂量可增加至常规的150%~200%,锁定时间缩短至5~8分钟[17]。同时应考虑联合非阿片类镇痛药物,如研究中显示添加双氯芬酸可使24小时内氢吗啡酮用量从5.90 mg降至4.13 mg [38]。对于极高剂量需求的患者,可考虑采用氢吗啡酮联合小剂量纳洛酮的方案,既能维持镇痛效果又可减少不良反应[4]

6. 当前研究的争议与局限性

6.1. 最佳背景剂量的临床争议

目前关于氢吗啡酮PCIA在腹腔镜胆囊切除术后的最佳背景剂量设置仍存在显著争议。多项研究显示,不同背景剂量方案在镇痛效果和不良反应发生率方面存在明显差异。有研究建议术后24小时内应考虑将背景输注作为标准方案的一部分,但在24小时后应根据患者疼痛强度和个体偏好进行调整[23]。然而,另一项包含1594例患者的回顾性分析发现,无背景剂量的氢吗啡酮PCIA与含背景剂量的舒芬太尼PCIA在镇痛效果和不良事件方面并无显著差异[33]。这种争议部分源于不同研究采用的剂量范围和评估标准存在较大差异,使得临床医师难以形成统一的剂量推荐。

6.2. 不同研究间的异质性分析

现有研究在方法学上存在明显的异质性,这限制了研究结论的可比性和外部效度。首先,研究设计差异显著,包括前瞻性随机对照试验[8]、回顾性队列研究[39]以及系统评价与meta分析[40]等多种类型。其次,给药方案存在显著差异,如一项研究采用靶控输注技术[41],而其他研究则使用传统PCIA模式[33]。此外,结局指标的评估标准也不统一,部分研究以24小时阿片类药物消耗量为主要终点[42],而另一些研究则关注术后谵妄发生率[43]或应激反应程度[39]。这种异质性使得难以通过直接比较得出确切的剂量–反应关系结论。

6.3. 长期预后数据的缺乏

现有研究大多局限于术后短期(24~72小时)内的镇痛效果和安全性评估[27] [34],缺乏对氢吗啡酮PCIA长期预后影响的系统研究。特别是关于术后慢性疼痛发生率、阿片类药物持续使用风险以及功能恢复质量等关键长期结局的数据严重不足。一项关于心脏手术患者的回顾性分析虽然比较了氢吗啡酮与吗啡PCA在术后镇痛中的差异,但仅评估了住院期间的结局指标[41]。此外,目前尚无研究系统评估不同背景剂量设置对患者出院后疼痛控制和生活质量的影响,这限制了临床决策的长期安全性评估[40]。未来需要开展更大样本、更长随访期的研究来填补这一证据空白。

7. 未来研究方向与临床实践建议

7.1. 基于药代动力学模型的精准剂量设置

最新研究显示,氢吗啡酮的药代动力学特征可采用二室模型进行描述,其中体重是影响药物分布的重要协变量[44]。一项前瞻性随机对照研究验证了包含年龄和体重协变量的群体药代动力学模型在术后镇痛中的预测性能,该模型通过目标浓度控制输注(TCI-PCA)技术实现了更精准的给药[41]。未来研究应着重开发整合多因素(如肝功能、基因多态性等)的进阶模型,并建立基于最低有效镇痛浓度(4 ng/mL)和安全阈值(40 ng/mL)的个体化给药区间[15]。通过实时血药浓度监测与模型反馈调节的结合,有望实现从群体药代动力学向个体化精准给药的跨越。

7.2. 人工智能辅助的个体化镇痛方案

现有研究表明,传统PCA与TCI-PCA在镇痛效果上虽无显著差异,但后者显著减少了bolus给药次数[45]。这提示智能化给药系统具有优化潜力。基于文献证据,未来可构建整合多维度数据(包括动态疼痛评分、药物消耗模式、不良反应发生率等)的机器学习模型[46] [47]。特别是对于特殊人群如老年患者或阿片耐受患者,人工智能系统可通过分析历史用药数据(如剂量比5.7的氢吗啡酮–吗啡等效转换关系) [48],自动生成并动态调整给药方案。一项癌症疼痛研究证实,PCA滴定较非PCA方案能更有效控制疼痛并提高患者满意度[46] [47],这为AI系统设计提供了重要参考框架。

7.3. 多中心大样本研究的必要性

当前研究存在明显的样本量局限,多数试验样本量在50~90例之间[28] [41] [49],且单中心设计占主导。现有数据显示,氢吗啡酮PCIA在不同研究中消耗量存在较大变异(中位数0.33 mg/kg~0.38 mg/kg) [34],而关于背景剂量设置的争议(如无背景剂量方案可减少按压次数) [9] [27]需要通过更大样本验证。尤其缺乏针对特殊人群(如肝肾功能异常者)的长期预后数据[44]。建议开展遵循统一评估标准的多中心研究,重点解决三个关键问题:不同手术类型的最佳剂量区间、联合区域阻滞技术(如TAPB)的协同效应[50]、以及长期用药对康复质量的影响[8]。只有通过标准化的大样本研究,才能建立具有强证据支持的临床实践指南。

8. 总结与核心结论

8.1. 氢吗啡酮PCIA在腹腔镜胆囊切除术中的临床定位

现有证据表明,氢吗啡酮PCIA在腹腔镜胆囊切除术术后镇痛中展现出显著的临床优势。与传统镇痛策略相比,氢吗啡酮能提供更优异的疼痛控制效果,同时具有更佳的安全性特征[33]。与舒芬太尼PCIA相比,氢吗啡酮在不使用背景剂量的情况下仍能达到相似的镇痛效果,且患者自控给药量更低[9]。此外,氢吗啡酮在减少术后谵妄和应激反应方面也显示出潜在优势[38]。这些特点使其成为腹腔镜胆囊切除术后多模式镇痛方案中的重要组成部分。

8.2. 背景剂量设置的循证推荐

关于氢吗啡酮PCIA背景剂量的设置,现有研究提供了重要参考依据。术后24小时内应考虑将背景输注作为标准PCIA方案的一部分,但24小时后应根据患者个体情况和疼痛强度进行调整[23]。值得注意的是,与含背景剂量的舒芬太尼PCIA相比,无背景剂量的氢吗啡酮PCIA在获得相似镇痛效果的同时,能显著减少患者自控给药量[9]。对于特殊人群如老年患者或肝肾功能异常者,可能需要进一步调整背景剂量设置[15]。目前尚缺乏针对不同背景剂量设置的直接比较研究,这需要未来更多高质量研究来验证。

8.3. 临床实践的关键要点

在临床实践中应用氢吗啡酮PCIA时需注意以下关键点:首先,应建立标准化的给药方案,推荐初始剂量为0.2 mg/ml的浓度[51]。其次,需要密切监测术后疼痛评分(建议使用NRS评分系统)和不良反应发生率[10] [51]。第三,可考虑将氢吗啡酮PCIA与区域阻滞技术(如TAPB)联合使用,以进一步优化镇痛效果[22]。最后,对于特殊人群应实施个体化剂量调整,特别是老年患者和肝肾功能异常者[15]。值得注意的是,氢吗啡酮PCIA在减少术后并发症和改善患者功能恢复方面显示出潜在优势[49],这应成为临床决策的重要考量因素。

参考文献

[1] Yang, X., Zhang, Y., Chen, Y., Xu, M., Lei, X. and Fu, Q. (2023) Analgesic Effect of Erector Spinae Plane Block in Adults Undergoing Laparoscopic Cholecystectomy: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BMC Anesthesiology, 23, Article No. 7. [Google Scholar] [CrossRef] [PubMed]
[2] Manabe, S., Miyano, K., Fujii, Y., Ohshima, K., Yoshida, Y., Nonaka, M., et al. (2019) Possible Biased Analgesic of Hydromorphone through the G Protein-Over Β-Arrestin-Mediated Pathway: cAMP, Cellkey™, and Receptor Internalization Analyses. Journal of Pharmacological Sciences, 140, 171-177. [Google Scholar] [CrossRef] [PubMed]
[3] Bershad, A.K., Miller, M.A., Norman, G.J. and de Wit, H. (2018) Effects of Opioid-and Non-Opioid Analgesics on Responses to Psychosocial Stress in Humans. Hormones and Behavior, 102, 41-47. [Google Scholar] [CrossRef] [PubMed]
[4] Zheng, J., Han, W., Han, X., Ma, X. and Zhang, P. (2016) Effect of Naloxone on Intravenous Fentanyl Patient-Controlled Analgesia after Laparoscopic Cholecystectomy. Medicine, 95, e5074. [Google Scholar] [CrossRef] [PubMed]
[5] Dai, L., Ling, X. and Qian, Y. (2022) Effect of Ultrasound-Guided Transversus Abdominis Plane Block Combined with Patient-Controlled Intravenous Analgesia on Postoperative Analgesia after Laparoscopic Cholecystectomy: A Double-Blind, Randomized Controlled Trial. Journal of Gastrointestinal Surgery, 26, 2542-2550. [Google Scholar] [CrossRef] [PubMed]
[6] Peng, Z., Zhang, Y., Guo, J., Guo, X. and Feng, Z. (2018) Patient-Controlled Intravenous Analgesia for Advanced Cancer Patients with Pain: A Retrospective Series Study. Pain Research and Management, 2018, Article ID: 7323581. [Google Scholar] [CrossRef] [PubMed]
[7] Alhabardi, S., Almodaimegh, H. and Alammari, M. (2021) Pattern of Hydromorphone Use in King Abdulaziz Medical City-Central Region (KAMC-CR). Scientific Reports, 11, Article No. 8760. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, Q., Zhao, Y., Ling, B., Chen, X., Xie, Y., Zhao, H., et al. (2025) Efficacy and Safety of Hydromorphone for Postoperative Patient-Controlled Intravenous Analgesia for Patients Undergoing Orthopedic Surgery: A Randomized, Double-Blinded Controlled Trial. Frontiers in Medicine, 12, Article ID: 1567328. [Google Scholar] [CrossRef] [PubMed]
[9] Zhang, Y., Liu, M. and Chen, G. (2024) Comparison of Analgesic Effects and Adverse Events of Hydromorphone PCIA versus Sufentanil PCIA: A Retrospective Analysis. Journal of PeriAnesthesia Nursing, 39, 902-906. [Google Scholar] [CrossRef] [PubMed]
[10] Yang, Y., Wu, J., Li, H., Ye, S., Xu, X., Cheng, L., et al. (2018) Prospective Investigation of Intravenous Patient-Controlled Analgesia with Hydromorphone or Sufentanil: Impact on Mood, Opioid Adverse Effects, and Recovery. BMC Anesthesiology, 18, Article No. 37. [Google Scholar] [CrossRef] [PubMed]
[11] Zhang, W., Yang, Y. and Yan, Y. (2024) Preemptive Hydromorphone Analgesia Reduces Postoperative Delirium and Stress Response in Laparoscopic Cholecystectomy Patients. American Journal of Translational Research, 16, 7427-7437. [Google Scholar] [CrossRef] [PubMed]
[12] McGovern, D.J., Polter, A.M., Prévost, E.D., Ly, A., McNulty, C.J., Rubinstein, B., et al. (2023) Ventral Tegmental Area Glutamate Neurons Establish a Mu-Opioid Receptor Gated Circuit to Mesolimbic Dopamine Neurons and Regulate Opioid-Seeking Behavior. Neuropsychopharmacology, 48, 1889-1900. [Google Scholar] [CrossRef] [PubMed]
[13] Kiguchi, Y., Aono, Y., Watanabe, Y., Yamamoto-Nemoto, S., Shimizu, K., Shimizu, T., et al. (2016) In Vivo Neurochemical Evidence That Delta1-, Delta2-and Mu2-Opioid Receptors, but Not Mu1-Opioid Receptors, Inhibit Acetylcholine Efflux in the Nucleus Accumbens of Freely Moving Rats. European Journal of Pharmacology, 789, 402-410. [Google Scholar] [CrossRef] [PubMed]
[14] Liu, L., Xu, M., Wang, J., Hu, Y. and Huang, Z. (2025) Research Progress of Hydromorphone in Clinical Application. Physiological Research, 74, 41-48. [Google Scholar] [CrossRef] [PubMed]
[15] Balyan, R., Dong, M., Pilipenko, V., Geisler, K., Vinks, A.A. and Chidambaran, V. (2020) Hydromorphone Population Pharmacokinetics in Pediatric Surgical Patients. Pediatric Anesthesia, 30, 1091-1101. [Google Scholar] [CrossRef] [PubMed]
[16] Roy, P.J., Weltman, M., Dember, L.M., Liebschutz, J. and Jhamb, M. (2020) Pain Management in Patients with Chronic Kidney Disease and End-Stage Kidney Disease. Current Opinion in Nephrology & Hypertension, 29, 671-680. [Google Scholar] [CrossRef] [PubMed]
[17] Mok, V., Sweetman, S., Hernandez, B., Casias, T., Hylton, J., Krause, B.M., et al. (2022) Scheduled Methadone Reduces Overall Opioid Requirements after Pediatric Posterior Spinal Fusion: A Single Center Retrospective Case Series. Pediatric Anesthesia, 32, 1159-1165. [Google Scholar] [CrossRef] [PubMed]
[18] Chen, P., Wang, H., Liu, D., et al. (2025) The Optimal Dosage of the Nalbuphine Preemptive Analgesia on Postoperative Pain in Patients Undergoing Laparoscopic Cholecystectomy: A Randomised, Controlled, Double-Blind Study. Journal of the College of Physicians and SurgeonsPakistan: JCPSP, 35, 403-407.
[19] Nie, Z., Li, Z., Lu, B., Guo, Y. and Zhang, R. (2022) Hydromorphone vs Sufentanil in Patient-Controlled Analgesia for Postoperative Pain Management: A Meta-Analysis. Medicine, 101, e28615. [Google Scholar] [CrossRef] [PubMed]
[20] Inoue, S., Saito, Y., Tsuneto, S., Aruga, E., Ide, A. and Kakurai, Y. (2017) A Randomized, Double-Blind Study of Hydromorphone Hydrochloride Extended-Release Tablets versus Oxycodone Hydrochloride Extended-Release Tablets for Cancer Pain: Efficacy and Safety in Japanese Cancer Patients (EXHEAL: A Phase III Study of Extended-Release Hydromorphone for Cancer Pain Relief). Journal of Pain Research, 10, 1953-1962. [Google Scholar] [CrossRef] [PubMed]
[21] Huhn, A.S., Strain, E.C., Bigelow, G.E., Smith, M.T., Edwards, R.R. and Tompkins, D.A. (2019) Analgesic Effects of Hydromorphone versus Buprenorphine in Buprenorphine-Maintained Individuals. Anesthesiology, 130, 131-141. [Google Scholar] [CrossRef] [PubMed]
[22] Charnin, J., Weingarten, T.N., Schroeder, D.R., et al. (2023) Retrospective Review of Intrathecal Hydromorphone Dose Range and Complications. Pain Physician Journal, 26, E557-E565. [Google Scholar] [CrossRef
[23] Bai, Y., Sun, K., Xing, X., Zhang, F., Sun, N., Gao, Y., et al. (2019) Postoperative Analgesic Effect of Hydromorphone in Patients Undergoing Single-Port Video-Assisted Thoracoscopic Surgery: A Randomized Controlled Trial. Journal of Pain Research, 12, 1091-1101. [Google Scholar] [CrossRef] [PubMed]
[24] Wang, L., Hou, K., Wang, H., Fu, F. and Yu, L. (2020) Role of Mu-Opioid Receptor in Nociceptive Modulation in Anterior Cingulate Cortex of Rats. Molecular Pain, 16, 1-12. [Google Scholar] [CrossRef] [PubMed]
[25] Hong, R., Gauger, V., Caird, M.S. and Burke, C. (2016) Narcotic-Only Epidural Infusion for Posterior Spinal Fusion Patients: A Single-Center, Retrospective Review. Journal of Pediatric Orthopaedics, 36, 526-529. [Google Scholar] [CrossRef] [PubMed]
[26] Murphy, G.S., Avram, M.J., Greenberg, S.B., Benson, J., Bilimoria, S., Maher, C.E., et al. (2021) Perioperative Methadone and Ketamine for Postoperative Pain Control in Spinal Surgical Patients: A Randomized, Double-Blind, Placebo-Controlled Trial. Anesthesiology, 134, 697-708. [Google Scholar] [CrossRef] [PubMed]
[27] Borckardt, J.J., Reeves, S.T., Milliken, C., Carter, B., Epperson, T.I., Gunselman, R.J., et al. (2017) Prefrontal versus Motor Cortex Transcranial Direct Current Stimulation (TDCS) Effects on Post-Surgical Opioid Use. Brain Stimulation, 10, 1096-1101. [Google Scholar] [CrossRef] [PubMed]
[28] Cho, J.S., Kim, H., Lee, K., Son, T., Bai, S.J., Choi, H., et al. (2017) Comparison of the Effects of Patient-Controlled Epidural and Intravenous Analgesia on Postoperative Bowel Function after Laparoscopic Gastrectomy: A Prospective Randomized Study. Surgical Endoscopy, 31, 4688-4696. [Google Scholar] [CrossRef] [PubMed]
[29] Yang, P., Luo, Y., Lin, L., Zhang, H., Liu, Y. and Li, Y. (2020) The Efficacy of Transversus Abdominis Plane Block with or without Dexmedetomidine for Postoperative Analgesia in Renal Transplantation. a Randomized Controlled Trial. International Journal of Surgery, 79, 196-201. [Google Scholar] [CrossRef] [PubMed]
[30] Shim, J., Shin, D., Hong, S., Park, J. and Hong, S.H. (2024) Efficacy of Multimodal Analgesia with Transversus Abdominis Plane Block in Comparison with Intrathecal Morphine and Intravenous Patient-Controlled Analgesia after Robot-Assisted Laparoscopic Partial Nephrectomy. Journal of Clinical Medicine, 13, Article 4014. [Google Scholar] [CrossRef] [PubMed]
[31] Niewiński, G., Figiel, W., Grąt, M., Dec, M., Morawski, M., Patkowski, W., et al. (2020) A Comparison of Intrathecal and Intravenous Morphine for Analgesia after Hepatectomy: A Randomized Controlled Trial. World Journal of Surgery, 44, 2340-2349. [Google Scholar] [CrossRef] [PubMed]
[32] Kim, Y.S., Lee, C.H., Kim, A.R., et al. (2021) Microbiological and Physicochemical Stability of Fentanyl, Oxycodone, Hydro-Morphone, Ketorolac, Ramosetron, and Ondansetron for Intravenous Patient-Controlled Analgesia: An In Vitro Study. Pain Physician, 24, E829-E837.
[33] Russo, K. and Chhunchha, P. (2023) Patient-Controlled Analgesia vs Intravenous Push Hydromorphone for Pain Management of Vaso-Occlusive Crisis Associated with Sickle Cell Disease. Journal of Pain & Palliative Care Pharmacotherapy, 37, 116-122. [Google Scholar] [CrossRef] [PubMed]
[34] Zabida, A., Foley, K., Gonzalez, C.A., Chaverra, S., Esteban, M.O., Senniappan, K., et al. (2025) Deep Parasternal Intercostal Plane Blocks and Their Role in a Cardiac Fast-Track Program. Journal of Cardiothoracic and Vascular Anesthesia, 39, 2354-2361. [Google Scholar] [CrossRef] [PubMed]
[35] Fu, Z., Zhang, Y., Zhou, Y., Li, Z., Wang, K., Li, H., et al. (2022) A Comparison of Paravertebral Block, Erector Spinae Plane Block and the Combination of Erector Spinae Plane Block and Paravertebral Block for Post-Operative Analgesia after Video-Assisted Thoracoscopic Surgery: A Randomised Controlled Trial. Journal of Minimal Access Surgery, 18, 241-247. [Google Scholar] [CrossRef] [PubMed]
[36] Chen, Z., Jiang, K., Liu, F., Zhu, P., Cai, F., He, Y., et al. (2022) Safety and Efficacy of Intravenous Hydromorphone Patient-Controlled Analgesia versus Intramuscular Pethidine in Acute Pancreatitis: An Open-Label, Randomized Controlled Trial. Frontiers in Pharmacology, 13, Article ID: 962671. [Google Scholar] [CrossRef] [PubMed]
[37] Wehrfritz, A., Senger, A., Just, P., Albart, M., Münchsmeier, M., Ihmsen, H., et al. (2022) Patient-Controlled Analgesia after Cardiac Surgery with Median Sternotomy: No Advantages of Hydromorphone When Compared to Morphine. Journal of Cardiothoracic and Vascular Anesthesia, 36, 3587-3595. [Google Scholar] [CrossRef] [PubMed]
[38] Zeiner, S., Haider, T., Zotti, O., Thüringer, K., Höbart, P., Kimberger, O., et al. (2023) Intravenous Diclofenac and Orphenadrine for the Treatment of Postoperative Pain after Remifentanil-Based Anesthesia: A Double-Blinded, Randomized, Placebo-Controlled Study. Wiener klinische Wochenschrift, 135, 67-74. [Google Scholar] [CrossRef] [PubMed]
[39] Jain, S., Nazir, N. and Mustafi, S.M. (2022) Preemptive Low-Dose Intravenous Ketamine in the Management of Acute and Chronic Postoperative Pain Following Laparoscopic Cholecystectomy: A Prospective Randomized Control Study. Medical Gas Research, 12, 141-145. [Google Scholar] [CrossRef] [PubMed]
[40] Grape, S., El-Boghdadly, K., Jaques, C. and Albrecht, E. (2024) Efficacy and Safety of Neuraxial Hydromorphone: A Systematic Review and Meta-Analysis with Trial Sequential Analysis. Journal of Clinical Anesthesia, 99, Article 111664. [Google Scholar] [CrossRef] [PubMed]
[41] Ihmsen, H., Rohde, D., Schüttler, J. and Jeleazcov, C. (2017) External Validation of a Recently Developed Population Pharmacokinetic Model for Hydromorphone during Postoperative Pain Therapy. European Journal of Drug Metabolism and Pharmacokinetics, 42, 17-28. [Google Scholar] [CrossRef] [PubMed]
[42] Pang, M., Sun, G., Yao, W., Zhou, S., Shen, N., Liao, H., et al. (2021) Ultrasound-Guided Transmuscular Quadratus Lumborum Block Reduced Postoperative Opioids Consumptions in Patients after Laparoscopic Hepatectomy: A Three-Arm Randomized Controlled Trial. BMC Anesthesiology, 21, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
[43] Song, Y., He, Q., Huang, W., Yang, L., Zhou, S., Xiao, X., et al. (2022) New Insight into the Analgesic Recipe: A Cohort Study Based on Smart Patient-Controlled Analgesia Pumps Records. Frontiers in Pharmacology, 13, Article ID: 988070. [Google Scholar] [CrossRef] [PubMed]
[44] DeLong, L., Krishna, S., Roth, C., Veneziano, G., Arce Villalobos, M., Klingele, K., et al. (2021) Short Communication: Lumbar Plexus Block versus Suprainguinal Fascia Iliaca Block to Provide Analgesia Following Hip and Femur Surgery in Pediatric-Aged Patients—An Analysis of a Case Series. Local and Regional Anesthesia, 14, 139-144. [Google Scholar] [CrossRef] [PubMed]
[45] Wehrfritz, A., Ihmsen, H., Fuchte, T., Kim, M., Kremer, S., Weiß, A., et al. (2020) Postoperative Pain Therapy with Hydromorphone; Comparison of Patient-Controlled Analgesia with Target-Controlled Infusion and Standard Patient-Controlled Analgesia: A Randomised Con-Trolled Trial. European Journal of Anaesthesiology, 37, 1168-1175. [Google Scholar] [CrossRef] [PubMed]
[46] Lin, R., Lin, S., Feng, S., Wu, Q., Fu, J., Wang, F., et al. (2021) Comparing Patient-Controlled Analgesia versus Non-PCA Hydromorphone Titration for Severe Cancer Pain: A Randomized Phase III Trial. Journal of the National Comprehensive Cancer Network, 19, 1148-1155. [Google Scholar] [CrossRef] [PubMed]
[47] Liu, J., Wang, Y., Tang, Y., Luo, J., Long, Y. and Tan, S. (2020) Clinical Effect and Safety Evaluation of Hydromorphone Combined with Sufentanil in Patient-Controlled Intravenous Analgesia for Patients with Hepatocellular Cancer and Its Effect on Serum Immune Factors. Oncology Letters, 20, Article No. 296. [Google Scholar] [CrossRef] [PubMed]
[48] Ying, Y., Fei, S., Zeng, Z., Qu, X. and Cao, Z. (2022) Comparative Study of Dezocine and Ketorolac Tromethamine in Patient-Controlled Intravenous Analgesia of Laparoscopic Cholecystectomy. Frontiers in Surgery, 9, Article ID: 881006. [Google Scholar] [CrossRef] [PubMed]
[49] McCarthy, E., Felte, R., Urban, D., Zhang, Z. and Halbert, C. (2020) Community Hospital Decreases Narcotic Usage in Postoperative Bariatric Patients. Surgery for Obesity and Related Diseases, 16, 1810-1815. [Google Scholar] [CrossRef] [PubMed]
[50] Lynde, G.C. (2016) Determination of ED50 of Hydromorphone for Postoperative Analgesia Following Cesarean Delivery. International Journal of Obstetric Anesthesia, 28, 17-21. [Google Scholar] [CrossRef] [PubMed]
[51] Urban, M.K., Labib, K.M., Reid, S.C., Goon, A.K., Rotundo, V., Cammisa, F.P., et al. (2018) Pregabalin Did Not Improve Pain Management after Spinal Fusions. HSS Journal®: The Musculoskeletal Journal of Hospital for Special Surgery, 14, 41-46. [Google Scholar] [CrossRef] [PubMed]