[1]
|
Rondelli, F., Balzarotti, R., Villa, F., Guerra, A., Avenia, N., Mariani, E., et al. (2015) Is Robot-Assisted Laparoscopic Right Colectomy More Effective than the Conventional Laparoscopic Procedure? A Meta-Analysis of Short-Term Outcomes. International Journal of Surgery, 18, 75-82. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Prete, F.P., Pezzolla, A., Prete, F., Testini, M., Marzaioli, R., Patriti, A., et al. (2018) Robotic versus Laparoscopic Minimally Invasive Surgery for Rectal Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Annals of Surgery, 267, 1034-1046. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Quezada-Diaz, F.F. and Smith, J.J. (2023) Colon Cancer: Is the Robot a Better Option? Annals of Laparoscopic and Endoscopic Surgery, 8, Article 35. [Google Scholar] [CrossRef]
|
[4]
|
Martínez-Pérez, A., Reitano, E., Gavriilidis, P., Genova, P., Moroni, P., Memeo, R., et al. (2019) What Is the Best Surgical Option for the Resection of Transverse Colon Cancer? Annals of Laparoscopic and Endoscopic Surgery, 4, Article 69. [Google Scholar] [CrossRef]
|
[5]
|
Milone, M., Manigrasso, M., Elmore, U., Maione, F., Gennarelli, N., Rondelli, F., et al. (2018) Short-and Long-Term Outcomes after Transverse versus Extended Colectomy for Transverse Colon Cancer. A Systematic Review and Meta-Analysis. International Journal of Colorectal Disease, 34, 201-207. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Isik, O. and Gorgun, E. (2015) How Has the Robot Contributed to Colon Cancer Surgery? Clinics in Colon and Rectal Surgery, 28, 220-227. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Negrut, R.L., Cote, A., Caus, V.A. and Maghiar, A.M. (2024) Systematic Review and Meta-Analysis of Laparoscopic versus Robotic-Assisted Surgery for Colon Cancer: Efficacy, Safety, and Outcomes—A Focus on Studies from 2020-2024. Cancers, 16, Article 1552. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Kim, K.E., Jeong, W.K., Baek, S.K. and Bae, S.U. (2025) Robot-Assisted Colectomy for Left‐Sided Colon Cancer: Comparison of Da Vinci SP and Single‐Site Platforms. The International Journal of Medical Robotics and Computer Assisted Surgery, 21, e70079. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Xu, S., Liu, K., Chen, X. and Yao, H. (2021) The Safety and Efficacy of Laparoscopic Surgery versus Laparoscopic NOSE for Sigmoid and Rectal Cancer. Surgical Endoscopy, 36, 222-235. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Chen, M.Z., Cartmill, J. and Gilmore, A. (2020) Natural Orifice Specimen Extraction for Colorectal Surgery: Early Adoption in a Western Population. Colorectal Disease, 23, 937-943. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Lu, Z., Chen, H., Zhang, M., Guan, X., Zhao, Z., Jiang, Z., et al. (2020) Safety and Survival Outcomes of Transanal Natural Orifice Specimen Extraction Using Prolapsing Technique for Patients with Middle-to Low-Rectal Cancer. Chinese Journal of Cancer Research, 32, 654-664. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Bu, J., Li, N., He, S. et al. (2020) Effect of Laparoscopic Surgery for Colorectal Cancer with Recovery and Prognosis of Patients. Minimally Invasive Therapy & Allied Technologies. MITAT.
|
[13]
|
Hisada, M. (2014) Complete Laparoscopic Resection of the Rectum Using Natural Orifice Specimen Extraction. World Journal of Gastroenterology, 20, 16707-16713. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Zhou, S., Wang, X., Zhao, C., Wei, P., Zhou, H., Liu, Q., et al. (2019) Comparison of Short-Term and Survival Outcomes for Transanal Natural Orifice Specimen Extraction with Conventional Mini-Laparotomy after Laparoscopic Anterior Resection for Colorectal Cancer. Cancer Management and Research, 11, 5939-5948. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Zhang, H., Hu, H., Huang, R., Guan, Z., Zheng, M., Xu, C., et al. (2021) Natural Orifice Specimen Extraction Surgery versus Conventional Laparoscopic-Assisted Resection for Colorectal Cancer in Elderly Patients: A Propensity-Score Matching Study. Updates in Surgery, 74, 599-607. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Efetov, S.K., Cao, Y., Panova, P.D., Khlusov, D.I. and Shulutko, A.M. (2024) Reduced-Port Laparoscopic Right Colonic Resection with D3 Lymph Node Dissection and Transvaginal Specimen Extraction (NOSES Viiia) for Right Colon Cancer: Clinical Features. Techniques in Coloproctology, 29, Article No. 34. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
FOxTROT Collaborating Group (2023) Risk of Bowel Obstruction in Patients Undergoing Neoadjuvant Chemotherapy for High-Risk Colon Cancer: A Nested Case-Control-Matched Analysis of an International, Multicenter, Randomized Controlled Trial (FOxTROT). Annals of Surgery, 280, 283-293. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Morton, D., Seymour, M., Magill, L., Handley, K., Glasbey, J., Glimelius, B., et al. (2023) Preoperative Chemotherapy for Operable Colon Cancer: Mature Results of an International Randomized Controlled Trial. Journal of Clinical Oncology, 41, 1541-1552. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Hu, H., Zhang, J., Li, Y., Wang, X., Wang, Z., Wang, H., et al. (2024) Neoadjuvant Chemotherapy with Oxaliplatin and Fluoropyrimidine versus Upfront Surgery for Locally Advanced Colon Cancer: The Randomized, Phase III OPTICAL Trial. Journal of Clinical Oncology, 42, 2978-2988. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Lu, D., Dong, C., Wang, K., Ye, C., Chen, L., Yuan, Y., et al. (2025) Updates of CSCO Guidelines for Colorectal Cancer Version 2025. Chinese Journal of Cancer Research, 37, 297-302. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Shalhout, S.Z., Miller, D.M., Emerick, K.S. and Kaufman, H.L. (2023) Therapy with Oncolytic Viruses: Progress and Challenges. Nature Reviews Clinical Oncology, 20, 160-177. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Bell, J.C. (2020) Check and Checkmate: Battling Cancer with Multiplex Immunotherapy. Molecular Therapy, 28, 1236-1237. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Bourhill, T., Mori, Y., Rancourt, D., Shmulevitz, M. and Johnston, R. (2018) Going (Reo)viral: Factors Promoting Successful Reoviral Oncolytic Infection. Viruses, 10, Article 421. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Kim, M., Nitschké, M., Sennino, B., Murer, P., Schriver, B.J., Bell, A., et al. (2018) Amplification of Oncolytic Vaccinia Virus Widespread Tumor Cell Killing by Sunitinib through Multiple Mechanisms. Cancer Research, 78, 922-937. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Oh, C., Chon, H.J. and Kim, C. (2020) Combination Immunotherapy Using Oncolytic Virus for the Treatment of Advanced Solid Tumors. International Journal of Molecular Sciences, 21, Article 7743. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Kim, M., Garant, K.A., zur Nieden, N.I., Alain, T., Loken, S.D., Urbanski, S.J., et al. (2010) Attenuated Reovirus Displays Oncolysis with Reduced Host Toxicity. British Journal of Cancer, 104, 290-299. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Kelly, K., Nawrocki, S., Mita, A., Coffey, M., Giles, F.J. and Mita, M. (2009) Reovirus-Based Therapy for Cancer. Expert Opinion on Biological Therapy, 9, 817-830. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Kim, M., Chung, Y.H. and Johnston, R.N. (2007) Reovirus and Tumor Oncolysis. Journal of Microbiology, 45, 187-192.
|
[29]
|
Goubau, D., Schlee, M., Deddouche, S., Pruijssers, A.J., Zillinger, T., Goldeck, M., et al. (2014) Antiviral Immunity via Rig-I-Mediated Recognition of RNA Bearing 5’-Diphosphates. Nature, 514, 372-375. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Loo, Y., Fornek, J., Crochet, N., Bajwa, G., Perwitasari, O., Martinez-Sobrido, L., et al. (2008) Distinct RIG-I and MDA5 Signaling by RNA Viruses in Innate Immunity. Journal of Virology, 82, 335-345. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Clarke, P., Meintzer, S.M., Gibson, S., Widmann, C., Garrington, T.P., Johnson, G.L., et al. (2000) Reovirus-Induced Apoptosis Is Mediated by Trail. Journal of Virology, 74, 8135-8139. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Kominsky, D.J., Bickel, R.J. and Tyler, K.L. (2002) Reovirus-Induced Apoptosis Requires Both Death Receptor-and Mitochondrial-Mediated Caspase-Dependent Pathways of Cell Death. Cell Death & Differentiation, 9, 926-933. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Lee, W.S., Lee, S.J., Lee, H.J., Yang, H., Go, E., Gansukh, E., et al. (2024) Oral Reovirus Reshapes the Gut Microbiome and Enhances Antitumor Immunity in Colon Cancer. Nature Communications, 15, Article No. 9092. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Li, Q., Wang, Y., Tu, J., Liu, C., Yuan, Y., Lin, R., et al. (2020) Anti-EGFR Therapy in Metastatic Colorectal Cancer: Mechanisms and Potential Regimens of Drug Resistance. Gastroenterology Report, 8, 179-191. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
You, K.S., Yi, Y.W., Cho, J., Park, J. and Seong, Y. (2021) Potentiating Therapeutic Effects of Epidermal Growth Factor Receptor Inhibition in Triple-Negative Breast Cancer. Pharmaceuticals, 14, Article 589. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Seligmann, J.F., Elliott, F., Richman, S.D., Jacobs, B., Hemmings, G., Brown, S., et al. (2016) Combined Epiregulin and Amphiregulin Expression Levels as a Predictive Biomarker for Panitumumab Therapy Benefit or Lack of Benefit in Patients with RAS Wild-Type Advanced Colorectal Cancer. JAMA Oncology, 2, 633-642. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Baker, J.B., Dutta, D., Watson, D., Maddala, T., Munneke, B.M., Shak, S., et al. (2011) Tumour Gene Expression Predicts Response to Cetuximab in Patients with KRAS Wild-Type Metastatic Colorectal Cancer. British Journal of Cancer, 104, 488-495. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Khambata-Ford, S., Garrett, C.R., Meropol, N.J., Basik, M., Harbison, C.T., Wu, S., et al. (2007) Expression of Epiregulin and Amphiregulin and K-RAS Mutation Status Predict Disease Control in Metastatic Colorectal Cancer Patients Treated with Cetuximab. Journal of Clinical Oncology, 25, 3230-3237. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Vale, C.L., Tierney, J.F., Fisher, D., Adams, R.A., Kaplan, R., Maughan, T.S., et al. (2012) Does Anti-EGFR Therapy Improve Outcome in Advanced Colorectal Cancer? a Systematic Review and Meta-Analysis. Cancer Treatment Reviews, 38, 618-625. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Douillard, J., Oliner, K.S., Siena, S., Tabernero, J., Burkes, R., Barugel, M., et al. (2013) Panitumumab-FOLFOX4 Treatment and RAS Mutations in Colorectal Cancer. New England Journal of Medicine, 369, 1023-1034. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Seymour, M.T., Brown, S.R., Middleton, G., Maughan, T., Richman, S., Gwyther, S., et al. (2013) Panitumumab and Irinotecan versus Irinotecan Alone for Patients with KRAS Wild-Type, Fluorouracil-Resistant Advanced Colorectal Cancer (PICCOLO): A Prospectively Stratified Randomised Trial. The Lancet Oncology, 14, 749-759. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
High, P.C., Liang, Z., Guernsey-Biddle, C., et al. (2025) Cetuximab Increases LGR5 Expression and Augments LGR5-Targeting Anti-Body-Drug Conjugate Efficacy in Patient-Derived Colorectal Cancer Models. bioRxiv. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Tâlvan, C., Budișan, L., Tâlvan, E., Grecu, V., Zănoagă, O., Mihalache, C., et al. (2024) Serum Interleukins 8, 17, and 33 as Potential Biomarkers of Colon Cancer. Cancers, 16, Article 745. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Antoniotti, C., Borelli, B., Rossini, D., Pietrantonio, F., Morano, F., Salvatore, L., et al. (2020) Atezotribe: A Randomised Phase II Study of FOLFOXIRI Plus Bevacizumab Alone or in Combination with Atezolizumab as Initial Therapy for Patients with Unresectable Metastatic Colorectal Cancer. BMC Cancer, 20, Article No. 683. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Ferrara, N., Gerber, H. and LeCouter, J. (2003) The Biology of VEGF and Its Receptors. Nature Medicine, 9, 669-676. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
André, T., Lonardi, S., Wong, K.Y.M., Lenz, H.-J., Gelsomino, F., Aglietta, M., et al. (2022) Nivolumab Plus Low-Dose Ipilimumab in Previously Treated Patients with Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: 4-Year Follow-Up from Checkmate 142. Annals of Oncology, 33, 1052-1060. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Zheng, Z., Zhao, Y., Xie, J., Gao, M., Wang, Y. and Li, X. (2024) Clinical Risk Factors of Bevacizumab-Related Hypertension in Patients with Metastatic Colorectal Cancer: A Retrospective Study. Frontiers in Pharmacology, 15, Article 1463026. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Vonica, R.C., Butuca, A., Morgovan, C., Pumnea, M., Cipaian, R.C., Frum, A., et al. (2025) Bevacizumab—Insights from Eudravigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals, 18, Article 501. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Ribas, A., Lawrence, D., Atkinson, V., Agarwal, S., Miller, W.H., Carlino, M.S., et al. (2019) Combined BRAF and MEK Inhibition with PD-1 Blockade Immunotherapy in Braf-Mutant Melanoma. Nature Medicine, 25, 936-940. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Sullivan, R.J., Hamid, O., Gonzalez, R., Infante, J.R., Patel, M.R., Hodi, F.S., et al. (2019) Atezolizumab plus Cobimetinib and Vemurafenib in BRAF-Mutated Melanoma Patients. Nature Medicine, 25, 929-935. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Dummer, R., Lebbé, C., Atkinson, V., Mandalà, M., Nathan, P.D., Arance, A., et al. (2020) Combined PD-1, BRAF and MEK Inhibition in Advanced Braf-Mutant Melanoma: Safety Run-In and Biomarker Cohorts of Combi-I. Nature Medicine, 26, 1557-1563. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Liu, M., Liu, Q., Hu, K., Dong, Y., Sun, X., Zou, Z., et al. (2024) Colorectal Cancer with BRAF V600E Mutation: Trends in Immune Checkpoint Inhibitor Treatment. Critical Reviews in Oncology/Hematology, 204, Article ID: 104497. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Bertagnolli, M.M., Redston, M., Compton, C.C., Niedzwiecki, D., Mayer, R.J., Goldberg, R.M., et al. (2011) Microsatellite Instability and Loss of Heterozygosity at Chromosomal Location 18q: Prospective Evaluation of Biomarkers for Stages II and III Colon Cancer—A Study of CALGB 9581 and 89803. Journal of Clinical Oncology, 29, 3153-3162. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Ribic, C.M., Sargent, D.J., Moore, M.J., Thibodeau, S.N., French, A.J., Goldberg, R.M., et al. (2003) Tumor Microsatellite-Instability Status as a Predictor of Benefit from Fluorouracil-Based Adjuvant Chemotherapy for Colon Cancer. New England Journal of Medicine, 349, 247-257. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Wang, Z., Wang, X., Zhang, X., Leng, J., Cui, M., Zhang, J., et al. (2025) Toripalimab, Bevacizumab, and Irinotecan in dMMR/MSI Locally Advanced Colorectal Cancer: First-Stage Results from a Phase 1b/2 Trial. Cell Reports Medicine, 6, Article ID: 102296. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
薛静, 黎小妍. 特瑞普利单抗所致不良反应文献分析[J]. 中国临床药学杂志, 2022, 31(5): 375-379.
|
[57]
|
Burgers, P.M.J. and Kunkel, T.A. (2017) Eukaryotic DNA Replication Fork. Annual Review of Biochemistry, 86, 417-438. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Jin, Y., Huang, R., Guan, W., Wang, Z., Mai, Z., Li, Y., et al. (2024) A Phase II Clinical Trial of Toripalimab in Advanced Solid Tumors with Polymerase Epsilon/polymerase Delta (POLE/POLD1) Mutation. Signal Transduction and Targeted Therapy, 9, Article No. 227. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Chen, H., Wei, J., Tang, Q., Li, G., Zhou, Y. and Zhu, Z. (2025) Beyond Proofreading: POLD1 Mutations as Dynamic Orchestrators of Genomic Instability and Immune Evasion in Cancer. Frontiers in Immunology, 16, Article 1600233. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Tie, J., Cohen, J.D., Lahouel, K., Lo, S.N., Wang, Y., Kosmider, S., et al. (2022) Circulating Tumor DNA Analysis Guiding Adjuvant Therapy in Stage II Colon Cancer. New England Journal of Medicine, 386, 2261-2272. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
van Rees, J.M., Wullaert, L., Grüter, A.A.J., Derraze, Y., Tanis, P.J., Verheul, H.M.W., et al. (2023) Circulating Tumour DNA as Biomarker for Rectal Cancer: A Systematic Review and Meta-Analyses. Frontiers in Oncology, 13, Article 1083285. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Nakamura, Y., Watanabe, J., Akazawa, N., Hirata, K., Kataoka, K., Yokota, M., et al. (2024) ctDNA-Based Molecular Residual Disease and Survival in Resectable Colorectal Cancer. Nature Medicine, 30, 3272-3283. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Wullaert, L., Jansen, M.P.H.M., Kraan, J., Meyer, Y.M., Voigt, K., Makrodimitris, S., et al. (2025) Circulating Tumour Cells & Circulating Tumour DNA in Patients with Resectable Colorectal Liver Metastases (MIRACLE): A Prospective, Observational Biomarker Study. eClinicalMedicine, 87, Article ID: 103406. [Google Scholar] [CrossRef] [PubMed]
|