全身炎症反应指数、血小板与淋巴细胞比率与急性缺血性卒中严重程度的相关性研究
Correlation of Systemic Inflammatory Response Index and Platelet-to-Lymphocyte Ratio with Acute Ischemic Stroke Severity
DOI: 10.12677/acm.2025.15102780, PDF, HTML, XML,    科研立项经费支持
作者: 苏小航, 王 哲, 李春晓, 赵矍煜, 王三奇, 周芯宇, 李 鑫*:青岛大学附属医院神经内科,山东 青岛;青岛大学青岛医学院,山东 青岛
关键词: 全身炎症反应指数血小板与淋巴细胞比率缺血性卒中卒中严重程度Systemic Inflammatory Response Index Platelet-to-Lymphocyte Ratio Acute Ischemic Stroke Stroke Severity
摘要: 目的:炎症在急性缺血性卒中(AIS)的病理生理学中起着关键作用。本研究旨在探讨全身炎症反应指数(SIRI)、血小板与淋巴细胞比率(PLR)与AIS严重程度之间的关系。并评估炎症标志物对AIS病情严重程度的预测价值。方法:本研究回顾性纳入符合标准的417例AIS患者,入院时采集血细胞计数,并采用美国国立卫生研究院卒中量表(NIHSS)评估卒中严重程度。SIRI定义为中性粒细胞计数 × 单核细胞计数/淋巴细胞计数。PLR定义为血小板计数/淋巴细胞计数。采用多元Logistic回归分析影响缺血性脑卒中严重程度的独立危险因素。并绘制受试者工作特征(ROC)曲线评估SIRI和PLR在脑卒中疾病严重程度中的判别效能。结果:中重度卒中组的SIRI和PLR水平均显著高于轻度卒中组[SIRI: 1.30 (0.81~1.80) vs. 0.88 (0.62~1.26), P < 0.001; PLR: 141.45 (109.30~191.04) vs. 121.23 (92.65~150.68), P < 0.001]。单因素和多因素Logistic回归分析进一步表明,SIRI (OR: 1.877, 95% CI: 1.272~2.772, P = 0.002)和PLR (OR: 1.005, 95% CI: 1.001~1.010, P = 0.022)均与卒中严重程度独立相关。ROC曲线分析显示,SIRI (AUC = 0.679,灵敏度为0.567,特异度为0.728)和PLR (AUC = 0.634,灵敏度为0.653,特异度为0.592)对脑卒中严重程度具有中等偏低的预测能力,其中SIRI的判别效能略优于PLR。结论:SIRI和PLR与入院时的卒中严重程度显著相关,可作为与疾病严重程度相关的辅助炎症生物标志物。然而,其预测能力有限,不能替代标准的临床评估。未来仍需开展大样本、多中心研究进一步验证。
Abstract: Objective: Inflammation plays a critical role in the pathophysiology of acute ischemic stroke (AIS). This study aimed to investigate the relationship between the systemic inflammatory response index (SIRI), platelet-to-lymphocyte ratio (PLR), and AIS severity, as well as to evaluate the predictive value of these inflammatory markers for stroke severity. Methods: This retrospective study enrolled 417 eligible AIS patients. Blood cell counts were collected upon admission, and stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). SIRI was defined as neutrophil count × monocyte count/lymphocyte count. PLR was defined as platelet count/lymphocyte count. Multivariate Logistic regression analysis was used to identify independent risk factors associated with stroke severity. Receiver operating characteristic (ROC) curves were plotted to assess the discriminatory ability of SIRI and PLR for stroke severity. Results: The moderate-to-severe stroke group exhibited significantly higher SIRI and PLR levels compared to the mild stroke group [SIRI: 1.30 (0.81~1.80) vs. 0.88 (0.62~1.26), P < 0.001; PLR: 141.45 (109.30~191.04) vs. 121.23 (92.65~150.68), P < 0.001]. Univariate and multivariate Logistic regression analyses further demonstrated that SIRI (OR: 1.877, 95% CI: 1.272~2.772, P = 0.002) and PLR (OR: 1.005, 95% CI: 1.001~1.010, P = 0.022) were independently associated with stroke severity. ROC curve analysis showed that SIRI (AUC = 0.679, sensitivity = 0.567, specificity = 0.728) and PLR (AUC = 0.634, sensitivity = 0.653, specificity = 0.592) had relatively low-to-moderate predictive ability for stroke severity, with SIRI showing slightly better discriminatory performance than PLR. Conclusion: Both SIRI and PLR were significantly associated with stroke severity at admission and may serve as auxiliary inflammatory biomarkers related to disease severity. However, their predictive value is limited and cannot replace standard clinical assessments. Large-scale, multicenter studies are needed for further validation.
文章引用:苏小航, 王哲, 李春晓, 赵矍煜, 王三奇, 周芯宇, 李鑫. 全身炎症反应指数、血小板与淋巴细胞比率与急性缺血性卒中严重程度的相关性研究[J]. 临床医学进展, 2025, 15(10): 475-484. https://doi.org/10.12677/acm.2025.15102780

1. 引言

最新的《2021年全球疾病负担》(GBD)卒中负担估计[1]显示,在非传染性疾病(NCD)中,卒中仍然是全球第二大死因,同时也是死亡和残疾总和的第三大死因。卒中给社会和家庭带来了巨大的医疗和经济负担,严重影响患者生活质量。因此,临床上早期识别卒中严重程度,对于优化诊疗策略、提高治疗效率及改善预后至关重要。

炎症机制在AIS的发生与发展过程中发挥着关键作用[2]。卒中发生后,脑组织迅速启动炎症级联反应,缺血引发的炎症细胞相互作用,导致继发性脑损伤[3]。在众多炎症相关生物标志物中,全身炎症反应指数(systemic inflammation response index, SIRI)和血小板与淋巴细胞比率(platelet-to-lymphocyte ratio, PLR)因其计算简便、数据来源广泛而日益受到关注。SIRI结合了中性粒细胞、单核细胞和淋巴细胞三种免疫细胞的信息,较全面地反映了机体炎症状态与免疫反应之间的动态平衡,而PLR则反映了血小板在炎症性凝血反应中的活化程度,能够间接揭示卒中相关的全身炎症与高凝状态。先前的研究表明,入院时SIRI和PLR水平与AIS患者3个月后的功能预后密切相关[4] [5]。然而,目前关于SIRI和PLR与AIS严重程度之间关系的研究仍相对有限,尤其是在临床实践中这两个炎症指标能否作为与卒中严重程度相关的辅助性生物标志物尚缺乏系统性的证据支持。因此,本文旨在探讨SIRI和PLR水平与AIS入院时疾病严重程度之间的关系,进一步评估其作为预测工具的潜在价值,为卒中患者的风险分层管理和个体化治疗提供依据。

2. 材料与方法

2.1. 研究对象

回顾性纳入2024.03~2025.03青岛大学附属医院神经内科收治的首发急性缺血性卒中患者417例。纳入标准:① 患者在发病后7天内入院;② 年龄 ≥ 18岁;③ 符合中国急性缺血性卒中诊断和治疗指南中的诊断标准,并经头部CT或MRI确认,且首次发病;排除标准:① 急性感染患者,包括肺炎或其他活动性合并感染;② 既往脑梗死、脑出血病史;③ 严重肝肾功能不全;④ 恶性肿瘤、血液系统疾病;⑤ 病历资料不全的患者。本研究经青岛大学附属医院伦理委员会批准,并获得所有患者或其家属的知情同意。

2.2. 数据收集

收集患者的一般资料,包括年龄、性别、入院期间平均血压、吸烟史、饮酒史、高血压、糖尿病、冠心病史、房颤病史、TOAST分型等。采集入院后24 h内的白细胞计数、中性粒细胞计数、淋巴细胞计数、单核细胞计数、血小板计数,并计算SIRI值和PLR值。SIRI = N × M/L、PLR = P/L。采集空腹血样测定肌酐(Cr)、谷丙转氨酶(ALT)、谷草转氨酶(AST)、同型半胱氨酸(Hcy)、甘油三酯(TG)、总胆固醇(TC)、空腹血糖(GLU)、低密度脂蛋白胆固醇(LDL-C)和高密度脂蛋白胆固醇(HDL-C)。采用美国国立卫生研究院中风量表(NIHSS)评估入院时神经功能缺损的严重程度,NIHSS ≤ 5分定义为轻度卒中,NIHSS > 5分定义为中重度卒中。

2.3. 统计学分析

使用SPSS 27.0进行统计分析。采用Kolmogorov-Smirnov检验连续变量是否呈正态分布。呈正态分布的连续变量以平均值±标准差表示,呈非正态分布的连续变量则采用中位数(四分位距)进行描述。分类变量以频率和百分比(%)表示。连续变量使用t检验或Mann Whitney U检验进行组间比较。分类变量则根据适用条件选用Pearson卡方检验或Fisher精确检验。采用单因素Logistic回归和多因素Logistic回归分析来评估SIRI和PLR与疾病严重程度之间的关联,结果用比值比(OR)和95%置信区间(95% CI)表示。采用ROC曲线分析SIRI和PLR预测AIS患者卒中严重程度的总体能力。统计学显著性设置为P < 0.05 (双尾)。

3. 结果

3.1. 两组AIS患者的基线临床特征

本研究最终纳入417例AIS患者。其中男性280例,女性137例,轻度脑卒中310例,中重度脑卒中107例。轻度卒中组与中重度卒中组比较,白细胞计数、中性粒细胞计数、淋巴细胞计数、SIRI、PLR、TG、LDL-C、TOAST分型方面比较差异有统计学意义(P < 0.05),中重度卒中组的白细胞计数、中性粒细胞计数、SIRI、PLR、TG、LDL-C均高于轻度卒中组,而淋巴细胞计数低于轻度卒中组。在TOAST分型方面,轻度卒中组中SAO型占比最高,而在中重度卒中组中LAA型占比最高(见表1)。

Table 1. Comparison of clinical characteristics of patients in the mild and moderate-to-severe stroke groups

1. 轻度和中重度脑卒中组患者临床特征比较

变量

NIHSS ≤ 5 (n = 310)

NIHSS > 5 (n = 107)

P值

年龄(岁)

64.52 ± 10.67

66.31 ± 10.55

0.069

男性(n, %)

210 (66.9%)

70 (68.0%)

0.839

收缩压(mmHg)

150 (137~163)

150 (133~160)

0.338

舒张压(mmHg)

81 (74~87)

79 (75~85)

0.297

吸烟史(n, %)

140 (44.59%)

45 (43.69%)

0.874

饮酒史(n, %)

144 (45.86%)

50 (48.54%)

0.636

高血压(n, %)

247 (78.66%)

76 (73.79%)

0.304

高脂血症(n, %)

115 (36.62%)

39 (37.86%)

0.821

糖尿病(n, %)

90 (28.66%)

28 (27.18%)

0.773

冠心病(n, %)

31 (9.87%)

14 (13.59%)

0.291

房颤(n, %)

15 (4.78%)

9 (8.74%)

0.134

白细胞计数(109/L)

6.51 (5.64~7.89)

7.75 (6.51~8.79)

0.000

中性粒细胞(109/L)

4.26 (3.41~5.17)

5.26 (4.20~6.75)

0.000

单核细胞(109/L)

0.38 (0.32~0.46)

0.39 (0.31~0.48)

0.873

淋巴细胞(109/L)

1.81 (1.48~2.24)

1.57 (1.18~2.05)

0.000

血小板计数(109/L)

215 (185~251)

226 (188~261)

0.195

SIRI

0.88 (0.62~1.26)

1.30 (0.81~1.80)

0.000

PLR

121.23 (92.65~150.68)

141.45 (109.30~191.04)

0.000

肌酐(umol/L)

59.85 (50.80~69.92)

55.20 (48.70~66.80)

0.058

ALT (U/L)

20 (16~25)

22 (17~27)

0.265

AST (U/L)

23 (20~27)

24 (21~27)

0.418

HCY (umol/L)

10.10 (8.47~12.60)

10.60 (8.60~12.70)

0.271

TG (mmol/L)

1.56 (1.08~3.69)

2.07 (1.16~4.12)

0.038

TC (mmol/L)

3.80 (1.56~4.71)

3.80 (1.12~4.79)

0.277

空腹血糖(mmol/L)

4.96 (3.43~5.81)

4.68 (1.94~6.38)

0.267

HDL-C (mmol/L)

1.18 (0.97~1.89)

1.25 (1.05~2.65)

0.066

LDL-C (mmol/L)

2.82 (2.10~3.80)

3.18 (2.27~4.81)

0.027

TOAST分型,n (%)

0.005

LAA

125 (39.81%)

54 (52.43%)

SAO

143 (45.54%)

37 (35.92%)

CE

13 (4.14%)

6 (5.83%)

SOE

6 (1.91%)

4 (3.88%)

SUE

27 (8.60%)

2 (1.94%)

3.2. 两组AIS患者入院NIHSS评分与SIRI、PLR水平比较

SIRI、PLR水平随着卒中严重程度的增加而逐渐升高(见图1)。此外,中重度卒中组(NIHSS > 5)的SIRI水平和PLR水平高于轻度卒中组(0 < NIHSS ≤ 5) [1.30 (0.81~1.80) vs. 0.88 (0.62~1.26), P < 0.001; 141.45 (109.30~191.04) vs. 121.23 (92.65~150.68)]。

Figure 1. Comparison of SIRI and PLR levels in patients with different stroke severity

1. 不同卒中严重程度的SIRI与PLR水平比较

3.3. SIRI、PLR与卒中严重程度的单因素和多因素Logistic回归分析

单因素Logistic回归分析显示,SIRI、PLR、LDL、TG、SAO型与卒中严重程度显著相关。将单因素分析中P < 0.05的变量纳入多因素Logistic回归模型。多因素Logistic回归分析显示SIRI [OR = 1.877, 95% CI = 1.272~2.772, P = 0.002]、PLR [OR = 1.005, 95% CI = 1.001~1.010, P = 0.022]和LDL [OR = 1.147, 95% CI = 1.015~1.297, P = 0.028]是卒中严重程度的独立危险因素(见表2)。

Table 2. Univariate and multivariate Logistic regression analysis of SIRI and PLR in relation to stroke severity in AIS patients

2. AIS患者SIRI、PLR与卒中严重程度的单因素和多因素Logistic回归分析

变量

单因素Logistic回归分析

多因素Logistic回归分析

OR (95% CI)

P值

OR (95% CI)

P值

SIRI

2.431 (1.736~3.405)

<0.001

1.877 (1.272~2.772)

0.002

PLR

1.009 (1.005~1.013)

<0.001

1.005 (1.001~1.010)

0.022

LDL-C

1.169 (1.041~1.311)

0.008

1.147 (1.015~1.297)

0.028

TG

1.114 (1.002~1.239)

0.045

1.103 (0.981~1.241)

0.101

TOAST分型

LAA

0.081

0.344

SAO

0.599 (0.370~0.970)

0.037

0.686 (0.410~1.147)

0.151

CE

1.068 (0.386~2.959)

0.899

1.011 (0.328~3.114)

0.985

SOE + SUE

0.421 (0.167~1.063)

0.067

0.510 (0.195~1.335)

0.170

3.4. SIRI、PLR对卒中严重程度的预测价值

ROC曲线分析显示(见图2),SIRI和PLR对卒中患者病情严重程度的预测价值有限。SII的曲线下面积(AUC)为0.679 (95% CI = 0.618~0.739),临界值为0.953,灵敏度为0.567,特异度为0.728。PLR的曲线下面积(AUC)为0.634 (95% CI = 0.567~0.700),临界值为134.363,灵敏度为0.653,特异度为0.592 (见表3)。

Table 3. The ROC curve analysis table of SIRI and PLR for predicting the severity of stroke

3. SIRI、PLR预测卒中病情严重程度的ROC曲线分析表

变量

AUC

P值

95% CI

临界值

敏感度(%)

特异度(%)

SIRI

0.679

0.000

0.618~0.739

0.953

0.567

0.728

PLR

0.634

0.000

0.567~0.700

134.363

0.653

0.592

Figure 2. ROC curves of SIRI and PLR for predicting stroke severity

2. SIRI、PLR预测卒中严重程度的ROC曲线

4. 讨论

在本研究中,我们评估了SIRI和PLR与AIS严重程度之间的关系。结果显示,AIS患者入院时的SIRI和PLR水平均随卒中严重程度的增加而显著升高,且二者均为独立危险因素。ROC分析表明,SIRI和PLR卒中严重程度具有一定的预测能力(AUC值分别为0.679和0.634),但预测效能处于中等偏低水平,其灵敏度和特异度均有限。这表明,SIRI和PLR作为辅助性炎症生物标志物,能够为评估卒中急性期病情提供一定参考,但其预测价值有限,不能替代标准的临床评估。

炎症机制在AIS的发病和进展中起着重要作用。中风急性期局灶性缺血缺氧会诱发脑细胞产生大量炎症细胞因子、趋化因子、活性氧(ROS)、氮化合物等神经毒性物质,介导血脑屏障的破坏和炎症级联反应的发生。同时缺血性脑卒中损伤部位会释放损伤相关介导蛋白(DAMP),与免疫细胞表面的受体结合,激活免疫系统,进一步介导继发性神经元损伤并加重神经功能障碍,最终导致卒中患者预后不良[6]。研究表明,炎症生物标志物升高(如c反应蛋白(CRP)、白细胞介素(如IL-6)和肿瘤坏死因子-α (TNF-α)与卒中严重程度加重及神经功能恢复不良显著相关[7] [8]

SIRI一种由外周血中的中性粒细胞、单核细胞和淋巴细胞计数综合计算得出的新型炎症指数,可以提供更多关于免疫过程中免疫活性的形成和缺血性脑卒中发病机制的信息。PLR则体现血小板活化与炎症性高凝状态的关联。两者结合可以更平衡和全面地评估个体免疫和炎症反应。通过血细胞计数评估全身炎症是一种低成本、有效且易于实施的方法,可为与卒中发生的炎症过程提供重要的生物学标志物。一项关于接受静脉溶栓的AIS患者的研究发现[9],SIRI与患者的卒中程度呈正相关(r = 0.427, P < 0.05)。此外,SIRI可作为AIS患者的预后指标和独立预测因子[10]-[12]。Zhang及其同事对2450名中风患者进行研究,结果提示SIRI与NIHSS正相关(r = 0.34),高水平SIRI与中风患者全因死亡率密切相关[13]。本研究结果发现SIRI与卒中严重程度呈正相关,且具有一定预测价值,与上述结果一致。一项对286例IS患者进行的回顾性分析[14]显示,接受静脉溶栓治疗的54例病人中,高PLR水平与NIHSS评分、早期的不良结果和死亡有着密切的关联。Gary等人[15]提出,高PLR与严重肢体缺血高风险患者显著相关,可用于突出血管终点高风险患者。在脑血管疾病的研究中,PLR增加被认为是中风的预测因子[16]。本研究同样发现PLR是卒中严重程度的独立危险因素,但预测效能略低于SIRI,可能与PLR仅包含两类细胞信息有关。

SIRI、PLR升高反映了中性粒细胞、单核细胞、淋巴细胞和血小板等关键免疫炎症成分的失衡,这些成分共同介导了急性缺血性卒中的继发性脑损伤。中性粒细胞在AIS发生24小时后率先发挥作用,迅速聚集到缺血部位释放金属蛋白酶(MMP-9)、组织蛋白酶G、活性氧以及其它炎性介质损害脑组织和血脑屏障[17]。临床证据表明,AIS早期较高的中性粒细胞水平与较大的梗死体积相关[18]。外周单核细胞进入缺血部位并分化为具有促炎或抗炎表型的巨噬细胞。外周血循环中的单核细胞可以在AIS发生后浸润缺血组织,扩大脑损伤范围[19]。外周血单核细胞可作为基质金属蛋白酶-9的来源,加重脑损伤[20]。单核细胞计数增加已被证明是中风后更差结果的独立预测因素[21] [22]。然而,与中性粒细胞和单核细胞不同,一些淋巴细胞主要在AIS后的炎症反应中起保护作用,调节和抑制局部炎症反应[23]。淋巴细胞通过增加白细胞介素(IL)-10并降低IL-6和肿瘤坏死因子-α来充当神经保护剂[24]。当发生严重AIS时,循环系统及淋巴系统中的淋巴细胞数量会减少[25]。AIS后血流停滞与血细胞表面粘附分子选择素的表达有关。已知血小板使用选择素分子形成血小板–白细胞聚集体,这进一步加剧了血管闭塞,导致缺血损伤[26]。这些机制解释了SII、PLR与中风严重程度之间的关联,因此靶向这些途径以减轻继发性损伤和改善神经恢复具有潜在的临床价值。

需要强调的是,SIRI和PLR升高与卒中严重程度之间的因果关系尚不明确。其升高既可能参与加重神经功能缺损,也可能仅反映卒中后的炎症反应程度。一项单中心回顾性研究(n = 375)发现[27],SIRI是AIS患者发生早期神经功能恶化(END)的独立预测因子,且基于SIRI、NIHSS、CRP和单核细胞构建的列线图区分度良好(C-index ≈ 0.76)。此外,一项多中心大样本溶栓队列(n = 1060)表明[28],PLR升高与接受静脉溶栓的AIS患者24小时内END独立相关。这些研究结果提示,在入院NIHSS评分相似的患者中,SIRI或PLR水平较高者发生END的风险可能更高。然而,目前证据主要来源于回顾性研究且多为单次检测,尚不足以明确因果关系。未来研究需要通过纵向随访和动态监测,进一步阐明SIRI和PLR在AIS早期病程中的作用及临床应用价值。

神经炎症理论在卒中研究领域备受关注,抗炎治疗与脑保护策略已成为探索卒中干预的重要方向。已有研究表明[29]-[31],早期实施抗炎干预能够显著减轻神经损伤并促进功能恢复。目前,抗炎剂(如皮质类固醇、白细胞介素抑制剂及其他免疫调节药物)在减轻中风后神经炎症、促进功能恢复方面表现出积极效果。例如,免疫调节药物芬戈莫德可减少小鼠缺血再灌注后的梗死体积[32]。因此,对于入院时SIRI、PLR水平升高的患者,未来可考虑将其作为筛选指标,评估是否启动抗炎及免疫调节治疗,可能是AIS的一种潜在治疗策略。

这项研究存在一些局限性。首先,这是一项单中心研究,可能存在选择偏倚。其次,样本量有限,可能会影响统计分析的有效性。此外,SIRI和PLR仅在入院时测定,未动态监测其变化趋势。未来我们应该开展多中心研究,扩大样本量,进一步讨论炎症指标与缺血性卒中严重程度之间的确切关系。

5. 结论

我们的研究发现,SIRI和PLR是影响AIS患者卒中严重程度的独立危险因素,可以用于早期评估AIS患者的病情严重程度。因此,早期检测这两项炎症指标,有助于临床快速评估病情、进行风险分层及指导个体化治疗。未来需开展多中心、大样本、前瞻性研究,并结合其他炎症及血液学标志物,以进一步验证并优化预测模型。

基金项目

项目编号:2022YFC3501102,项目名称:脑出血非手术患者祛瘀利水救治方案循证评价研究。

NOTES

*通讯作者。

参考文献

[1] Global Burden of Disease Study 2021 Collaborators (2024) Global Burden of 288 Causes of Death and Life Expectancy Decomposition in 204 Countries and Territories and 811 Subnational Locations, 1990-2021: A Systematic Analysis for the Global Burden of Disease Study 2021. Lancet, 403, 2100-2132. [Google Scholar] [CrossRef
[2] Anrather, J. and Iadecola, C. (2016) Inflammation and Stroke: An Overview. Neurotherapeutics, 13, 661-670. [Google Scholar] [CrossRef] [PubMed]
[3] Zhang, W., Song, J., Li, W., Kong, D., Liang, Y., Zhao, X., et al. (2020) Salvianolic Acid D Alleviates Cerebral Ischemia-Reperfusion Injury by Suppressing the Cytoplasmic Translocation and Release of Hmgb1-Triggered NF-κB Activation to Inhibit Inflammatory Response. Mediators of Inflammation, 2020, Article ID: 9049614. [Google Scholar] [CrossRef] [PubMed]
[4] Dang, H., Mao, W., Wang, S., Sha, J., Lu, M., Cong, L., et al. (2023) Systemic Inflammation Response Index as a Prognostic Predictor in Patients with Acute Ischemic Stroke: A Propensity Score Matching Analysis. Frontiers in Neurology, 13, Article 1049241. [Google Scholar] [CrossRef] [PubMed]
[5] Chen, C., Gu, L., Chen, L., Hu, W., Feng, X., Qiu, F., et al. (2021) Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Potential Predictors of Prognosis in Acute Ischemic Stroke. Frontiers in Neurology, 11, Article 525621. [Google Scholar] [CrossRef] [PubMed]
[6] Lee, S., Song, D., Ryu, H., Kim, Y., Kim, T. and Joo, S. (2021) Systemic Macrophage Depletion Attenuates Infarct Size in an Experimental Mouse Model of Stroke. Journal of Cerebrovascular and Endovascular Neurosurgery, 23, 304-313. [Google Scholar] [CrossRef] [PubMed]
[7] Luo, J., Cai, Y., Xiao, P., Cao, C., Huang, M., Zhang, X., et al. (2024) Inflammation‐Derived and Clinical Indicator‐based Predictive Model for Ischemic Stroke Recovery. Journal of the American Heart Association, 13, e035609. [Google Scholar] [CrossRef] [PubMed]
[8] Boltze, J. and Perez-Pinzon, M.A. (2022) Focused Update on Stroke Neuroimmunology: Current Progress in Preclinical and Clinical Research and Recent Mechanistic Insight. Stroke, 53, 1432-1437. [Google Scholar] [CrossRef] [PubMed]
[9] Ma, F., Li, L., Xu, L., Wu, J., Zhang, A., Liao, J., et al. (2023) The Relationship between Systemic Inflammation Index, Systemic Immune-Inflammatory Index, and Inflammatory Prognostic Index and 90-Day Outcomes in Acute Ischemic Stroke Patients Treated with Intravenous Thrombolysis. Journal of Neuroinflammation, 20, Article No. 220. [Google Scholar] [CrossRef] [PubMed]
[10] Zhou, Y., Zhang, Y., Cui, M., Zhang, Y. and Shang, X. (2022) Prognostic Value of the Systemic Inflammation Response Index in Patients with Acute Ischemic Stroke. Brain and Behavior, 12, e2619. [Google Scholar] [CrossRef] [PubMed]
[11] Chen, Y., Qi, S., Yu, Z., Li, J., Qian, T., Zeng, Y., et al. (2023) Systemic Inflammation Response Index Predicts Clinical Outcomes in Patients with Acute Ischemic Stroke (AIS) after the Treatment of Intravenous Thrombolysis. The Neurologist, 28, 355-361. [Google Scholar] [CrossRef] [PubMed]
[12] Han, J., Yang, L., Lou, Z. and Zhu, Y. (2023) Association between Systemic Immune-Inflammation Index and Systemic Inflammation Response Index and Outcomes of Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Annals of Indian Academy of Neurology, 26, 655-662. [Google Scholar] [CrossRef] [PubMed]
[13] Zhang, Y., Xing, Z., Zhou, K. and Jiang, S. (2021) The Predictive Role of Systemic Inflammation Response Index (SIRI) in the Prognosis of Stroke Patients. Clinical Interventions in Aging, 16, 1997-2007. [Google Scholar] [CrossRef] [PubMed]
[14] Xu, J., He, X., Li, Q., Liu, J., Zhuang, M., Huang, F., et al. (2019) Higher Platelet-to-Lymphocyte Ratio Is Associated with Worse Outcomes after Intravenous Thrombolysis in Acute Ischaemic Stroke. Frontiers in Neurology, 10, Article 1192. [Google Scholar] [CrossRef] [PubMed]
[15] Gary, T., Pichler, M., Belaj, K., Hafner, F., Gerger, A., Froehlich, H., et al. (2013) Platelet-to-Lymphocyte Ratio: A Novel Marker for Critical Limb Ischemia in Peripheral Arterial Occlusive Disease Patients. PLOS ONE, 8, e67688. [Google Scholar] [CrossRef] [PubMed]
[16] Altintas, O., Tasal, A., Niftaliyev, E., Kucukdagli, O.T. and Asil, T. (2016) Association of Platelet-to-Lymphocyte Ratio with Silent Brain Infarcts in Patients with Paroxysmal Atrial Fibrillation. Neurological Research, 38, 753-758. [Google Scholar] [CrossRef] [PubMed]
[17] Akopov, S.E., Simonian, N.A. and Grigorian, G.S. (1996) Dynamics of Polymorphonuclear Leukocyte Accumulation in Acute Cerebral Infarction and Their Correlation with Brain Tissue Damage. Stroke, 27, 1739-1743. [Google Scholar] [CrossRef] [PubMed]
[18] Buck, B.H., Liebeskind, D.S., Saver, J.L., Bang, O.Y., Yun, S.W., Starkman, S., et al. (2008) Early Neutrophilia Is Associated with Volume of Ischemic Tissue in Acute Stroke. Stroke, 39, 355-360. [Google Scholar] [CrossRef] [PubMed]
[19] Jin, W., Gonzales, R., Feng, Y., Wood, K., Chai, Z., Dong, J., et al. (2018) Brain Ischemia Induces Diversified Neuroantigen-Specific T-Cell Responses That Exacerbate Brain Injury. Stroke, 49, 1471-1478. [Google Scholar] [CrossRef] [PubMed]
[20] Yamamoto, Y., Osanai, T., Nishizaki, F., Sukekawa, T., Izumiyama, K., Sagara, S., et al. (2012) Matrix Metalloprotein-9 Activation under Cell-to-Cell Interaction between Endothelial Cells and Monocytes: Possible Role of Hypoxia and Tumor Necrosis Factor-α. Heart and Vessels, 27, 624-633. [Google Scholar] [CrossRef] [PubMed]
[21] Dong, X., Nao, J. and Gao, Y. (2019) Peripheral Monocyte Count Predicts Outcomes in Patients with Acute Ischemic Stroke Treated with rtPA Thrombolysis. Neurotoxicity Research, 37, 469-477. [Google Scholar] [CrossRef] [PubMed]
[22] Liberale, L., Montecucco, F., Bonaventura, A., Casetta, I., Seraceni, S., Trentini, A., et al. (2017) Monocyte Count at Onset Predicts Poststroke Outcomes during a 90-Day Follow-Up. European Journal of Clinical Investigation, 47, 702-710. [Google Scholar] [CrossRef] [PubMed]
[23] Liesz, A., Zhou, W., Na, S., Hämmerling, G.J., Garbi, N., Karcher, S., et al. (2013) Boosting Regulatory T Cells Limits Neuroinflammation in Permanent Cortical Stroke. The Journal of Neuroscience, 33, 17350-17362. [Google Scholar] [CrossRef] [PubMed]
[24] Liesz, A., Suri-Payer, E., Veltkamp, C., Doerr, H., Sommer, C., Rivest, S., et al. (2009) Regulatory T Cells Are Key Cerebroprotective Immunomodulators in Acute Experimental Stroke. Nature Medicine, 15, 192-199. [Google Scholar] [CrossRef] [PubMed]
[25] Huang, Y., Yin, X. and Li, Z. (2022) Association of the Systemic Immune-Inflammation Index (SII) and Clinical Outcomes in Patients with Stroke: A Systematic Review and Meta-analysis. Frontiers in Immunology, 13, Article 1090305. [Google Scholar] [CrossRef] [PubMed]
[26] Denorme, F., Rustad, J.L. and Campbell, R.A. (2021) Brothers in Arms: Platelets and Neutrophils in Ischemic Stroke. Current Opinion in Hematology, 28, 301-307. [Google Scholar] [CrossRef] [PubMed]
[27] Wang, J., Zhang, X., Tian, J., Li, H., Tang, H. and Yang, C. (2022) Predictive Values of Systemic Inflammatory Responses Index in Early Neurological Deterioration in Patients with Acute Ischemic Stroke. Journal of Integrative Neuroscience, 21, 94. [Google Scholar] [CrossRef] [PubMed]
[28] Gong, P., Liu, Y., Gong, Y., Chen, G., Zhang, X., Wang, S., et al. (2021) The Association of Neutrophil to Lymphocyte Ratio, Platelet to Lymphocyte Ratio, and Lymphocyte to Monocyte Ratio with Post-Thrombolysis Early Neurological Outcomes in Patients with Acute Ischemic Stroke. Journal of Neuroinflammation, 18, 51. [Google Scholar] [CrossRef] [PubMed]
[29] Kolosowska, N., Keuters, M.H., Wojciechowski, S., Keksa-Goldsteine, V., Laine, M., Malm, T., et al. (2019) Peripheral Administration of IL-13 Induces Anti-Inflammatory Microglial/Macrophage Responses and Provides Neuroprotection in Ischemic Stroke. Neurotherapeutics, 16, 1304-1319. [Google Scholar] [CrossRef] [PubMed]
[30] Feng, L., Dou, C., Xia, Y., Li, B., Zhao, M., Yu, P., et al. (2021) Neutrophil-Like Cell-Membrane-Coated Nanozyme Therapy for Ischemic Brain Damage and Long-Term Neurological Functional Recovery. ACS Nano, 15, 2263-2280. [Google Scholar] [CrossRef] [PubMed]
[31] Zheng, Y., He, R., Wang, P., Shi, Y., Zhao, L. and Liang, J. (2019) Exosomes from LPS-Stimulated Macrophages Induce Neuroprotection and Functional Improvement after Ischemic Stroke by Modulating Microglial Polarization. Biomaterials Science, 7, 2037-2049. [Google Scholar] [CrossRef] [PubMed]
[32] Brait, V.H., Tarrasón, G., Gavaldà, A., Godessart, N. and Planas, A.M. (2016) Selective Sphingosine 1-Phosphate Receptor 1 Agonist Is Protective against Ischemia/Reperfusion in Mice. Stroke, 47, 3053-3056. [Google Scholar] [CrossRef] [PubMed]