[1]
|
Chen, J., Liu, Q., He, J. and Li, Y. (2022) Immune Responses in Diabetic Nephropathy: Pathogenic Mechanisms and Therapeutic Target. Frontiers in Immunology, 13, Article 957790. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Zhang, L., Long, J., Jiang, W., Shi, Y., He, X., Zhou, Z., et al. (2016) Trends in Chronic Kidney Disease in China. New England Journal of Medicine, 375, 905-906. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Deng, Y., Li, N., Wu, Y., Wang, M., Yang, S., Zheng, Y., et al. (2021) Global, Regional, and National Burden of Diabetes-Related Chronic Kidney Disease from 1990 to 2019. Frontiers in Endocrinology, 12, Article 672350. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Fineberg, D., Jandeleit-Dahm, K.A.M. and Cooper, M.E. (2013) Diabetic Nephropathy: Diagnosis and Treatment. Nature Reviews Endocrinology, 9, 713-723. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Mafi, A., Namazi, G., Soleimani, A., Bahmani, F., Aghadavod, E. and Asemi, Z. (2018) Metabolic and Genetic Response to Probiotics Supplementation in Patients with Diabetic Nephropathy: A Randomized, Double-Blind, Placebo-Controlled Trial. Food & Function, 9, 4763-4770. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Wolf, G. (2004) New Insights into the Pathophysiology of Diabetic Nephropathy: From Haemodynamics to Molecular Pathology. European Journal of Clinical Investigation, 34, 785-796. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Palmer, S.C., Tendal, B., Mustafa, R.A., et al. (2021) Sodium-Glucose Cotransporter Protein-2 (SGLT-2) Inhibitors and Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists for Type 2 Diabetes: Systematic Review and Network Meta-Analysis of Randomised Controlled Trials. BMJ, 372, m4573.
|
[8]
|
Wang, K., Hu, J., Luo, T., Wang, Y., Yang, S., Qing, H., et al. (2018) Effects of Angiotensin-Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers on All-Cause Mortality and Renal Outcomes in Patients with Diabetes and Albuminuria: A Systematic Review and Meta-Analysis. Kidney and Blood Pressure Research, 43, 768-779. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
李晓梅, 范瑛, 汪年松. 糖尿病肾病与生物标志物的研究进展[J]. 世界临床药物, 2020, 41(10): 783-790.
|
[10]
|
Han, W.K., Bailly, V., Abichandani, R., Thadhani, R. and Bonventre, J.V. (2002) Kidney Injury Molecule-1 (KIM-1): A Novel Biomarker for Human Renal Proximal Tubule Injury. Kidney International, 62, 237-244. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Satirapoj, B. (2018) Tubulointerstitial Biomarkers for Diabetic Nephropathy. Journal of Diabetes Research, 2018, Article ID: 2852398. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Mori, Y., Ajay, A.K., Chang, J., Mou, S., Zhao, H., Kishi, S., et al. (2021) KIM-1 Mediates Fatty Acid Uptake by Renal Tubular Cells to Promote Progressive Diabetic Kidney Disease. Cell Metabolism, 33, 1042-1061.e7. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Varatharajan, S., Jain, V., Pyati, A.K., Neeradi, C., Reddy, K.S., Pallavali, J.R., et al. (2024) Neutrophil Gelatinase-Associated Lipocalin, Kidney Injury Molecule-1, and Periostin: Novel Urinary Biomarkers in Diabetic Nephropathy. World Journal of Nephrology, 13, 98880. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Ahn, M.B., Cho, K.S., Kim, S.K., Kim, S.H., Cho, W.K., Jung, M.H., et al. (2021) Poor Glycemic Control Can Increase the Plasma Kidney Injury Molecule-1 Concentration in Normoalbuminuric Children and Adolescents with Diabetes Mellitus. Children, 8, Article 417. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Moschen, A.R., Adolph, T.E., Gerner, R.R., Wieser, V. and Tilg, H. (2017) Lipocalin-2: A Master Mediator of Intestinal and Metabolic Inflammation. Trends in Endocrinology & Metabolism, 28, 388-397. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Parmar, T., Parmar, V.M., Perusek, L., Georges, A., Takahashi, M., Crabb, J.W., et al. (2018) Lipocalin 2 Plays an Important Role in Regulating Inflammation in Retinal Degeneration. The Journal of Immunology, 200, 3128-3141. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Ntrinias, T., Papasotiriou, M., Balta, L., Kalavrizioti, D., Vamvakas, S., Papachristou, E., et al. (2019) Biomarkers in Progressive Chronic Kidney Disease. Still a Long Way to Go. PRILOZI, 40, 27-39. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Ali, H., Abu-Farha, M., Alshawaf, E., Devarajan, S., Bahbahani, Y., Al-Khairi, I., et al. (2022) Association of Significantly Elevated Plasma Levels of NGAL and IGFBP4 in Patients with Diabetic Nephropathy. BMC Nephrology, 23, Article No. 64. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Prashant, P. (2024) Neutrophil Gelatinase-Associated Lipocalin (NGAL) as a Potential Early Biomarker for Diabetic Nephropathy: A Meta-Analysis. International Journal of Biochemistry and Molecular Biology, 15, 1-7. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Thi, T.N.D., Gia, B.N., Thi, H.L.L., et al. (2020) Evaluation of Urinary L-FABP as an Early Marker for Diabetic Nephropathy in Type 2 Diabetic Patients. Journal of Medical Biochemistry, 39, 224-230.
|
[21]
|
Hirowatari, K. and Kawano, N. (2023) Association of Urinary Liver-Type Fatty Acid-Binding Protein with Renal Functions and Antihyperglycemic Drug Use in Type 2 Diabetic Nephropathy Patients. International Urology and Nephrology, 55, 2111-2118. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Dejenie, T.A., Abebe, E.C., Mengstie, M.A., Seid, M.A., Gebeyehu, N.A., Adella, G.A., et al. (2023) Dyslipidemia and Serum Cystatin C Levels as Biomarker of Diabetic Nephropathy in Patients with Type 2 Diabetes Mellitus. Frontiers in Endocrinology, 14, Article 1124367. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Hassan, M., Aboelnaga, M.M., Al-Arman, M. and Hatata, E.Z. (2021) Urinary Cystatin C as a Biomarker of Early Renal Dysfunction in Type 2 Diabetic Patients. Diabetes & Metabolic Syndrome: Clinical Research & Reviews, 15, Article ID: 102152. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Bhensdadia, N.M., Hunt, K.J., Lopes-Virella, M.F., Michael Tucker, J., Mataria, M.R., Alge, J.L., et al. (2013) Urine Haptoglobin Levels Predict Early Renal Functional Decline in Patients with Type 2 Diabetes. Kidney International, 83, 1136-1143. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Clara, T.S.H., Zheng, H.L., Liu, J.J., et al. (2024) Association of Major Candidate Protein Biomarkers and Long-Term Diabetic Kidney Disease Progression among Asians with Young-Onset Type 2 Diabetes Mellitus. Diabetes Research and Clinical Practice, 216, Article 111821. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Rhee, C.M. (2016) The Interaction between Thyroid and Kidney Disease: An Overview of the Evidence. Current Opinion in Endocrinology, Diabetes & Obesity, 23, 407-415. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Benigni, A., Cassis, P., Conti, S., Perico, L., Corna, D., Cerullo, D., et al. (2019) SIRT3 Deficiency Shortens Life Span and Impairs Cardiac Mitochondrial Function Rescued by opa1 Gene Transfer. Antioxidants & Redox Signaling, 31, 1255-1271. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Benedetti, V., Lavecchia, A.M., Locatelli, M., Brizi, V., Corna, D., Todeschini, M., et al. (2019) Alteration of Thyroid Hormone Signaling Triggers the Diabetes-Induced Pathological Growth, Remodeling, and Dedifferentiation of Podocytes. JCI Insight, 4, e130249. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Zoja, C., Xinaris, C. and Macconi, D. (2020) Diabetic Nephropathy: Novel Molecular Mechanisms and Therapeutic Targets. Frontiers in Pharmacology, 11, Article 586892. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Li, W., Yang, Z., Li, S., Jiang, S., Hu, W., Wan, Z., et al. (2023) Free Triiodothyronine Predicts the Risk of Developing Diabetic Kidney Disease. BMC Nephrology, 24, Article No. 298. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
马超静, 马婵娟. 2型糖尿病肾病无创诊断方法研究新进展[J]. 临床肾脏病杂志, 2024, 24(8): 692-695.
|
[32]
|
Scurt, F.G., Menne, J., Brandt, S., Bernhardt, A., Mertens, P.R., Haller, H., et al. (2021) Monocyte Chemoattractant Protein‐1 Predicts the Development of Diabetic Nephropathy. Diabetes/Metabolism Research and Reviews, 38, e3497. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Wang, T.J., Larson, M.G., Vasan, R.S., Cheng, S., Rhee, E.P., McCabe, E., et al. (2011) Metabolite Profiles and the Risk of Developing Diabetes. Nature Medicine, 17, 448-453. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Herman-Edelstein, M., Scherzer, P., Tobar, A., Levi, M. and Gafter, U. (2014) Altered Renal Lipid Metabolism and Renal Lipid Accumulation in Human Diabetic Nephropathy. Journal of Lipid Research, 55, 561-572. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Pereira, P.R., Carrageta, D.F., Oliveira, P.F., Rodrigues, A., Alves, M.G. and Monteiro, M.P. (2022) Metabolomics as a Tool for the Early Diagnosis and Prognosis of Diabetic Kidney Disease. Medicinal Research Reviews, 42, 1518-1544. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Barutta, F., Bellini, S., Canepa, S., Durazzo, M. and Gruden, G. (2021) Novel Biomarkers of Diabetic Kidney Disease: Current Status and Potential Clinical Application. Acta Diabetologica, 58, 819-830. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Zürbig, P., Jerums, G., Hovind, P., MacIsaac, R.J., Mischak, H., Nielsen, S.E., et al. (2012) Urinary Proteomics for Early Diagnosis in Diabetic Nephropathy. Diabetes, 61, 3304-3313. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Borges, F.T., Reis, L.A. and Schor, N. (2013) Extracellular Vesicles: Structure, Function, and Potential Clinical Uses in Renal Diseases. Brazilian Journal of Medical and Biological Research, 46, 824-830. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Zubiri, I., Posada-Ayala, M., Sanz-Maroto, A., Calvo, E., Martin-Lorenzo, M., Gonzalez-Calero, L., et al. (2014) Diabetic Nephropathy Induces Changes in the Proteome of Human Urinary Exosomes as Revealed by Label-Free Comparative Analysis. Journal of Proteomics, 96, 92-102. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Su, J., Li, S., Chen, Z., Zeng, C., Zhou, H., Li, L., et al. (2010) Evaluation of Podocyte Lesion in Patients with Diabetic Nephropathy: Wilms’ Tumor-1 Protein Used as a Podocyte Marker. Diabetes Research and Clinical Practice, 87, 167-175. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Barutta, F., Tricarico, M., Corbelli, A., Annaratone, L., Pinach, S., Grimaldi, S., et al. (2013) Urinary Exosomal MicroRNAs in Incipient Diabetic Nephropathy. PLOS ONE, 8, e73798. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
张萍, 赵鹏, 林小平, 等. 尿中性粒细胞明胶酶相关脂质运载蛋白与高血压患者早期肾损伤的相关性研究[J]. 医学临床研究, 39(6): 866-868.
|
[43]
|
梁红峰, 姚锦绣, 谭国据, 等. 血清胱抑素C测定在糖尿病及高血压肾病早期诊断的临床意义[J]. 华西医学, 2012, 27(6): 845-847.
|