[1]
|
Nakanishi, S. and Inokuchi, J. (2025) Current Evidences and Future Perspectives in the Management of Metastatic Non‐clear Cell Renal Cell Carcinoma. International Journal of Urology, 32, 1118-1128. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Zhan, X., Liu, Y., Yu, C.Y., Wang, T., Zhang, J., Ni, D., et al. (2020) A Pan-Kidney Cancer Study Identifies Subtype Specific Perturbations on Pathways with Potential Drivers in Renal Cell Carcinoma. BMC Medical Genomics, 13, Article No. 190. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Evelönn, E.A., Landfors, M., Haider, Z., Köhn, L., Ljungberg, B., Roos, G., et al. (2019) DNA Methylation Associates with Survival in Non-Metastatic Clear Cell Renal Cell Carcinoma. BMC Cancer, 19, Article No. 65. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Obeng, R.C., Arnold, R.S., Ogan, K., et al. (2020) Molecular Characteristics and Markers of Advanced Clear Cell Renal Cell Carcinoma: Pitfalls Due to Intratumoral Heterogeneity and Identification of Genetic Alterations Associated with Metastasis. International Journal of Urology, 27, 790-797.
|
[5]
|
Zhang, K., Xu, C., Liu, S., Jiang, Y., Zhao, X., Ma, S., et al. (2021) The Diagnostic and Immunotherapeutic Value of CD248 in Renal Cell Carcinoma. Frontiers in Oncology, 11, Article ID: 644612. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Huang, H., Zhu, L., Huang, C., Dong, Y., Fan, L., Tao, L., et al. (2021) Identification of Hub Genes Associated with Clear Cell Renal Cell Carcinoma by Integrated Bioinformatics Analysis. Frontiers in Oncology, 11, Article ID: 726655. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Arik, D., Can, C., Dündar, E., Kabukçuoğlu, S. and Paşaoğlu, Ö. (2016) Prognostic Significance of CD24 in Clear Cell Renal Cell Carcinoma. Pathology & Oncology Research, 23, 409-416. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Marletta, S., Caliò, A., Bogina, G., Rizzo, M., Brunelli, M., Pedron, S., et al. (2023) STING Is a Prognostic Factor Related to Tumor Necrosis, Sarcomatoid Dedifferentiation, and Distant Metastasis in Clear Cell Renal Cell Carcinoma. Virchows Archiv, 483, 87-96. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Li, H., Zheng, P., Li, Z., Han, Q., Zhou, B., Wang, X., et al. (2022) NCAPG Promotes the Proliferation of Renal Clear Cell Carcinoma via Mediating with CDK1. Disease Markers, 2022, Article ID: 6758595. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Fang, M., Wu, Z., Xia, Z. and Xiao, J. (2025) Diagnostic, Prognostic, and Immunological Roles of NCAPG in Pan-Cancer: A Bioinformatics Analysis. Medicine, 104, e41761. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Liu, F., Wang, P., Sun, W., Jiang, Y. and Gong, Q. (2022) Identification of Ligand-Receptor Pairs Associated with Tumour Characteristics in Clear Cell Renal Cell Carcinoma. Frontiers in Immunology, 13, Article ID: 874056. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Zheng, J., Wang, L., Peng, Z., Yang, Y., Feng, D. and He, J. (2017) Low Level of PDZ Domain Containing 1 (PDZK1) Predicts Poor Clinical Outcome in Patients with Clear Cell Renal Cell Carcinoma. EBioMedicine, 15, 62-72. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Zhang, W., Liu, W., Yang, Y., Xiao, C., Xiao, Y., Tan, X., et al. (2023) Integrative Analysis of Transcriptomic Landscape and Urinary Signature Reveals Prognostic Biomarkers for Clear Cell Renal Cell Carcinoma. Frontiers in Oncology, 13, Article ID: 1102623. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Li, Q.K., Pavlovich, C.P., Zhang, H., Kinsinger, C.R. and Chan, D.W. (2019) Challenges and Opportunities in the Proteomic Characterization of Clear Cell Renal Cell Carcinoma (ccRCC): A Critical Step towards the Personalized Care of Renal Cancers. Seminars in Cancer Biology, 55, 8-15. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Hitefield, N.L., Mackay, S., Hays, L.E., Chen, S., Oduor, I.O., Troyer, D.A., et al. (2023) Differential Activation of NRF2 Signaling Pathway in Renal-Cell Carcinoma Caki Cell Lines. Biomedicines, 11, Article No. 1010. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Lu, H.C., Patterson, N.H., Judd, A.M., Reyzer, M.L. and Sehn, J.K. (2020) Imaging Mass Spectrometry Is an Accurate Tool in Differentiating Clear Cell Renal Cell Carcinoma and Chromophobe Renal Cell Carcinoma: A Proof-of-Concept Study. Journal of Histochemistry & Cytochemistry, 68, 403-411. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Baraban, E.G., Elias, R., Lin, M., Ged, Y., Zhu, J., Pallavajjala, A., et al. (2024) High-Grade, Nonsarcomatoid Chromophobe Renal Cell Carcinoma: A Series of 22 Cases with Novel Molecular Features on a Subset. Modern Pathology, 37, Article ID: 100472. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Kaldany, A., Paulucci, D.J., Kannappan, M., Beksac, A.T., Anastos, H., Okhawere, K., et al. (2019) Clinicopathological and Survival Analysis of Clinically Advanced Papillary and Chromophobe Renal Cell Carcinoma. Urologic Oncology: Seminars and Original Investigations, 37, 727-734. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Pezzicoli, G., Musci, V., Ciciriello, F., Salonne, F., Cafforio, P., Lionetti, N., et al. (2024) Genomic Profiling and Molecular Characterization of Non-Clear Cell Renal Cell Carcinoma: A Narrative Review from a Clinical Perspective. Therapeutic Advances in Medical Oncology, 16, 1-17. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Zhang, R., Yang, J., Peng, L., Zheng, L., Xie, P., Wang, M., et al. (2016) RNA-Binding Protein QKI-5 Inhibits the Proliferation of Clear Cell Renal Cell Carcinoma via Post-Transcriptional Stabilization of RASA1 mRNA. Cell Cycle, 15, 3094-3104. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Shi, X., Pang, Q., Nian, X., Jiang, A., Shi, H., Liu, W., et al. (2023) Integrative Transcriptome and Proteome Analyses of Clear Cell Renal Cell Carcinoma Develop a Prognostic Classifier Associated with Thrombus. Scientific Reports, 13, Article No. 9778. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Bramsen, J.B., Rasmussen, M.H., Ongen, H., Mattesen, T.B., Ørntoft, M.W., Árnadóttir, S.S., et al. (2017) Molecular-Subtype-Specific Biomarkers Improve Prediction of Prognosis in Colorectal Cancer. Cell Reports, 19, 1268-1280. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Schiavoni, V., Emanuelli, M., Campagna, R., Cecati, M., Sartini, D., Milanese, G., et al. (2024) Paraoxonase‐2 shRNA‐Mediated Gene Silencing Suppresses Proliferation and Migration, While Promotes Chemosensitivity in Clear Cell Renal Cell Carcinoma Cell Lines. Journal of Cellular Biochemistry, 125, e30572. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Tanio, M., Muramoto, A., Hoshino, H., Murahashi, M., Imamura, Y., Yokoyama, O., et al. (2021) Expression of Functional E-Selectin Ligands on the Plasma Membrane of Carcinoma Cells Correlates with Poor Prognosis in Clear Cell Renal Cell Carcinoma. Urologic Oncology: Seminars and Original Investigations, 39, 302.e9-302.e18. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Lih, T.M., Cho, K.C., Schnaubelt, M., Hu, Y. and Zhang, H. (2023) Integrated Glycoproteomic Characterization of Clear Cell Renal Cell Carcinoma. Cell Reports, 42, Article ID: 112409. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Apanovich, N., Peters, M., Apanovich, P., Mansorunov, D., Markova, A., Matveev, V., et al. (2020) The Genes—Candidates for Prognostic Markers of Metastasis by Expression Level in Clear Cell Renal Cell Cancer. Diagnostics, 10, Article No. 30. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Zhu, Z., Zhang, C., Qian, J., Feng, N., Zhu, W., Wang, Y., et al. (2022) Construction and Validation of a Ferroptosis-Related Long Noncoding RNA Signature in Clear Cell Renal Cell Carcinoma. Cancer Cell International, 22, Article No. 283. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Hazra, R., Chattopadhyay, S., Mallick, A., Gayen, S. and Roy, S. (2024) Unravelling CD24-Siglec-10 Pathway: Cancer Immunotherapy from Basic Science to Clinical Studies. Immunology, 173, 442-469. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Gu, Y., Zhou, G., Tang, X., Shen, F., Ding, J. and Hua, K. (2023) The Biological Roles of CD24 in Ovarian Cancer: Old Story, but New Tales. Frontiers in Immunology, 14, Article ID: 1183285. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Altevogt, P., Sammar, M., Hüser, L. and Kristiansen, G. (2020) Novel Insights into the Function of CD24: A Driving Force in Cancer. International Journal of Cancer, 148, 546-559. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Chantziou, A., Theodorakis, K., Polioudaki, H., de Bree, E., Kampa, M., Mavroudis, D., et al. (2021) Glycosylation Modulates Plasma Membrane Trafficking of CD24 in Breast Cancer Cells. International Journal of Molecular Sciences, 22, Article No. 8165. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Wu, Y., et al. (2024) NCAPG-Mediated CDK1 Promotes Malignant Progression of Non-Small Cell Lung Cancer via ERK Signaling Activation. American Journal of Cancer Research, 14, 5338-5350. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Panagiotou, E., Syrigos, N.K., Charpidou, A., Kotteas, E. and Vathiotis, I.A. (2022) CD24: A Novel Target for Cancer Immunotherapy. Journal of Personalized Medicine, 12, Article No. 1235. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Li, X., Tian, W., Jiang, Z., Song, Y., Leng, X. and Yu, J. (2024) Targeting CD24/Siglec-10 Signal Pathway for Cancer Immunotherapy: Recent Advances and Future Directions. Cancer Immunology, Immunotherapy, 73, Article No. 31. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Yuan, Y., Jiang, X., Tang, L., Wang, J., Zhang, D., Cho, W.C., et al. (2022) FOXM1/lncRNA TYMSOS/miR-214-3p-Mediated High Expression of NCAPG Correlates with Poor Prognosis and Cell Proliferation in Non-Small Cell Lung Carcinoma. Frontiers in Molecular Biosciences, 8, Article ID: 785767. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Cong, F., Yu, H. and Gao, X. (2017) Expression of CD24 and B7-H3 in Breast Cancer and the Clinical Significance. Oncology Letters, 14, 7185-7190. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Chen, Z., Ruan, W., Guo, C., Chen, K., Li, L., Tian, J., et al. (2023) Non‐SMC Condensin I Complex Subunit H Participates in Anti-Programmed Cell Death‐1 Resistance of Clear Cell Renal Cell Carcinomas. Cell Proliferation, 56, e13400. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Maimaitiming, A., Zhou, X., Ma, X., Huang, Y., Wang, Q., Deng, R., et al. (2018) Clinicopathological and Prognostic Value of Plasma CD24 Level in Hepatocellular Carcinoma. Journal of Investigative Surgery, 33, 536-541. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Wang, Q., Li, Z., Zhou, S., Li, Z., Huang, X., He, Y., et al. (2023) NCAPG2 Could Be an Immunological and Prognostic Biomarker: From Pan-Cancer Analysis to Pancreatic Cancer Validation. Frontiers in Immunology, 14, Article ID: 1097403. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
He, J., Zhang, F., Wu, B. and Yu, W. (2024) ST8SIA6 Sialylates CD24 to Enhance Its Membrane Localization in BRCA. Cells, 14, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Rogez, B., Pascal, Q., Bobillier, A., Machuron, F., Lagadec, C., Tierny, D., et al. (2018) CD44 and CD24 Expression and Prognostic Significance in Canine Mammary Tumors. Veterinary Pathology, 56, 377-388. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Zheng, G., Han, T., Hu, X., Yang, Z., Wang, J., Wen, Z., et al. (2022) NCAPG Promotes Tumor Progression and Modulates Immune Cell Infiltration in Glioma. Frontiers in Oncology, 12, Article ID: 770628. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Xiao, C., Gong, J., Jie, Y., Liang, W., Tai, Y., Qin, W., et al. (2023) E2f1-Mediated Up-Regulation of NCAPG Promotes Hepatocellular Carcinoma Development by Inhibiting Pyroptosis. Journal of Clinical and Translational Hepatology, 12, 25-35. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Liao, H., Zhang, L., Lu, S., Li, W. and Dong, W. (2022) KIFC3 Promotes Proliferation, Migration, and Invasion in Colorectal Cancer via PI3K/AKT/mTOR Signaling Pathway. Frontiers in Genetics, 13, Article ID: 848926. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Liu, W., Liang, B., Liu, H., Huang, Y., Yin, X., Zhou, F., et al. (2017) Overexpression of Non-Smc Condensin I Complex Subunit G Serves as a Promising Prognostic Marker and Therapeutic Target for Hepatocellular Carcinoma. International Journal of Molecular Medicine, 40, 731-738. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Shi, Y., Ge, C., Fang, D., Wei, W., Li, L., Wei, Q., et al. (2022) NCAPG Facilitates Colorectal Cancer Cell Proliferation, Migration, Invasion and Epithelial-Mesenchymal Transition by Activating the Wnt/β-Catenin Signaling Pathway. Cancer Cell International, 22, Article No. 119. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Liu, B., Xiao, Y., Li, H., Zhang, A., Meng, L., Feng, L., et al. (2020) Identification and Verification of Biomarker in Clear Cell Renal Cell Carcinoma via Bioinformatics and Neural Network Model. BioMed Research International, 2020, Article ID: 6954793. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Gong, C., Ai, J., Fan, Y., Gao, J., Liu, W., Feng, Q., et al. (2019) NCAPG Promotes the Proliferation of Hepatocellular Carcinoma through PI3K/AKT Signaling. OncoTargets and Therapy, 12, 8537-8552. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Zhu, Q.H., Zhou, Y.L., Yang, M., Yang, B., Cao, W., Yuan, L., et al. (2024) Reduced Mir-99a-3p Levels in Systemic Lupus Erythematosus May Promote B Cell Proliferation via NCAPG and the PI3K/AKT Signaling Pathway. Lupus, 33, 365-374. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Thiesen, H., Steinbeck, F., Maruschke, M., Koczan, D., Ziems, B. and Hakenberg, O.W. (2017) Stratification of Clear Cell Renal Cell Carcinoma (ccRCC) Genomes by Gene-Directed Copy Number Alteration (CNA) Analysis. PLOS ONE, 12, e0176659. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Lin, J., Li, G., Bai, Y. and Xie, Y. (2023) NCAPG as a Novel Prognostic Biomarker in Numerous Cancers: A Meta-Analysis and Bioinformatics Analysis. Aging, 15, 2503-2524. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Zhang, Y., Chen, M., Liu, M., Xu, Y. and Wu, G. (2021) Glycolysis‐Related Genes Serve as Potential Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma. Oxidative Medicine and Cellular Longevity, 2021, Article ID: 6699808. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Liu, K., Li, Y., Yu, B., Wang, F., Mi, T. and Zhao, Y. (2018) Silencing Non-SMC Chromosome-Associated Polypeptide G Inhibits Proliferation and Induces Apoptosis in Hepatocellular Carcinoma Cells. Canadian Journal of Physiology and Pharmacology, 96, 1246-1254. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Zhang, L., Ma, T., Yan, Y., Chen, Y., Zhu, X. and Ren, H. (2023) The Diagnostic and Therapeutic Value of NCAPG as a Proposed Biomarker Candidate in Acute Liver Failure. Combinatorial Chemistry & High Throughput Screening, 26, 2738-2748. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Ou, X., Zhang, G., Xu, Z., Chen, J., Xie, Y., Liu, J., et al. (2018) Desumoylating Isopeptidase 2 (DESI2) Inhibits Proliferation and Promotes Apoptosis of Pancreatic Cancer Cells through Regulating PI3K/AKT/mTOR Signaling Pathway. Pathology & Oncology Research, 25, 635-646. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Qiu, P., Li, X., Gong, M., Wen, P., Wen, J., Xu, L., et al. (2023) SPI1 Mediates N-Myristoyltransferase 1 to Advance Gastric Cancer Progression via PI3K/AKT/mTOR Pathway. Canadian Journal of Gastroenterology and Hepatology, 2023, Article ID: 2021515. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Bao, J., Chen, Z., Xu, L., Wu, L. and Xiong, Y. (2020) Rapamycin Protects Chondrocytes against Il-18-Induced Apoptosis and Ameliorates Rat Osteoarthritis. Aging, 12, 5152-5167. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Liu, S., Xu, C., Zhang, K., Han, D., Yang, F., Li, Y., et al. (2021) CD248 as a Bridge between Angiogenesis and Immunosuppression: A Promising Prognostic and Therapeutic Target for Renal Cell Carcinoma. Annals of Translational Medicine, 9, Article No. 1741. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Laruelle, A., Rocha, A., Manini, C., López, J.I. and Inarra, E. (2023) Effects of Heterogeneity on Cancer: A Game Theory Perspective. Bulletin of Mathematical Biology, 85, Article No. 72. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Yang, Q., Han, Y., Liu, X., Xue, L., Ji, Z. and Ye, H. (2025) High Intratumoral Heterogeneity in Clear Cell Renal Cell Carcinoma Is Associated with Reduced Immune Response and Survival. Translational Andrology and Urology, 14, 1190-1203. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Saout, J.R., Lecuyer, G., Léonard, S., Evrard, B., Kammerer-Jacquet, S., Noël, L., et al. (2023) Single-Cell Deconvolution of a Specific Malignant Cell Population as a Poor Prognostic Biomarker in Low-Risk Clear Cell Renal Cell Carcinoma Patients. European Urology, 83, 441-451. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Sun, C., Geng, J., Yan, Y., Yao, X. and Liu, M. (2017) Overexpression of CKAP4 Is Associated with Poor Prognosis in Clear Cell Renal Cell Carcinoma and Functions via Cyclin B Signaling. Journal of Cancer, 8, 4018-4026. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Roussel, E., Kinget, L., Verbiest, A., Zucman-Rossi, J., Boeckx, B., Joniau, S., et al. (2022) Molecular Heterogeneity between Paired Primary and Metastatic Lesions from Clear Cell Renal Cell Carcinoma. European Urology Open Science, 40, 54-57. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
Zheng, T., Qian, T., Zhou, H., Cheng, Z., Liu, G., Huang, C., et al. (2023) Galectin-1-Mediated High NCAPG Expression Correlates with Poor Prognosis in Gastric Cancer. Aging, 15, 5535-5549. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
López, J.I. and Angulo, J.C. (2018) Pathological Bases and Clinical Impact of Intratumor Heterogeneity in Clear Cell Renal Cell Carcinoma. Current Urology Reports, 19, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
[66]
|
Luo, G., Cheng, H., Fan, J. and Sun, T. (2024) Up-Regulation of NCAPG Mediated by E2F1 Facilitates the Progression of Osteosarcoma through the Wnt/β-Catenin Signaling Pathway. Translational Cancer Research, 13, 2437-2450. [Google Scholar] [CrossRef] [PubMed]
|
[67]
|
Lu, L., Lei, Y., Li, Y. and Wang, L. (2024) LRP6 Is a Potential Biomarker of Kidney Clear Cell Carcinoma Related to Prognosis and Immune Infiltration. Aging, 16, 1484-1495. [Google Scholar] [CrossRef] [PubMed]
|
[68]
|
Sharma, R., Kannourakis, G., Prithviraj, P. and Ahmed, N. (2022) Precision Medicine: An Optimal Approach to Patient Care in Renal Cell Carcinoma. Frontiers in Medicine, 9, Article ID: 766869. [Google Scholar] [CrossRef] [PubMed]
|
[69]
|
Ueno, D., Xie, Z., Boeke, M., Syed, J., Nguyen, K.A., McGillivray, P., et al. (2018) Genomic Heterogeneity and the Small Renal Mass. Clinical Cancer Research, 24, 4137-4144. [Google Scholar] [CrossRef] [PubMed]
|
[70]
|
Miheecheva, N., Postovalova, E., Lyu, Y., Ramachandran, A., Bagaev, A., Svekolkin, V., et al. (2022) Multiregional Single-Cell Proteogenomic Analysis of ccRCC Reveals Cytokine Drivers of Intratumor Spatial Heterogeneity. Cell Reports, 40, Article ID: 111180. [Google Scholar] [CrossRef] [PubMed]
|
[71]
|
Li, Z., Hu, J., Qin, Z., Tao, Y., Lai, Z., Wang, Q., et al. (2019) High‐Dimensional Single‐Cell Proteomics Analysis Reveals the Landscape of Immune Cells and Stem‐Like Cells in Renal Tumors. Journal of Clinical Laboratory Analysis, 34, e23155. [Google Scholar] [CrossRef] [PubMed]
|
[72]
|
Li, Z., Xu, H., Yu, L., Wang, J., Meng, Q., Mei, H., et al. (2022) Patient‐Derived Renal Cell Carcinoma Organoids for Personalized Cancer Therapy. Clinical and Translational Medicine, 12, e970. [Google Scholar] [CrossRef] [PubMed]
|
[73]
|
Ahluwalia, P., Mondal, A.K., Sahajpal, N.S., Rojiani, M.V. and Kolhe, R. (2021) Gene Signatures with Therapeutic Value: Emerging Perspective for Personalized Immunotherapy in Renal Cancer. Immunotherapy, 13, 1535-1547. [Google Scholar] [CrossRef] [PubMed]
|
[74]
|
Huebner-Resch, I. and Schmidinger, M. (2024) Guiding Treatment Decisions in Renal Cell Carcinoma: The Role of Biomarkers and Clinical Factors. Current Opinion in Urology, 35, 28-34. [Google Scholar] [CrossRef] [PubMed]
|
[75]
|
Kratz, J.D., Rehman, S., Johnson, K.A., Gillette, A.A., Sunil, A., Favreau, P.F., et al. (2025) Subclonal Response Heterogeneity to Define Cancer Organoid Therapeutic Sensitivity. Scientific Reports, 15, Article No. 12072. [Google Scholar] [CrossRef] [PubMed]
|
[76]
|
Na, J.C., Kim, J., Kim, S.Y., Gu, Y., Jun, D., Lee, H.H., et al. (2020) Establishment of Patient-Derived Three-Dimensional Organoid Culture in Renal Cell Carcinoma. Investigative and Clinical Urology, 61, 216-223. [Google Scholar] [CrossRef] [PubMed]
|
[77]
|
Bolck, H.A., Corrò, C., Kahraman, A., von Teichman, A., Toussaint, N.C., Kuipers, J., et al. (2021) Tracing Clonal Dynamics Reveals That Two-and Three-Dimensional Patient-Derived Cell Models Capture Tumor Heterogeneity of Clear Cell Renal Cell Carcinoma. European Urology Focus, 7, 152-162. [Google Scholar] [CrossRef] [PubMed]
|
[78]
|
Wang, Y., Wang, Y., Liu, B., Gao, X., Li, Y., Li, F., et al. (2023) Mapping the Tumor Microenvironment in Clear Cell Renal Carcinoma by Single-Cell Transcriptome Analysis. Frontiers in Genetics, 14, Article ID: 1207233. [Google Scholar] [CrossRef] [PubMed]
|
[79]
|
Fernandez, A.I., Gaule, P. and Rimm, D.L. (2023) Tissue Age Affects Antigenicity and Scoring for the 22C3 Immunohistochemistry Companion Diagnostic Test. Modern Pathology, 36, Article ID: 100159. [Google Scholar] [CrossRef] [PubMed]
|
[80]
|
Abdayem, P. and Planchard, D. (2021) Update on Molecular Pathology and Role of Liquid Biopsy in Nonsmall Cell Lung Cancer. European Respiratory Review, 30, Article ID: 200294. [Google Scholar] [CrossRef] [PubMed]
|
[81]
|
Brzezicka, K.A. and Paulson, J.C. (2023) Impact of Siglecs on Autoimmune Diseases. Molecular Aspects of Medicine, 90, Article ID: 101140. [Google Scholar] [CrossRef] [PubMed]
|
[82]
|
Liu, Z., Bian, Q. and Wang, D. (2024) Exposure to 6-PPD Quinone Causes Ferroptosis Activation Associated with Induction of Reproductive Toxicity in Caenorhabditis Elegans. Journal of Hazardous Materials, 471, Article ID: 134356. [Google Scholar] [CrossRef] [PubMed]
|
[83]
|
Liu, P., Zheng, H., Gu, Y., Xu, Z., Zou, H., Gu, J., et al. (2025) Zearalenone Toxin Induces Pyroptosis by Activating Mitochondrial DNA-STING-NFκB Axis in Testis and TM4 Cell Damage. Chemico-Biological Interactions, 418, Article ID: 111618. [Google Scholar] [CrossRef] [PubMed]
|
[84]
|
Hoefflin, R., Lahrmann, B., Warsow, G., Hübschmann, D., Spath, C., Walter, B., et al. (2016) Spatial Niche Formation but Not Malignant Progression Is a Driving Force for Intratumoural Heterogeneity. Nature Communications, 7, ncomms11845. [Google Scholar] [CrossRef] [PubMed]
|
[85]
|
Zheng, J., Lu, W., Wang, C., Chen, S., Zhang, Q. and Su, C. (2024) Unfolding the Mysteries of Heterogeneity from a High-Resolution Perspective: Integration Analysis of Single-Cell Multi-Omics and Spatial Omics Revealed Functionally Heterogeneous Cancer Cells in ccRCC. Aging, 16, 10943-10971. [Google Scholar] [CrossRef] [PubMed]
|
[86]
|
Mitchell, T.J., Rossi, S.H., Klatte, T. and Stewart, G.D. (2018) Genomics and Clinical Correlates of Renal Cell Carcinoma. World Journal of Urology, 36, 1899-1911. [Google Scholar] [CrossRef] [PubMed]
|