[1]
|
Jeon, H.H., Teixeira, H. and Tsai, A. (2021) Mechanistic Insight into Orthodontic Tooth Movement Based on Animal Studies: A Critical Review. Journal of Clinical Medicine, 10, Article No. 1733. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Nakai, Y., Praneetpong, N., Ono, W. and Ono, N. (2023) Mechanisms of Osteoclastogenesis in Orthodontic Tooth Movement and Orthodontically Induced Tooth Root Resorption. Journal of Bone Metabolism, 30, 297-310. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Haddy, T.B., Adde, M.A., McCalla, J., Domanski, M.J., Datiles, M., Meehan, S.C., et al. (1998) Late Effects in Long-Term Survivors of High-Grade Non-Hodgkin’s Lymphomas. Journal of Clinical Oncology, 16, 2070-2079. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Li, B., Wang, L. and He, H. (2025) Autophagy in Orthodontic Tooth Movement: Advances, Challenges, and Future Perspectives. Molecular Medicine, 31, Article No. 245. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Kanzaki, H., Chiba, M., Shimizu, Y. and Mitani, H. (2002) Periodontal Ligament Cells under Mechanical Stress Induce Osteoclastogenesis by Receptor Activator of Nuclear Factor κB Ligand Up-Regulation via Prostaglandin E2 Synthesis. Journal of Bone and Mineral Research, 17, 210-220. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Jernström, B., Vadi, H. and Orrenius, S. (1976) Formation in Isolated Rat Liver Microsomes and Nuclei of Benzo(a)pyrene Metabolites that Bind to DNA. Cancer Research, 36, 4107-4113.
|
[7]
|
Inchingolo, F., Inchingolo, A.M., Latini, G., Ferrante, L., Trilli, I., Del Vecchio, G., et al. (2023) Oxidative Stress and Natural Products in Orthodontic Treatment: A Systematic Review. Nutrients, 16, Article No. 113. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Behm, C., Nemec, M., Weissinger, F., Rausch, M.A., Andrukhov, O. and Jonke, E. (2021) MMPs and TIMPs Expression Levels in the Periodontal Ligament during Orthodontic Tooth Movement: A Systematic Review of in Vitro and in Vivo Studies. International Journal of Molecular Sciences, 22, Article No. 6967. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Yan, T., Xie, Y., He, H., Fan, W. and Huang, F. (2021) Role of Nitric Oxide in Orthodontic Tooth Movement (Review). International Journal of Molecular Medicine, 48, Article No. 168. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Klein, Y., Fleissig, O., Polak, D., Barenholz, Y., Mandelboim, O. and Chaushu, S. (2020) Immunorthodontics: In Vivo Gene Expression of Orthodontic Tooth Movement. Scientific Reports, 10, Article No. 8172. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
He, D., Kou, X., Yang, R., Liu, D., Wang, X., Luo, Q., et al. (2015) M1-Like Macrophage Polarization Promotes Orthodontic Tooth Movement. Journal of Dental Research, 94, 1286-1294. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
He, D., Kou, X., Luo, Q., Yang, R., Liu, D., Wang, X., et al. (2014) Enhanced M1/M2 Macrophage Ratio Promotes Orthodontic Root Resorption. Journal of Dental Research, 94, 129-139. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Wang, Y., Zhang, H., Sun, W., Wang, S., Zhang, S., Zhu, L., et al. (2018) Macrophages Mediate Corticotomy-Accelerated Orthodontic Tooth Movement. Scientific Reports, 8, Article No. 16788. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
He, W., Zhang, N. and Lin, Z. (2021) Microrna-125a-5p Modulates Macrophage Polarization by Targeting E26 Transformation-Specific Variant 6 Gene during Orthodontic Tooth Movement. Archives of Oral Biology, 124, Article ID: 105060. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Yan, Y., Liu, F., Kou, X., Liu, D., Yang, R., Wang, X., et al. (2015) T Cells Are Required for Orthodontic Tooth Movement. Journal of Dental Research, 94, 1463-1470. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Lin, D., Li, L., Sun, Y., Wang, W., Wang, X., Ye, Y., et al. (2015) Interleukin‐17 Regulates the Expressions of RANKL and OPG in Human Periodontal Ligament Cells via TRAF6/TBK1-JNK/NF-κB Pathways. Immunology, 144, 472-485. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Ohsaki, Y., Takahashi, S., Scarcez, T., Demulder, A., Nishihara, T., Williams, R., et al. (1992) Evidence for an Autocrine/paracrine Role for Interleukin-6 in Bone Resorption by Giant Cells from Giant Cell Tumors of Bone. Endocrinology, 131, 2229-2234. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Settem, R.P., Honma, K., Chinthamani, S., Kawai, T. and Sharma, A. (2021) B-Cell RANKL Contributes to Pathogen-Induced Alveolar Bone Loss in an Experimental Periodontitis Mouse Model. Frontiers in Physiology, 12, Article ID: 722859. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Chiesa, M.D., Vitale, M., Carlomagno, S., Ferlazzo, G., Moretta, L. and Moretta, A. (2003) The Natural Killer Cell‐mediated Killing of Autologous Dendritic Cells Is Confined to a Cell Subset Expressing CD94/NKG2A, but Lacking Inhibitory Killer Ig‐Like Receptors. European Journal of Immunology, 33, 1657-1666. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Groeger, M., Spanier, G., Wolf, M., Deschner, J., Proff, P., Schröder, A., et al. (2020) Effects of Histamine on Human Periodontal Ligament Fibroblasts under Simulated Orthodontic Pressure. PLOS ONE, 15, e0237040. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Dias, D.A., Urban, S. and Roessner, U. (2012) A Historical Overview of Natural Products in Drug Discovery. Metabolites, 2, 303-336. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Chen, A., Deng, S., Lai, J., Li, J., Chen, W., Varma, S.N., et al. (2023) Hydrogels for Oral Tissue Engineering: Challenges and Opportunities. Molecules, 28, Article No. 3946. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Kitaura, H., Ohori, F., Marahleh, A., Ma, J., Lin, A., Fan, Z., et al. (2025) The Role of Cytokines in Orthodontic Tooth Movement. International Journal of Molecular Sciences, 26, Article No. 6688. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Yu, S.B., Kim, H.J., Kang, H.M., Park, B.S., Lee, J.H. and Kim, I.R. (2018) Cordycepin Accelerates Osteoblast Mineralization and Attenuates Osteoclast Differentiation in Vitro. Evidence-Based Complementary and Alternative Medicine, 2018, Article ID: 5892957. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Zou, J., Chen, F., Li, Y., Chen, H., Sun, T., Du, S., et al. (2023) Effects of Green Tea Extract Epigallocatechin-3-Gallate (EGCG) on Orthodontic Tooth Movement and Root Resorption in Rats. Archives of Oral Biology, 150, Article ID: 105691. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Yang, L., Li, G., Chai, Z., Gong, Q. and Guo, J. (2020) Synthesis of Cordycepin: Current Scenario and Future Perspectives. Fungal Genetics and Biology, 143, Article ID: 103431. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Yamaguchi, M. and Fukasawa, S. (2021) Is Inflammation a Friend or Foe for Orthodontic Treatment? Inflammation in Orthodontically Induced Inflammatory Root Resorption and Accelerating Tooth Movement. International Journal of Molecular Sciences, 22, Article No. 2388. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Wang, X., Peng, Z., Wang, L., Zhang, J., Zhang, K., Guo, Z., et al. (2023) Cordyceps Militaris Solid Medium Extract Alleviates Lipoteichoic Acid-Induced MH-S Inflammation by Inhibiting TLR2/NF-κB/NLRP3 Pathways. International Journal of Molecular Sciences, 24, Article No. 15519. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Ying, X., Peng, L., Chen, H., Shen, Y., Yu, K. and Cheng, S. (2013) Cordycepin Prevented Il-Β-Induced Expression of Inflammatory Mediators in Human Osteoarthritis Chondrocytes. International Orthopaedics, 38, 1519-1526. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Zhang, Y., Cheng, J., Su, Y., Li, M., Wen, J. and Li, S. (2022) Cordycepin Induces M1/M2 Macrophage Polarization to Attenuate the Liver and Lung Damage and Immunodeficiency in Immature Mice with Sepsis via NF-κB/p65 Inhibition. Journal of Pharmacy and Pharmacology, 74, 227-235. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Ramesh, T., Yoo, S., Kim, S., Hwang, S., Sohn, S., Kim, I., et al. (2012) Cordycepin (3’-Deoxyadenosine) Attenuates Age-Related Oxidative Stress and Ameliorates Antioxidant Capacity in Rats. Experimental Gerontology, 47, 979-987. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Tian, H., Yu, D., Xie, T., Xu, M., Wang, Y., Sun, X., et al. (2025) Cordycepin Alleviates Metabolic Dysfunction-Associated Liver Disease by Restoring Mitochondrial Homeostasis and Reducing Oxidative Stress via Parkin-Mediated Mitophagy. Biochemical Pharmacology, 232, Article ID: 116750. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Dou, C., Cao, Z., Ding, N., Hou, T., Luo, F., Kang, F., et al. (2016) Cordycepin Prevents Bone Loss through Inhibiting Osteoclastogenesis by Scavenging ROS Generation. Nutrients, 8, Article No. 231. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Kim, J., Shin, J.Y., Choi, Y., Lee, S.Y., Jin, M.H., Kim, C.D., et al. (2021) Adenosine and Cordycepin Accelerate Tissue Remodeling Process through Adenosine Receptor Mediated Wnt/β-Catenin Pathway Stimulation by Regulating Gsk3b Activity. International Journal of Molecular Sciences, 22, Article No. 5571. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Li, Z., Gu, Y., Lin, Z., Ma, H. and Zhang, S. (2020) Cordycepin Promotes Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells and Accelerates Fracture Healing via Hypoxia in a Rat Model of Closed Femur Fracture. Biomedicine & Pharmacotherapy, 125, Article ID: 109991. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Zhang, D., Wang, Z., Qi, W., Lei, W. and Zhao, G. (2014) Cordycepin (3’-Deoxyadenosine) Down-Regulates the Proinflammatory Cytokines in Inflammation-Induced Osteoporosis Model. Inflammation, 37, 1044-1049. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Wang, F., Yin, P., Lu, Y., Zhou, Z., Jiang, C., Liu, Y., et al. (2015) Cordycepin Prevents Oxidative Stress-Induced Inhibition of Osteogenesis. Oncotarget, 6, 35496-35508. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Yang, J., Cao, Y., Lv, Z., Jiang, T., Wang, L. and Li, Z. (2015) Cordycepin Protected against the TNF-α-Induced Inhibition of Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells. International Journal of Immunopathology and Pharmacology, 28, 296-307. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Kim, J., Lee, H., Kang, K.S., Chun, K. and Hwang, G.S. (2015) Cordyceps militaris Mushroom and Cordycepin Inhibit RANKL-Induced Osteoclast Differentiation. Journal of Medicinal Food, 18, 446-452. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Mokra, D., Joskova, M. and Mokry, J. (2022) Therapeutic Effects of Green Tea Polyphenol(‒)-Epigallocatechin-3-Gallate (EGCG) in Relation to Molecular Pathways Controlling Inflammation, Oxidative Stress, and Apoptosis. International Journal of Molecular Sciences, 24, Article No. 340. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Ding, C., Fu, S., Chen, X., Chen, C., Wang, H. and Zhong, L. (2021) Epigallocatechin Gallate Affects the Proliferation of Human Alveolar Osteoblasts and Periodontal Ligament Cells, as Well as Promoting Cell Differentiation by Regulating PI3K/Akt Signaling Pathway. Odontology, 109, 729-740. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Fan, Q., Zhou, X., Wang, T., Zeng, F., Liu, X., Gu, Y., et al. (2023) Effects of Epigallocatechin-3-Gallate on Oxidative Stress, Inflammation, and Bone Loss in a Rat Periodontitis Model. Journal of Dental Sciences, 18, 1567-1575. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Li, H., Li, Y., Zou, J., Yang, Y., Han, R. and Zhang, J. (2022) Sinomenine Inhibits Orthodontic Tooth Movement and Root Resorption in Rats and Enhances Osteogenic Differentiation of PDLSCs. Drug Design, Development and Therapy, 16, 2949-2965. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
He, L., Li, X., Zeng, X., Duan, H., Wang, S., Lei, L., et al. (2013) Sinomenine Induces Apoptosis in RAW 264.7 Cell-Derived Osteoclasts in Vitro via Caspase-3 Activation. Acta Pharmacologica Sinica, 35, 203-210. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Niu, Y., Li, Y., Huang, H., Kong, X., Zhang, R., Liu, L., et al. (2011) Asperosaponin VI, a Saponin Component from Dipsacus asper Wall, Induces Osteoblast Differentiation through Bone Morphogenetic Protein‐2/p38 and Extracellular Signal‐Regulated Kinase 1/2 Pathway. Phytotherapy Research, 25, 1700-1706. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Ma, D., Wang, X., Ren, X., Bu, J., Zheng, D. and Zhang, J. (2020) Asperosaponin VI Injection Enhances Orthodontic Tooth Movement in Rats. Medical Science Monitor, 26, e922372. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Katsumata, Y., Kanzaki, H., Honda, Y., Tanaka, T., Yamaguchi, Y., Itohiya, K., et al. (2018) Single Local Injection of Epigallocatechin Gallate-Modified Gelatin Attenuates Bone Resorption and Orthodontic Tooth Movement in Mice. Polymers, 10, Article No. 1384. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Salehi, S., Naghib, S.M., Garshasbi, H.R., Ghorbanzadeh, S. and Zhang, W. (2023) Smart Stimuli-Responsive Injectable Gels and Hydrogels for Drug Delivery and Tissue Engineering Applications: A Review. Frontiers in Bioengineering and Biotechnology, 11, Article ID: 1104126. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Montero Jiménez, O.G., Dib Kanán, A., Dipp Velázquez, F.A., Aristizábal Pérez, J.F., Moyaho Bernal, M.d.l.Á., Salas Orozco, M.F., et al. (2022) Use of Hydrogels to Regulate Orthodontic Tooth Movement in Animal Models: A Systematic Review. Applied Sciences, 12, Article No. 6683. [Google Scholar] [CrossRef]
|
[50]
|
Chaudhari, V.S., Kushram, P. and Bose, S. (2024) Drug Delivery Strategies through 3D-Printed Calcium Phosphate. Trends in Biotechnology, 42, 1396-1409. [Google Scholar] [CrossRef] [PubMed]
|