[1]
|
Formosa, M.M., Christou, M.A. and Mäkitie, O. (2023) Bone Fragility and Osteoporosis in Children and Young Adults. Journal of Endocrinological Investigation, 47, 285-298. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Cui, Z., Meng, X., Feng, H., Zhuang, S., Liu, Z., Zhu, T., et al. (2019) Estimation and Projection about the Standardized Prevalence of Osteoporosis in Mainland of China. Archives of Osteoporosis, 15, Article No. 2. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Zeng, Q., Li, N., Wang, Q., Feng, J., Sun, D., Zhang, Q., et al. (2019) The Prevalence of Osteoporosis in China, a Nationwide, Multicenter DXA Survey. Journal of Bone and Mineral Research, 34, 1789-1797. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Hsieh, C., Zheng, K., Lin, C., Mei, L., Lu, L., Li, W., et al. (2021) Automated Bone Mineral Density Prediction and Fracture Risk Assessment Using Plain Radiographs via Deep Learning. Nature Communications, 12, Article No. 5472. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Hong, N., Cho, S.W., Shin, S., Lee, S., Jang, S.A., Roh, S., et al. (2020) Deep-Learning-Based Detection of Vertebral Fracture and Osteoporosis Using Lateral Spine X-Ray Radiography. Journal of Bone and Mineral Research, 38, 887-895. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Zhang, B., Yu, K., Ning, Z., Wang, K., Dong, Y., Liu, X., et al. (2020) Deep Learning of Lumbar Spine X-Ray for Osteopenia and Osteoporosis Screening: A Multicenter Retrospective Cohort Study. Bone, 140, Article ID: 115561. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Jang, R., Choi, J.H., Kim, N., Chang, J.S., Yoon, P.W. and Kim, C. (2021) Prediction of Osteoporosis from Simple Hip Radiography Using Deep Learning Algorithm. Scientific Reports, 11, Article No. 19997. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Sukegawa, S., Fujimura, A., Taguchi, A., Yamamoto, N., Kitamura, A., Goto, R., et al. (2022) Identification of Osteoporosis Using Ensemble Deep Learning Model with Panoramic Radiographs and Clinical Covariates. Scientific Reports, 12, Article No. 6088. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Breit, H., Varga-Szemes, A., Schoepf, U.J., Emrich, T., Aldinger, J., Kressig, R.W., et al. (2023) CNN-Based Evaluation of Bone Density Improves Diagnostic Performance to Detect Osteopenia and Osteoporosis in Patients with Non-Contrast Chest CT Examinations. European Journal of Radiology, 161, Article ID: 110728. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Uemura, K., Otake, Y., Takashima, K., Hamada, H., Imagama, T., Takao, M., et al. (2023) Development and Validation of an Open-Source Tool for Opportunistic Screening of Osteoporosis from Hip CT Images. Bone & Joint Research, 12, 590-597. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Cheng, L., Cai, F., Xu, M., Liu, P., Liao, J. and Zong, S. (2023) A Diagnostic Approach Integrated Multimodal Radiomics with Machine Learning Models Based on Lumbar Spine CT and X-Ray for Osteoporosis. Journal of Bone and Mineral Metabolism, 41, 877-889. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Peng, T., Zeng, X., Li, Y., Li, M., Pu, B., Zhi, B., et al. (2023) A Study on Whether Deep Learning Models Based on CT Images for Bone Density Classification and Prediction Can Be Used for Opportunistic Osteoporosis Screening. Osteoporosis International, 35, 117-128. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
熊鑫, 李洋, 石峰, 等. 基于人工智能的胸腰椎骨密度测定系统及其校准研究[J]. 中国全科医学, 2025, 28(19): 2398-2406.
|
[14]
|
Jayasuriya, N.M., Feng, E., Nathani, K.R., Delawan, M., Katsos, K., Bhagra, O., et al. (2025) Automated Vertebral Bone Quality Score Measurement on Lumbar MRI Using Deep Learning: Development and Validation of an AI Algorithm. Clinical Neurology and Neurosurgery, 257, Article ID: 109094. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Wu, F., Su, D., Hu, H., Su, J., Fan, S. and Song, X. (2025) Role of Vertebral Fat Fraction and R2* Based on Fat Analysis and Calculation Technique in the Quantitative Assessment of Osteoporosis. BMC Musculoskeletal Disorders, 26, Article No. 737. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Klontzas, M.E., Stathis, I., Spanakis, K., Zibis, A.H., Marias, K. and Karantanas, A.H. (2022) Deep Learning for the Differential Diagnosis between Transient Osteoporosis and Avascular Necrosis of the Hip. Diagnostics, 12, Article No. 1870. [Google Scholar] [CrossRef] [PubMed]
|