[1]
|
Levy, A., Botticella, A., Le Péchoux, C. and Faivre-Finn, C. (2021) Thoracic Radiotherapy in Small Cell Lung Cancer—A Narrative Review. Translational Lung Cancer Research, 10, 2059-2070. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Konkol, M., Śniatała, P. and Milecki, P. (2022) Radiation-Induced Lung Injury—What Do We Know in the Era of Modern Radiotherapy? Reports of Practical Oncology and Radiotherapy, 27, 552-565. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Shi, X., Zhu, Y., Liang, C., Chen, T., Shi, Z. and Wang, W. (2024) Single-Cell Transcriptomic Analysis of Radiation-Induced Lung Injury in Rat. Biomolecules and Biomedicine, 24, 1331-1349. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Kuipers, M.E., van Doorn-Wink, K.C.J., Hiemstra, P.S. and Slats, A.M. (2024) Predicting Radiation-Induced Lung Injury in Patients with Lung Cancer: Challenges and Opportunities. International Journal of Radiation Oncology Biology Physics, 118, 639-649. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Brown, K.H., Ghita-Pettigrew, M., Kerr, B.N., Mohamed-Smith, L., Walls, G.M., McGarry, C.K., et al. (2024) Characterisation of Quantitative Imaging Biomarkers for Inflammatory and Fibrotic Radiation-Induced Lung Injuries Using Preclinical Radiomics. Radiotherapy and Oncology, 192, Article 110106. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Giuranno, L., Ient, J., De Ruysscher, D. and Vooijs, M.A. (2019) Radiation-Induced Lung Injury (Rili). Frontiers in Oncology, 9, Article ID: 877. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Ying, H., Fang, M. and Chen, M. (2020) Progress in the Mechanism of Radiation-Induced Lung Injury. Chinese Medical Journal, 134, 161-163. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Yan, Y., Fu, J., Kowalchuk, R.O., Wright, C.M., Zhang, R., Li, X., et al. (2022) Exploration of Radiation-Induced Lung Injury, from Mechanism to Treatment: A Narrative Review. Translational Lung Cancer Research, 11, 307-322. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Zhang, Z., Zhou, J., Verma, V., Liu, X., Wu, M., Yu, J., et al. (2021) Crossed Pathways for Radiation-Induced and Immunotherapy-Related Lung Injury. Frontiers in Immunology, 12, Article ID: 774807. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Jin, H., Yoo, Y., Kim, Y., Kim, Y., Cho, J. and Lee, Y. (2020) Radiation-Induced Lung Fibrosis: Preclinical Animal Models and Therapeutic Strategies. Cancers, 12, Article 1561. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Wang, P., Yan, Z., Zhou, P. and Gu, Y. (2022) The Promising Therapeutic Approaches for Radiation-Induced Pulmonary Fibrosis: Targeting Radiation-Induced Mesenchymal Transition of Alveolar Type II Epithelial Cells. International Journal of Molecular Sciences, 23, Article 15014. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Groves, A.M., Misra, R., Clair, G., Hernady, E., Olson, H., Orton, D., et al. (2023) Influence of the Irradiated Pulmonary Microenvironment on Macrophage and T Cell Dynamics. Radiotherapy and Oncology, 183, Article 109543. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Guo, T., Zou, L., Ni, J., Zhou, Y., Ye, L., Yang, X., et al. (2020) Regulatory T Cells: An Emerging Player in Radiation-Induced Lung Injury. Frontiers in Immunology, 11, Article ID: 1769. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Wirsdörfer, F. and Jendrossek, V. (2016) The Role of Lymphocytes in Radiotherapy-Induced Adverse Late Effects in the Lung. Frontiers in Immunology, 7, Article ID: 591. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Roy, S., Salerno, K.E. and Citrin, D.E. (2021) Biology of Radiation-Induced Lung Injury. Seminars in Radiation Oncology, 31, 155-161. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Cao, S., and Wu, R. (2012) Expression of Angiotensin II and Aldosterone in Radiation-Induced Lung Injury. Cancer Biology & Medicine, 9, 254-260.
|
[17]
|
Zheng, Y., Cong, C., Wang, Z., Liu, Y., Zhang, M., Zhou, H., et al. (2023) Decreased Risk of Radiation Pneumonitis with Concurrent Use of Renin-Angiotensin System Inhibitors in Thoracic Radiation Therapy of Lung Cancer. Frontiers in Medicine, 10, Article 1255786. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Li, F., Liu, H., Wu, H., Liang, S. and Xu, Y. (2021) Risk Factors for Radiation Pneumonitis in Lung Cancer Patients with Subclinical Interstitial Lung Disease after Thoracic Radiation Therapy. Radiation Oncology, 16, Article No. 70. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Arroyo-Hernández, M., Maldonado, F., Lozano-Ruiz, F., Muñoz-Montaño, W., Nuñez-Baez, M. and Arrieta, O. (2021) Radiation-Induced Lung Injury: Current Evidence. BMC Pulmonary Medicine, 21, Article No. 9. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Goodman, C.D., Nijman, S.F.M., Senan, S., Nossent, E.J., Ryerson, C.J., Dhaliwal, I., et al. (2020) A Primer on Interstitial Lung Disease and Thoracic Radiation. Journal of Thoracic Oncology, 15, 902-913. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Kim, H., Hwang, J., Kim, S.M., Choi, J. and Yang, D.S. (2023) Risk Factor Analysis of the Development of Severe Radiation Pneumonitis in Patients with Non-Small Cell Lung Cancer Treated with Curative Radiotherapy, with Focus on Underlying Pulmonary Disease. BMC Cancer, 23, Article No. 992. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Pan, W., Bian, C., Zou, G., Zhang, C., Hai, P., Zhao, R., et al. (2017) Combing NLR, V20 and Mean Lung Dose to Predict Radiation Induced Lung Injury in Patients with Lung Cancer Treated with Intensity Modulated Radiation Therapy and Chemotherapy. Oncotarget, 8, 81387-81393. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Han, S., Gu, F., Lin, G., Sun, X., Wang, Y., Wang, Z., et al. (2015) Analysis of Clinical and Dosimetric Factors Influencing Radiation-Induced Lung Injury in Patients with Lung Cancer. Journal of Cancer, 6, 1172-1178. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Kirakli, E.K., Erdem, S., Susam, S. and Erim, E. (2023) Ipsilateral Lung Dose as a Correlative Measure for Radiation Pneumonitis in Patients Treated with Definitive Concurrent Radiochemotherapy. Journal of Cancer Research and Therapeutics, 19, 1153-1159. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Lucia, F., Bourhis, D., Pinot, F., Hamya, M., Goasduff, G., Blanc-Béguin, F., et al. (2024) Prediction of Acute Radiation-Induced Lung Toxicity after Stereotactic Body Radiation Therapy Using Dose-Volume Parameters from Functional Mapping on Gallium 68 Perfusion Positron Emission Tomography/Computed Tomography. International Journal of Radiation Oncology Biology Physics, 118, 952-962. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Marks, L.B., Bentzen, S.M., Deasy, J.O., Kong, F.M., Bradley, J.D., Vogelius, I.S., et al. (2010) Radiation Dose-Volume Effects in the Lung. International Journal of Radiation Oncology, Biology, Physics, 76, S70-S76. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Li, J., Mu, S., Gao, S., Mu, L., Zhang, X. and Pang, R. (2015) Transforming Growth Factor-Beta-1 Is a Serum Biomarker of Radiation-Induced Pneumonitis in Esophageal Cancer Patients Treated with Thoracic Radiotherapy: Preliminary Results of a Prospective Study. OncoTargets and Therapy, 8, 1129-1136. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Seto, Y., Kaneko, Y., Mouri, T., Shimizu, D., Morimoto, Y., Tokuda, S., et al. (2022) Changes in Serum Transforming Growth Factor-Beta Concentration as a Predictive Factor for Radiation-Induced Lung Injury Onset in Radiotherapy-Treated Patients with Locally Advanced Lung Cancer. Translational Lung Cancer Research, 11, 1823-1834. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Liu, X., Shao, C. and Fu, J. (2021) Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines, 9, Article 1181. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Sasaki, R., Soejima, T., Matsumoto, A., Maruta, T., Yamada, K., Ota, Y., et al. (2001) Clinical Significance of Serum Pulmonary Surfactant Proteins a and D for the Early Detection of Radiation Pneumonitis. International Journal of Radiation Oncology Biology Physics, 50, 301-307. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Śliwińska-Mossoń, M., Wadowska, K., Trembecki, Ł. and Bil-Lula, I. (2020) Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. Journal of Personalized Medicine, 10, Article 72. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Hirose, T., Arimura, H., Ninomiya, K., Yoshitake, T., Fukunaga, J. and Shioyama, Y. (2020) Radiomic Prediction of Radiation Pneumonitis on Pretreatment Planning Computed Tomography Images Prior to Lung Cancer Stereotactic Body Radiation Therapy. Scientific Reports, 10, Article No. 20242. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Liang, B., Yan, H., Tian, Y., Chen, X., Yan, L., Zhang, T., et al. (2019) Dosiomics: Extracting 3D Spatial Features from Dose Distribution to Predict Incidence of Radiation Pneumonitis. Frontiers in Oncology, 9, Article ID: 269. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Chen, N., Zhou, R., Luo, Q., Liu, Y., Li, C., Zhang, J., et al. (2023) Combining Dosimetric and Radiomics Features for the Prediction of Radiation Pneumonitis in Locally Advanced Non-Small Cell Lung Cancer by Machine Learning. International Journal of Radiation Oncology Biology Physics, 117, e38. [Google Scholar] [CrossRef]
|
[35]
|
Liang, B., Tian, Y., Chen, X., Yan, H., Yan, L., Zhang, T., et al. (2020) Prediction of Radiation Pneumonitis with Dose Distribution: A Convolutional Neural Network (CNN) Based Model. Frontiers in Oncology, 9, Article ID: 1500. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Cui, S., Traverso, A., Niraula, D., Zou, J., Luo, Y., Owen, D., et al. (2023) Interpretable Artificial Intelligence in Radiology and Radiation Oncology. The British Journal of Radiology, 96, Article 20230142. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Yang, M., Ma, J., Zhang, C., Zhang, L., Xu, J., Liu, S., et al. (2025) Multimodal Data Deep Learning Method for Predicting Symptomatic Pneumonitis Caused by Lung Cancer Radiotherapy Combined with Immunotherapy. Frontiers in Immunology, 15, Article ID: 1492399. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Niezink, A.G.H., van der Schaaf, A., Wijsman, R., Chouvalova, O., van der Wekken, A.J., Rutgers, S.R., et al. (2023) External Validation of NTCP-Models for Radiation Pneumonitis in Lung Cancer Patients Treated with Chemoradiotherapy. Radiotherapy and Oncology, 186, Article 109735. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Wang, X., Zhang, A., Yang, H., Zhang, G., Ma, J., Ye, S., et al. (2025) Multicenter Development of a Deep Learning Radiomics and Dosiomics Nomogram to Predict Radiation Pneumonia Risk in Non-Small Cell Lung Cancer. Scientific Reports, 15, Article No. 17106. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Wang, Y., Hu, Z. and Wang, H. (2025) The Clinical Implications and Interpretability of Computational Medical Imaging (Radiomics) in Brain Tumors. Insights into Imaging, 16, Article No. 77. [Google Scholar] [CrossRef] [PubMed]
|