双腔支气管导管在胸腔手术中的应用进展
Advances in the Application of Double-Lumen Endobronchial Tubes in Thoracic Surgery
摘要: 双腔支气管导管(DLT)是成人胸腔手术中单肺通气的主流技术,其应用常面临插管困难、术中导管移位及相关并发症的挑战。解剖变异与导管尺寸选择不当可致插管困难及气道损伤,而手术体位变化易造成导管位置偏移,影响肺隔离效果与手术安全。本文综述关于提高DLT安全性的关键技术与方法:术前评估聚焦影像学与三维重建的个体化选管;操作技术探讨解剖导向插管、可视化设备及导管形态优化对定位的影响;术中管理分析动态监测技术的实时反馈价值及固定装置改良效果。通过整合循证医学证据与临床实践经验,为DLT的安全操作提供系统性理论支撑。
Abstract: The double-lumen endobronchial tube (DLT) remains the standard for achieving one-lung ventilation in adult thoracic surgery. Nevertheless, its application presents challenges including difficult intubation, intraoperative tube displacement, and associated complications. Anatomical variations and suboptimal tube sizing may lead to intubation difficulties and airway trauma, while positional changes during surgery often cause tube malposition—compromising lung isolation and operative safety. This review examines critical approaches to enhance DLT safety: preoperative strategies emphasizing individualized tube selection using advanced imaging and 3D reconstruction; intubation techniques incorporating anatomical guidance, visualization technology, and tube design modifications for optimal placement; and intraoperative management leveraging real-time dynamic monitoring feedback and improved fixation systems. By synthesizing evidence-based principles with clinical expertise, this work establishes a systematic theoretical foundation for the secure implementation of DLTs.
文章引用:李以晴, 赵鑫. 双腔支气管导管在胸腔手术中的应用进展[J]. 临床医学进展, 2025, 15(10): 749-755. https://doi.org/10.12677/acm.2025.15102815

1. 引言

肺隔离技术是胸腔手术麻醉管理的核心环节,通过选择性肺通气为术野暴露和患者安全提供关键保障。目前临床常用技术包括双腔支气管内导管、支气管阻断器。其中,双腔支气管内导管凭借其可靠的通气隔离效果和广泛的适用性仍是实现单肺通气(OLV)的主流选择[1]然而,在双腔支气管内导管的临床操作过程中,尺寸选择不当、置入定位偏差以及体位变动引发的移位等问题尤为突出。这些问题极易导致导管错位引发通气不良、套囊压力过高造成气道损伤,并显著增加术后咽喉不适、声音嘶哑等并发症风险。近年来,随着医学技术的快速发展,肺隔离技术的优化取得显著进展:成像引导技术大幅提升了导管尺寸匹配精度,个体化插管技术革新改善了置管成功率,多样化定位手段突破了传统方法的局限,体位转换中的固定策略也不断完善。这些技术进步为提升肺隔离质量、降低并发症风险提供了重要支撑。

2. 肺隔离技术选择与DLT临床应用争议

目前临床常用的技术主要分为两大类:双腔支气管内导管(DLT)和带有支气管阻断器(BB)的单腔气管内导管[2]。由于DLT与BB的风险效益特征存在显著差异,二者的临床选择始终存在争议。一项覆盖9个国家、纳入1636例患者的荟萃分析结果显示,DLT与BB在肺塌陷质量方面无统计学差异(分别为72.4% vs 73.4%,OR = 1.20;95% CI:0.84至1.72;p = 0.31),然而,DLT在其他多项操作性能指标上更具优势[3]:其移位率显著更低(25.3% vs 31.9%; OR = 0.66, 95% CI: 0.49~0.88; p = 0.004),插管时间更短(2.5 ± 2.1 min vs 3.1 ± 2.1 min, p < 0.05),肺完全塌陷时间也更短(7.0 ± 8.9 min vs 10.3 ± 8.3 min, p < 0.001)。相比之下,BB的优势主要体现在安全性与患者耐受性方面。欧等[4]研究证实:在电视胸腔镜手术中,支气管封堵器(BB)因适配细径单腔气管导管,插管操作更简便快捷,对困难气道患者具有明确临床优势。其超细柔韧材质可避免反复调整导管位置,从而显著降低咽部黏膜损伤风险。

3. DLT错位的多维度预防策略及VATS术中管理优化

双腔支气管导管(DLT)错位是导致肺隔离失败及相关并发症的核心因素,文献报道其发生率在26%~37%之间波动,约40%的DLT相关并发症可归因于错位[5]。DLT错位可引发一系列严重后果,包括肺隔离不良、单肺通气(OLV)期间低氧血症、肺不张和通气严重受损,进而可能诱发缺氧、气体滞留(可致高碳酸血症)、张力性气胸、两侧肺交叉污染及感染,并显著干扰外科操作。值得注意的是,不同研究对DLT错位的定义存在差异[6],常见定义包括:支气管套囊位于主支气管入口处,或在支气管镜下无法清晰辨识气管/支气管解剖结构;亦有学者将其定义为需导管移动超过1 cm才能纠正位置的情况。鉴于DLT错位的高发生率及其临床危害性,系统性优化其预防策略至关重要。这需要整合患者解剖特征、应用先进技术手段以及依赖丰富临床经验,涵盖导管尺寸选择、置管技术、定位方法等多维度因素。值得关注的是,近年来成像技术的革新、操作理念的进步以及设备设计的创新,为DLT错位的有效预防提供了更多潜在的解决方案。

3.1. 尺寸精准选择

尺寸精准选择是预防DLT错位的基础,传统方法存在显著局限性。既往基于性别和身高的经验性选择(如男性常用39~41 Fr,女性常用35~37 Fr)对亚洲女性、身材矮小者准确性较差,因人体测量数据与气道解剖的相关性较弱。成像引导技术的发展显著提升了尺寸选择精度:超声通过测量环状软骨横径(TD-C)为DLT选择提供量化依据,Liu [7]等建立的超声算法(TD-C测量值减去0.5 mm)将左侧DLT选择准确率提升至86.0%,与环状软骨横径/左主支气管等效直径(TD-C/ED-LMB)联合方法(87.1%)效果相当[8],其原理在于环状软骨作为气管最窄段,其直径与左主支气管的比率与DLT尖端–主体比率高度匹配。对于高风险患者(慢性阻塞性肺病、气管支气管炎症、长期使用类固醇者、身材矮小老年女性),二维CT存在性别偏差(女性易高估、男性易低估),三维重建技术成为更优选择:Li等开发的3D重建自动比较系统(3DRACS)通过计算形态分析实现气道分割与DLT自动匹配[9],有望为临床提供精准工具。

3.2. 置管技术个体化革新

置管技术的个体化革新是提升双腔支气管导管(DLT)首次插管成功率的核心关键。传统的左侧DLT插管通常采用支气管套管通过声带后逆时针旋转90˚的方法,但此操作常因与患者实际解剖结构不匹配而导致错位。研究发现,左主支气管的平均角度为108.4˚;其中,老年患者(≥70岁)的平均角度为103.3˚ ± 12.2˚,而年轻患者(<40岁)为92.4˚ ± 4.0˚ [10],这些实测角度均显著偏离传统的90˚预设旋转角度。针对此解剖变异,多种精准化方法已被提出:Zhou等人[11]基于术前CT测量正中矢状面与左主支气管投影角度的技术,指导个体化旋转操作,使首次插管成功率从82.6%提升至91.4%;Cameron等[12]则依据尸体解剖研究提出180˚旋转法,理论上可将插管角度偏差从66.6˚ ± 5.9˚降至15.8˚ ± 5.9˚,从而显著降低插管难度。与此同时,视频技术的引入正在推进插管操作技术的精准化演进。Lee等的研究表明[13],在视频喉镜下采用非旋转策略插管,首次成功率可达95.6%,显著优于传统旋转法(77.8%);其原理在于视频喉镜几何设计差异(如刀片曲率较小)使得旋转操作更易增加阻力。集成远端摄像头的视频双腔管(VDLT)可提供实时可视化定位,据Palaczynski等报告[14],其插管时间显著缩短(VDLT组:44秒vs.传统DLT组:125秒),纤维支气管镜(FOB)辅助定位需求显著降低(0% vs. 20.5%),且首次插管成功率更高(90.6% vs. 79.5%)。此外,导管本身的物理设计优化也是减少错位的重要途径:Seo等[15]发现,Seo等发现,将DLT尖端预弯曲角度增加至135˚后,右支气管错位率从8.0%显著降低至2.4%,且未增加气道损伤风险,为兼顾操作精准性与患者安全性提供了新思路。

3.3. 定位技术多元化发展

定位技术的多元化发展为DLT错位提供了实时监测手段。纤维支气管镜(FOB)仍是定位金标准,但其应用受设备成本、操作技术及复杂气道限制[16]。气道峰值压差法通过动态监测通气压力变化实现定位[17]:双侧通气时记录基线峰压(P1),单侧通气时测量压力(P2),计算ΔP = P1 − P2,当ΔP稳定在5~10 cmH2O时位置最佳,成功率高达96.97%,该方法无需特殊设备,适合基层医院推广。肺超声技术通过观察肺萎陷情况评估隔离效果,其准确性与纤维支气管镜相当。值得注意的是,新手的判断准确率为68.3%,与专家的69.8%高度接近[18] [19],表明该技术易于掌握且经验依赖性较低。同时,肺超声显著缩短了操作时间。然而,其无法直接观察导管尖端位置,在合并胸膜粘连或严重肺功能障碍时存在误判风险[20]。解剖标志的优化显著提升了纤维支气管镜定位效率[21]。具体而言,右中叶(RML)及右下叶(RLL)基底段等开口因其位置深在且变异度大而不再适合作定位标记。与之对比,右下叶(RLL)和左下叶(LLL)上段支气管口与RML口平行排列,其变异率低且形态易于辨识。优先识别该稳定标志不仅能够同步验证RML通气状况,更能显著缩短整体定位时间。

3.4. VATS术中DLT固定与体位管理

视频辅助胸腔镜手术(VATS)因创伤小、恢复快成为胸腔手术主流方式,但术中体位转换(仰卧位至侧卧位)及手术操作易导致DLT移位,影响肺隔离效果,因此DLT固定与体位管理的优化是VATS麻醉安全的关键环节。体位变动对DLT位置的影响显著且机制复杂。研究显示,从仰卧位转为侧卧位时,即使下颌与胸廓距离保持不变,头颈部前屈或后仰可导致DLT移位达2.8厘米[22],其核心原因在于体位变化引发气管、支气管相对位置改变:侧卧位时胸腔负压分布变化,气管隆突倾向于向下移动,而DLT因固定于气道内可能向上移位(最大达10毫米),导致支气管套管脱出左主支气管或深入过深。这种移位在肥胖患者、胸廓畸形者中更为明显[23],因此类患者气道解剖移动度更大。

传统的双腔支气管导管(DLT)胶带固定法虽操作简便,但脱位率高达27.0%。随着可视化技术进步,直接行侧卧位DLT插管成为可能。Rao等研究显示[24],相较于定位错误率达47.5%的仰卧位插管,侧卧位插管定位错误率显著降低至20%。尽管插管时间延长(52.0 ± 20.4秒vs. 34.3 ± 13.2秒),但充分预吸氧(SpO2 ≥ 95%)下患者未出现缺氧,最小SpO2与仰卧位相当。该技术尤其适用于需快速体位调整的急诊手术,但对BMI > 30 kg/m2或困难气道患者,因气道暴露难度增加,可行性仍需验证[25]

4. 技术创新与未来发展方向

近年来,双腔支气管导管(DLT)技术在多维度的突破有效克服了传统方法的局限,推动了胸外科气道管理的精细化与个性化发展。针对发生率约16%的困难气道,新型硅胶DLT [26]如HumanBroncho®较传统单腔管引导交换方法优势突出:其在模拟困难气道中凭借灵活性,实现与单腔导管相当的纤支镜引导插管中位时间,且操作难度显著降低(操作分级I/II/III/IV比例:27/12/1/0 vs. 10/27/3/0))。可视化技术革新了困难气道管理路径,如Zhao等提出的增量内镜图像序列拼接方案[27],首次实现了软内镜对上气道视野的扩展,为复杂气道解剖的可视化定位奠定了技术基础。在压力控制领域,研究证实维持插管内压于20~30 cmH2O范围对保障肺隔离效果至关重要[28],智能装置如SmartCuffz自动插管压力控制器能有效维持该压力,提升围术期安全性[29]。小儿单肺通气领域,三维建模、3D打印及VR重建技术的应用有效填补了临床数据空白,为解剖结构特殊的小儿患者提供了更精准的气道管理策略[30]。这些协同发展显著推动了胸外科气道管理的革新进程。

5. 总结

肺隔离技术作为胸科手术麻醉的基石,其核心演进方向在于精准性与安全性的持续平衡。当前双腔支气管导管凭借操作效率与稳定性优势仍为主流选择。针对关键临床挑战如导管错位等问题,影像引导、个体化置管技术及动态监测手段的突破显著提升干预精度,新型术中管理策略进一步降低体位变动风险。基于此,本研究提出DLT临床应用路径图(图1),为系统性实践操作提供指导。

Figure 1. Clinical application path map

1. 临床应用路径图

尽管DLT技术已取得显著进展,临床中仍存在多项亟待未来研究解决的关键问题:视频双腔管(VDLT)在困难气道患者(如张口受限、颈椎活动障碍)中相较于传统纤支镜引导方案的临床效益差异;肥胖患者采用侧卧位插管技术的可行性及其相较于体位转换方案的结局优势。未来研究需围绕上述问题开展多中心、大样本随机对照试验,同时探索智能压力控制装置(如SmartCuffz)与新型导管材料(如柔性硅胶)的长期安全性,进一步推动DLT技术向“更安全、高效、精准”的方向发展。

NOTES

*通讯作者。

参考文献

[1] Brodsky, J.B. (2009) Lung Separation and the Difficult Airway. British Journal of Anaesthesia, 103, i66-i75. [Google Scholar] [CrossRef] [PubMed]
[2] Liu, S., Mao, Y., Qiu, P., Faridovich, K.A. and Dong, Y. (2020) Airway Rupture Caused by Double-Lumen Tubes: A Review of 187 Cases. Anesthesia & Analgesia, 131, 1485-1490. [Google Scholar] [CrossRef] [PubMed]
[3] Palaczynski, P., Misiolek, H., Szarpak, L., Smereka, J., Pruc, M., Rydel, M., et al. (2023) Systematic Review and Meta-Analysis of Efficiency and Safety of Double-Lumen Tube and Bronchial Blocker for One-Lung Ventilation. Journal of Clinical Medicine, 12, Article 1877. [Google Scholar] [CrossRef] [PubMed]
[4] 欧怡, 邵雨, 韩佳, 等. 支气管封堵器与双腔支气管导管在电视胸腔镜手术中的应用效果比较: 基于倾向评分匹配分析[J]. 医学新知, 2025, 35(7): 767-773.
[5] Zhang, X., Wang, D., Zhang, Q., Shen, Q., Tong, F., Hu, Y., et al. (2023) Effect of Intubation in the Lateral Position under General Anesthesia Induction on the Position of Double-Lumen Tube Placement in Patients Undergoing Unilateral Video-Assisted Thoracic Surgery: Study Protocol for a Prospective, Single-Center, Parallel Group, Randomized, Controlled Trial. Trials, 24, Article No. 67. [Google Scholar] [CrossRef] [PubMed]
[6] Zhang, X., Wang, D., Wei, J., Liu, H. and Hu, S. (2022) Recent Advances in Double-Lumen Tube Malposition in Thoracic Surgery: A Bibliometric Analysis and Narrative Literature Review. Frontiers in Medicine, 9, Article 1071254. [Google Scholar] [CrossRef] [PubMed]
[7] Liu, S., Zhou, J., Qi, W., Cheng, L. and Dong, Y. (2021) Prediction of Double-Lumen Tube Size by Ultrasonography for Asian Women: A Prospective Observational Study. Journal of Cardiothoracic and Vascular Anesthesia, 35, 1410-1415. [Google Scholar] [CrossRef] [PubMed]
[8] Shiqing, L., Wenxu, Q., Yuqiang, M. and Youjing, D. (2020) Predicting the Size of a Left Double-Lumen Tube for Asian Women Based on the Combination of the Diameters of the Cricoid Ring and Left Main Bronchus: A Randomized, Prospective, Controlled Trial. Anesthesia & Analgesia, 130, 762-768. [Google Scholar] [CrossRef] [PubMed]
[9] Li, L., Zhu, Y., Yin, F., Yu, H., Wang, H., Xu, Y., et al. (2024) Effect of a 3D-Printed Reconstruction Automated Matching System for Selecting the Size of a Left Double-Lumen Tube: A Study Protocol for a Prospective Randomised Controlled Trial. BMJ Open, 14, e085503. [Google Scholar] [CrossRef] [PubMed]
[10] Zhang, C., Wang, H., Cao, J., Li, C., Mi, W., Yang, L., et al. (2015) Correction: Measurement and Analysis of the Tracheobronchial Tree in Chinese Population Using Computed Tomography. PLOS ONE, 10, e0130239. [Google Scholar] [CrossRef] [PubMed]
[11] Zhou, H., Fei, Y., Zhang, Y., Quan, X. and Yi, J. (2024) Individualized Rotation of Left Double Lumen Endobronchial Tube to Improve Placement Success Rate: A Randomized Controlled Trial. Respiratory Research, 25, Article No. 184. [Google Scholar] [CrossRef] [PubMed]
[12] Cameron, R.B., Peacock, W.J., Chang, X.G., Shin, J.S. and Hoftman, N. (2024) Double Lumen Endobronchial Tube Intubation: Lessons Learned from Anatomy. BMC Anesthesiology, 24, Article No. 150. [Google Scholar] [CrossRef] [PubMed]
[13] Lee, S., Han, S.J., Park, J., Kim, Y., Hong, B., Oh, C., et al. (2024) A Comparison of Conventional Rotating Method and Non-Rotating Method for Double-Lumen Tube Insertion Using a Customized Rigid J-Shaped Stylet for One-Lung Ventilation: A Randomized Controlled Trial. Journal of Clinical Medicine, 13, Article 5302. [Google Scholar] [CrossRef] [PubMed]
[14] Palaczynski, P., Misiolek, H., Bialka, S., Owczarek, A.J., Gola, W., Szarpak, Ł., et al. (2022) A Randomized Comparison between the Vivasight Double-Lumen Tube and Standard Double-Lumen Tube Intubation in Thoracic Surgery Patients. Journal of Thoracic Disease, 14, 3903-3914. [Google Scholar] [CrossRef] [PubMed]
[15] Seo, J., Yoon, S., Min, S., Row, H.S. and Bahk, J. (2019) Augmentation of Curved Tip of Left-Sided Double-Lumen Tubes to Reduce Right Bronchial Misplacement: A Randomized Controlled Trial. PLOS ONE, 14, e0210711. [Google Scholar] [CrossRef] [PubMed]
[16] Ryu, T., Kim, E., Kim, J.H., Woo, S.J., Roh, W.S. and Byun, S.H. (2019) Comparing the Placement of a Left-Sided Double-Lumen Tube via Fiberoptic Bronchoscopy Guidance versus Conventional Intubation Using a Macintosh Laryngoscope, to Reduce the Incidence of Malpositioning: Study Protocol for a Randomized Controlled Pilot Trial. Trials, 20, Article No. 51. [Google Scholar] [CrossRef] [PubMed]
[17] 朱木棕, 吕洪城, 肖浩荡. 气流法和双侧气道峰压差法在左侧双腔支气管定位的应用[J]. 岭南现代临床外科, 2012, 12(4): 384-385.
[18] Kanavitoon, S., Raksamani, K., Troy, M.P., Suphathamwit, A., Thongcharoen, P., Suksompong, S., et al. (2024) Correction: Lung Ultrasound Is Non-Inferior to Bronchoscopy for Confirmation of Double-Lumen Endotracheal Tube Positioning: A Randomized Controlled Noninferiority Study. BMC Anesthesiology, 24, Article No. 38. [Google Scholar] [CrossRef] [PubMed]
[19] Chung, J., Go, Y., Jang, Y.S., Lee, B. and Seo, H. (2020) Lung Sonography Can Improve the Specificity of Determination of Left-Sided Double-Lumen Tracheal Tube Position in Both Novices and Experts: A Randomised Prospective Study. Journal of International Medical Research, 48, 1-10. [Google Scholar] [CrossRef] [PubMed]
[20] Wang, P., Lin, T., Su, I., Chang, K., Wu, W. and Özçakar, L. (2023) Preoperative Lung Ultrasound for Confirming the Double-Lumen Endotracheal Tube Position for One-Lung Ventilation: A Systematic Review and Meta-Analysis. Heliyon, 9, e15458. [Google Scholar] [CrossRef] [PubMed]
[21] Liang, C., Jiang, L., Liu, Y., Yao, M., Cang, J. and Miao, C. (2022) The Anatomical Landmarks for Positioning of Double Lumen Endotracheal Tube Using Flexible Bronchoscopy: A Prospective Observational Study. Heliyon, 8, e11779. [Google Scholar] [CrossRef] [PubMed]
[22] Benumof, J.L., Partridge, B.L., Salvatierra, C. and Keating, J. (1987) Margin of Safety in Positioning Modern Double-Lumen Endotracheal Tubes. Anesthesiology, 67, 729-738. [Google Scholar] [CrossRef] [PubMed]
[23] Campos, J.H. and Ueda, K. (2012) Lung Separation in the Morbidly Obese Patient. Anesthesiology Research and Practice, 2012, Article ID: 207598. [Google Scholar] [CrossRef] [PubMed]
[24] Rao, Q., Yu, H., Li, P., Zhang, G., Zeng, J., Pu, Q., et al. (2024) Efficacy and Safety of Video Double-Lumen Tube Intubation in Lateral Position in Patients Undergoing Thoracic Surgery: A Randomized Controlled Trial. BMC Anesthesiology, 24, Article No. 179. [Google Scholar] [CrossRef] [PubMed]
[25] Tao, D., Zhang, G., Zheng, X., Wang, X., Gao, G., Yang, Z., et al. (2024) Feasibility Study of Intubation in Lateral Position Using Viva-Sight Double-Lumen Tube Combined with Video Laryngoscope in Patients Undergoing Pulmonary Lobectomy. Asian Journal of Surgery, 47, 373-379. [Google Scholar] [CrossRef] [PubMed]
[26] Kang, S., Chae, Y.J., Kim, D.H., Bae, S.Y. and Yoo, J.Y. (2023) Comparison of Silicone Double-Lumen Tube and Polyvinyl Chloride Single-Lumen Tube in Fiberoptic Tracheal Intubation on a Difficult Airway Model: A Randomized Controlled Non-Inferiority Trial. Scientific Reports, 13, Article No. 8397. [Google Scholar] [CrossRef] [PubMed]
[27] Zhao, S., Wang, H., Han, Y., Liu, H., Li, W. and Luo, J. (2025) Endoscopic View Expansion for Tracheal Intubation Using Feature-Based Image-Sequence Stitching. Biomedical Signal Processing and Control, 100, Article ID: 106888. [Google Scholar] [CrossRef
[28] Do, Y., Kim, J., Kim, K., Oh, J., Kwak, K., Jeon, Y., et al. (2023) Effect of Minimum Bronchial Cuff Volume of Left-Sided Double-Lumen Tube for One-Lung Ventilation on the Change in Bronchial Cuff Pressure during Lateral Positioning in Thoracic Surgery: A Prospective Observational Study. Journal of Clinical Medicine, 12, Article 2473. [Google Scholar] [CrossRef] [PubMed]
[29] Urabe, K., Asai, T. and Okuda, Y. (2023) Usefulness of an Automatic Cuff Pressure Controller (Smartcuff) in Inhibiting Gasleakage around the Cuff after Tracheal Intubation: A Randomized Controlled Study. Journal of Anesthesia, 38, 86-91. [Google Scholar] [CrossRef] [PubMed]
[30] Fu, R., Hone, N.G., Broadbent, J.R., Guy, B.J. and Young, J.S. (2023) Dynamic Three-Dimensional Printing: The Future of Bronchoscopic Simulation Training? Anaesthesia and Intensive Care, 51, 274-280. [Google Scholar] [CrossRef] [PubMed]