[1]
|
Sanchez-Lozada, L.G., Rodriguez-Iturbe, B., Kelley, E.E., Nakagawa, T., Madero, M., Feig, D.I., et al. (2020) Uric Acid and Hypertension: An Update with Recommendations. American Journal of Hypertension, 33, 583-594. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
中华医学会内分泌学分会. 中国高尿酸血症与痛风诊疗指南(2019) [J]. 中华内分泌代谢杂志, 2020, 36(1): 1-13.
|
[3]
|
Borghi, C., Rodriguez-Artalejo, F., De Backer, G., Dallongeville, J., Medina, J., Nuevo, J., et al. (2018) Serum Uric Acid Levels Are Associated with Cardiovascular Risk Score: A Post Hoc Analysis of the Eurika Study. International Journal of Cardiology, 253, 167-173. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Zhang, S., Liu, X., Song, B., Yu, H., Zhang, X. and Shao, Y. (2022) Impact of Serum Uric Acid Levels on the Clinical Prognosis and Severity of Coronary Artery Disease in Patients with Acute Coronary Syndrome and Hypertension after Percutaneous Coronary Intervention: A Prospective Cohort Study. BMJ Open, 12, e052031. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Gao, Y., Shi, Y., Xia, P., Zhang, J., Fu, Y., Huang, Y., Xu, Y. and Li, G. (2022) Diagnostic Efficacy of CCTA and CT-FFR Based on Risk Factors for Myocardial Ischemia. Journal of Cardiothoracic Surgery, 17, Article No. 39. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Lim, D., Lee, Y., Park, G., Choi, S.W., Kim, Y., Lee, S., et al. (2019) Serum Uric Acid Level and Subclinical Coronary Atherosclerosis in Asymptomatic Individuals: An Observational Cohort Study. Atherosclerosis, 288, 112-117. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Chu, X., Lu, Y., Mei, M., Peng, P., Zhao, Y., Fu, G., et al. (2022) Correlation between Serum Uric Acid Levels and Coronary Plaque Characteristics on Optical Coherence Tomography. International Heart Journal, 63, 806-813. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Liu, J., Wang, K., Liu, H., Zhao, H., Zhao, X., Lan, Y., et al. (2019) Relationship between Carotid-Femoral Pulse Wave Velocity and Uric Acid in Subjects with Hypertension and Hyperuricemia. Endocrine Journal, 66, 629-636. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Kim, S.Y., Guevara, J.P., Kim, K.M., Choi, H.K., Heitjan, D.F. and Albert, D.A. (2010) Hyperuricemia and Coronary Heart Disease: A Systematic Review and Meta‐Analysis. Arthritis Care & Research, 62, 170-180. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Virdis, A., Masi, S., Casiglia, E., Tikhonoff, V., Cicero, A.F.G., Ungar, A., et al. (2020) Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality over 20 Years. Hypertension, 75, 302-308. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Braga, F., Pasqualetti, S., Ferraro, S. and Panteghini, M. (2016) Hyperuricemia as Risk Factor for Coronary Heart Disease Incidence and Mortality in the General Population: A Systematic Review and Meta-Analysis. Clinical Chemistry and Laboratory Medicine (CCLM), 54, 7-15. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Dehlin, M., Jacobsson, L. and Roddy, E. (2020) Global Epidemiology of Gout: Prevalence, Incidence, Treatment Patterns and Risk Factors. Nature Reviews Rheumatology, 16, 380-390. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Matsumoto, I., Moriya, S., Kurozumi, M., Namba, T. and Takagi, Y. (2021) Relationship between Serum Uric Acid Levels and the Incidence of Cardiovascular Events after Percutaneous Coronary Intervention. Journal of Cardiology, 78, 550-557. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Akashi, N., Kuwabara, M., Matoba, T., Kohro, T., Oba, Y., Kabutoya, T., et al. (2023) Hyperuricemia Predicts Increased Cardiovascular Events in Patients with Chronic Coronary Syndrome after Percutaneous Coronary Intervention: A Nationwide Cohort Study from Japan. Frontiers in Cardiovascular Medicine, 9, Article ID: 1062894. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Kuźma, L., Kulikowska, A., Kurasz, A., Niwińska, M.M., Zalewska-Adamiec, M., Dobrzycki, S., et al. (2020) The Effect of Serum Uric Acid Levels on the Long-Term Prognosis of Patients with Non-St-Elevation Myocardial Infarction. Advances in Clinical and Experimental Medicine, 29, 1255-1263. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Li, K., Li, K., Yao, Q., Shui, X., Zheng, J., He, Y., et al. (2023) The Potential Relationship of Coronary Artery Disease and Hyperuricemia: A Cardiometabolic Risk Factor. Heliyon, 9, e16097. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Kattoor, A.J., Pothineni, N.V.K., Palagiri, D. and Mehta, J.L. (2017) Oxidative Stress in Atherosclerosis. Current Atherosclerosis Reports, 19, Article No. 42. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Elsayed, S. and Elsaid, K.A. (2022) Protein Phosphatase 2A Regulates Xanthine Oxidase-Derived ROS Production in Macrophages and Influx of Inflammatory Monocytes in a Murine Gout Model. Frontiers in Pharmacology, 13, Article ID: 1033520. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Cheng, T., Lin, J., Chao, H., Chen, Y., Chen, C., Chan, P., et al. (2010) Uric Acid Activates Extracellular Signal-Regulated Kinases and Thereafter Endothelin-1 Expression in Rat Cardiac Fibroblasts. International Journal of Cardiology, 139, 42-49. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Chao, H., Liu, J., Lin, J., Chen, C., Wu, C. and Cheng, T. (2008) Uric Acid Stimulates Endothelin-1 Gene Expression Associated with NADPH Oxidase in Human Aortic Smooth Muscle Cells. Acta Pharmacologica Sinica, 29, 1301-1312. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Li, P., Zhang, L., Zhang, M., Zhou, C. and Lin, N. (2016) Uric Acid Enhances PKC-Dependent Enos Phosphorylation and Mediates Cellular ER Stress: A Mechanism for Uric Acid-Induced Endothelial Dysfunction. International Journal of Molecular Medicine, 37, 989-997. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Krautter, F., Hussain, M.T., Zhi, Z., Lezama, D.R., Manning, J.E., Brown, E., et al. (2022) Galectin-9: A Novel Promoter of Atherosclerosis Progression. Atherosclerosis, 363, 57-68. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Yu, W., Chen, C., Zhuang, W., Wang, W., Liu, W., Zhao, H., et al. (2022) Silencing TXNIP Ameliorates High Uric Acid-Induced Insulin Resistance via the IRS2/AKT and NRF2/Ho-1 Pathways in Macrophages. Free Radical Biology and Medicine, 178, 42-53. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Ferrari, R., Bueno, H., Chioncel, O., Cleland, J.G., Stough, W.G., Lettino, M., et al. (2018) Acute Heart Failure: Lessons Learned, Roads Ahead. European Journal of Heart Failure, 20, 842-850. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Si, K., Wei, C., Xu, L., Zhou, Y., Lv, W., Dong, B., et al. (2021) Hyperuricemia and the Risk of Heart Failure: Pathophysiology and Therapeutic Implications. Frontiers in Endocrinology, 12, Article ID: 770815. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Huang, H., Huang, B., Li, Y., Huang, Y., Li, J., Yao, H., et al. (2014) Uric Acid and Risk of Heart Failure: A Systematic Review and Meta‐Analysis. European Journal of Heart Failure, 16, 15-24. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Han, Y., Cao, Y., Han, X., Di, H., Yin, Y., Wu, J., et al. (2023) Hyperuricemia and Gout Increased the Risk of Long-Term Mortality in Patients with Heart Failure: Insights from the National Health and Nutrition Examination Survey. Journal of Translational Medicine, 21, Article No. 463. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Deis, T., Rossing, K., Ersbøll, M.K., Wolsk, E. and Gustafsson, F. (2022) Uric Acid in Advanced Heart Failure: Relation to Central Haemodynamics and Outcome. Open Heart, 9, e002092. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Keenan, T., Zhao, W., Rasheed, A., Ho, W.K., Malik, R., Felix, J.F., et al. (2016) Causal Assessment of Serum Urate Levels in Cardiometabolic Diseases through a Mendelian Randomization Study. Journal of the American College of Cardiology, 67, 407-416. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Karantalis, V., Schulman, I.H. and Hare, J.M. (2013) Nitroso-Redox Imbalance Affects Cardiac Structure and Function. Journal of the American College of Cardiology, 61, 933-935. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Takimoto, E. and Kass, D.A. (2007) Role of Oxidative Stress in Cardiac Hypertrophy and Remodeling. Hypertension, 49, 241-248. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Liu, S., Yuan, Y., Zhou, Y., Zhao, M., Chen, Y., Cheng, J., et al. (2017) Phloretin Attenuates Hyperuricemia‐Induced Endothelial Dysfunction through Co‐Inhibiting Inflammation and Glut9‐Mediated Uric Acid Uptake. Journal of Cellular and Molecular Medicine, 21, 2553-2562. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Yu, M., Sánchez-Lozada, L.G., Johnson, R.J. and Kang, D. (2010) Oxidative Stress with an Activation of the Renin-Angiotensin System in Human Vascular Endothelial Cells as a Novel Mechanism of Uric Acid-Induced Endothelial Dysfunction. Journal of Hypertension, 28, 1234-1242. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Li, H., Qian, F., Liu, H. and Zhang, Z. (2019) Elevated Uric Acid Levels Promote Vascular Smooth Muscle Cells (VSMC) Proliferation via an Nod-Like Receptor Protein 3 (Nlrp3)-Inflammasome-Dependent Mechanism. Medical Science Monitor, 25, 8457-8464. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Kimura, Y., Yanagida, T., Onda, A., Tsukui, D., Hosoyamada, M. and Kono, H. (2020) Soluble Uric Acid Promotes Atherosclerosis via AMPK (Amp-Activated Protein Kinase)-Mediated Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 40, 570-582. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Spiga, R., Marini, M.A., Mancuso, E., Di Fatta, C., Fuoco, A., Perticone, F., et al. (2017) Uric Acid Is Associated with Inflammatory Biomarkers and Induces Inflammation via Activating the NF-κB Signaling Pathway in HepG2 Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 37, 1241-1249. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Ono, K., Iwasaki, Y.K., Akao, M., et al. (2022) JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. Journal of Arrhythmia, 38, 833-973.
|
[38]
|
Maharani, N., Kuwabara, M. and Hisatome, I. (2016) Hyperuricemia and Atrial Fibrillation. International Heart Journal, 57, 395-399. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Nyrnes, A., Toft, I., Njølstad, I., Mathiesen, E.B., Wilsgaard, T., Hansen, J., et al. (2014) Uric Acid Is Associated with Future Atrial Fibrillation: An 11-Year Follow-Up of 6308 Men and Women—The Tromso Study. Europace, 16, 320-326. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Wang, X., Hou, Y., Wang, X., Li, Z., Wang, X., Li, H., et al. (2021) Relationship between Serum Uric Acid Levels and Different Types of Atrial Fibrillation: An Updated Meta-Analysis. Nutrition, Metabolism and Cardiovascular Diseases, 31, 2756-2765. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Kawasoe, S., Kubozono, T., Yoshifuku, S., Ojima, S., Oketani, N., Miyata, M., et al. (2016) Uric Acid Level and Prevalence of Atrial Fibrillation in a Japanese General Population of 285,882. Circulation Journal, 80, 2453-2459. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Suzuki, S., Sagara, K., Otsuka, T., Matsuno, S., Funada, R., Uejima, T., et al. (2012) Gender-Specific Relationship between Serum Uric Acid Level and Atrial Fibrillation Prevalence. Circulation Journal, 76, 607-611. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Zhong, X., Jiao, H., Zhao, D. and Teng, J. (2022) Erratum: Serum Uric Acid Levels in Relation to Atrial Fibrillation: A Case-Control Study. Medical Science Monitor, 28, e936696. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Sun, G., Guo, L., Wang, J., Ye, N., Wang, X. and Sun, Y. (2015) Association between Hyperuricemia and Atrial Fibrillation in Rural China: A Cross-Sectional Study. BMC Cardiovascular Disorders, 15, Article No. 98. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Charles, B.A., Shriner, D., Doumatey, A., Chen, G., Zhou, J., Huang, H., et al. (2011) A Genome-Wide Association Study of Serum Uric Acid in African Americans. BMC Medical Genomics, 4, Article No. 17. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Letsas, K.P., Korantzopoulos, P., Filippatos, G.S., et al. (2010) Uric Acid Elevation in Atrial Fibrillation. Hellenic Journal of Cardiology, 51, 209-213.
|
[47]
|
Shimojo, K., Morishima, I., Morita, Y., Kanzaki, Y., Miyazawa, H., Watanabe, N., et al. (2024) Effect of Hyperuricemia on Paroxysmal Atrial Fibrillation after Catheter Ablation and Influence of Alcohol Consumption. Journal of Arrhythmia, 40, 849-857. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Kuwabara, M., Niwa, K., Nishihara, S., Nishi, Y., Takahashi, O., Kario, K., et al. (2017) Hyperuricemia Is an Independent Competing Risk Factor for Atrial Fibrillation. International Journal of Cardiology, 231, 137-142. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Deng, Y., Liu, F., Yang, X. and Xia, Y. (2021) The Key Role of Uric Acid in Oxidative Stress, Inflammation, Fibrosis, Apoptosis, and Immunity in the Pathogenesis of Atrial Fibrillation. Frontiers in Cardiovascular Medicine, 8, Article ID: 641136. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Hu, Y., Chen, Y., Lin, Y. and Chen, S. (2015) Inflammation and the Pathogenesis of Atrial Fibrillation. Nature Reviews Cardiology, 12, 230-243. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Li, N. and Dobrev, D. (2017) Hyperuricemia: A Causal Player or a Bystander Linking Inflammatory Signaling and Atrial Fibrillation? International Journal of Cardiology, 231, 177-178. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Yu, W. and Cheng, J. (2020) Uric Acid and Cardiovascular Disease: An Update from Molecular Mechanism to Clinical Perspective. Frontiers in Pharmacology, 11, Article ID: 582680. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Maharani, N., Ting, Y.K., Cheng, J., Hasegawa, A., Kurata, Y., Li, P., et al. (2015) Molecular Mechanisms Underlying Urate-Induced Enhancement of Kv1.5 Channel Expression in HL-1 Atrial Myocytes. Circulation Journal, 79, 2659-2668. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Tomiyama, H., Shiina, K., Vlachopoulos, C., Iwasaki, Y., Matsumoto, C., Kimura, K., et al. (2018) Involvement of Arterial Stiffness and Inflammation in Hyperuricemia-Related Development of Hypertension. Hypertension, 72, 739-745. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
White, W.B., Saag, K.G., Becker, M.A., Borer, J.S., Gorelick, P.B., Whelton, A., et al. (2018) Cardiovascular Safety of Febuxostat or Allopurinol in Patients with Gout. New England Journal of Medicine, 378, 1200-1210. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Mackenzie, I.S., Ford, I., Nuki, G., Hallas, J., Hawkey, C.J., Webster, J., et al. (2020) Long-Term Cardiovascular Safety of Febuxostat Compared with Allopurinol in Patients with Gout (FAST): A Multicentre, Prospective, Randomised, Open-Label, Non-Inferiority Trial. The Lancet, 396, 1745-1757. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Kojima, S., Matsui, K., Hiramitsu, S., Hisatome, I., Waki, M., Uchiyama, K., et al. (2019) Febuxostat for Cerebral and Cardiorenovascular Events Prevention Study. European Heart Journal, 40, 1778-1786. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Saito, Y., Tanaka, A., Node, K. and Kobayashi, Y. (2021) Uric Acid and Cardiovascular Disease: A Clinical Review. Journal of Cardiology, 78, 51-57. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Zalawadiya, S.K., Veeranna, V., Mallikethi-Reddy, S., Bavishi, C., Lunagaria, A., Kottam, A., et al. (2015) Uric Acid and Cardiovascular Disease Risk Reclassification: Findings from NHANES III. European Journal of Preventive Cardiology, 22, 513-518. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Alderman, M. and Aiyer, K.J.V. (2004) Uric Acid: Role in Cardiovascular Disease and Effects of Losartan. Current Medical Research and Opinion, 20, 369-379. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Dahlöf, B., Devereux, R.B., Kjeldsen, S.E., Julius, S., Beevers, G., de Faire, U., et al. (2002) Cardiovascular Morbidity and Mortality in the Losartan Intervention for Endpoint Reduction in Hypertension Study (LIFE): A Randomised Trial against Atenolol. The Lancet, 359, 995-1003. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Agarwal, V., Hans, N. and Messerli, F.H. (2013) Effect of Allopurinol on Blood Pressure: A Systematic Review and Meta‐Analysis. The Journal of Clinical Hypertension, 15, 435-442. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Rajendra, N.S., Ireland, S., George, J., Belch, J.J.F., Lang, C.C. and Struthers, A.D. (2011) Mechanistic Insights into the Therapeutic Use of High-Dose Allopurinol in Angina Pectoris. Journal of the American College of Cardiology, 58, 820-828. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
Wei, L., Mackenzie, I.S., Chen, Y., Struthers, A.D. and MacDonald, T.M. (2011) Impact of Allopurinol Use on Urate Concentration and Cardiovascular Outcome. British Journal of Clinical Pharmacology, 71, 600-607. [Google Scholar] [CrossRef] [PubMed]
|
[65]
|
Taufiq, F., Maharani, N., Li, P., Kurata, Y., Ikeda, N., Kuwabara, M., et al. (2019) Uric Acid-Induced Enhancements of Kv1.5 Protein Expression and Channel Activity via the Akt-HSF1-Hsp70 Pathway in HL-1 Atrial Myocytes. Circulation Journal, 83, 718-726. [Google Scholar] [CrossRef] [PubMed]
|
[66]
|
Purnima, S. and El-Aal, B.G.A. (2016) Serum Uric Acid as Prognostic Marker of Coronary Heart Disease (CHD). Clínica e Investigación en Arteriosclerosis, 28, 216-224. [Google Scholar] [CrossRef] [PubMed]
|