PI3K/Akt信号通路在非酒精性脂肪性肝病中作用机制的研究进展
Research Progress on the Mechanism of PI3K/Akt Signaling Pathway in Nonalcoholic Steatohepatitis
摘要: 非酒精性脂肪性肝病是一种以肝细胞脂质蓄积为特征的代谢性疾病,其发病机制涉及胰岛素抵抗、脂代谢紊乱、炎症反应及肝纤维化等多重病理过程。PI3K/Akt信号通路作为调控细胞代谢、增殖与存活的核心通路,在NAFLD的发生发展中发挥关键作用。本文系统阐述了PI3K/Akt信号通路在非酒精性脂肪性肝病中的作用机制,旨在为非酒精性脂肪性肝病的诊断和治疗提供理论依据。
Abstract: Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder characterized by hepatic steatosis, involving multiple pathological processes including insulin resistance, lipid metabolism disorders, inflammatory responses, and hepatic fibrosis. The PI3K/Akt signaling pathway, as a core mechanism regulating cellular metabolism, proliferation, and survival, plays a pivotal role in NAFLD development. This study systematically elucidates the mechanisms by which the PI3K/Akt pathway influences NAFLD, aiming to provide theoretical foundations for its diagnosis and treatment.
文章引用:孙佳旭. PI3K/Akt信号通路在非酒精性脂肪性肝病中作用机制的研究进展[J]. 生物医学, 2025, 15(6): 1053-1061. https://doi.org/10.12677/hjbm.2025.156113

1. 引言

非酒精性脂肪性肝病(Non-alcoholic Fatty Liver Disease, NAFLD)是一种与代谢紊乱密切相关的慢性肝病,其核心特征是排除酒精滥用、病毒性肝炎、药物性肝损伤等其他明确致病因素的肝脏内脂肪的异常堆积[1]。NAFLD的疾病谱包括两个主要阶段,一是以肝细胞脂肪变性为主,无明显炎症或纤维化的单纯性脂肪肝(non-alcoholic fatty liver, NAFL),二是在脂肪变性的基础上,伴随肝细胞损伤、炎症反应及纤维化等特征,可进一步进展为肝硬化甚至肝癌的非酒精性脂肪性肝炎(non-alcoholic steatohepatitis, NASH) [2]

目前已有学者研究发现,非酒精性脂肪性肝脏病的发病机制尚未完全明确,其背后涉及代谢调节、免疫应答、细胞应激等多通路的交互作用,相关机制的具体调控网络及关键分子靶点仍需进一步探索。胰岛素功能衰减、脂质转运异常,还有氧化损伤反应与肠道微生态系统紊乱等一系列现象,都不是单独发生的,而是在遗传易感性的作用下相互影响[3]。这种状态下,肥胖问题、第二型糖尿血糖病,再加上新陈代谢综合失调,更成了NAFLD最突出难缠的隐患因素之一[4]。实际情况表明,这种健康状况目前已普遍发生在全球不同区域,由此可见慢性肝性疾病领域里,它逐步成为主要驱动源。不仅如此,与心脑血管方面风险增加之间,也表现出紧密牵连[5]。关于细胞内信号沟通体系,已有研究表明,磷脂酰肌醇3激酶通路(phosphatidylinositol 3-kinase, PI3K)是维持细胞增殖、存活、代谢等基础生理功能的核心信号通路,其通过与上游受体、下游效应分子形成多级调控网络,实现信号的精准传递与整合。其所关联的生物学活动涉及能量供应、自我再生产、长期存活以及对外界刺激快速作答等层面,且此路径协调身体环境平衡效果明显[6]。在这一路径下,蛋白激酶B通路(protein kinase B, Akt),作为核心枢纽节点,通过对众多底物实现磷酸键修饰方式延展参与其中,贯穿于NAFLD相关各类生理及病损流程环节[7]。有观点据以说明,上述PI3K/Akt路线同NAFLD产生联系密切,在整个动态变化过程中扮演重要地位[8]。结合本次梳理内容,对比国内外材料总结PI3K/Akt信号体系对于NAFLD的作用逻辑,希望能给将来探索诊断方法和临床干预措施提供新路径。

2. 非酒精性脂肪性肝病的发病机制

非酒精型脂质肝脏综合征表现为肝细胞中高度脂类储积,其发病涉及遗传易感性、胰岛素抵抗、氧化应激等多因素,且各环节相互渗透[9]。主要相关要素,如胰腺激素抗受现象、脂类转运与分解混乱、氧化损伤反应、胞内炎症活动以及遗传倾向等均在实际情况中出现过[10]。我们可观察到,上述因素推动简单脂质沉积发展至不含酒精的肝细胞炎状态。

作为本病重要发端环节之一,胰腺因子功能逐步减退。在这种条件下,外围组织处的脂滴水解速率大幅提高,大量游离态脂酸流入肝器官内部。同时,肝区对于胰岛类激素调控能力变差,高密度脂性物质堆集引起线粒体单位出现结构杂乱,对能量转换系统产生影响[11]。紧接着,在脂酸被氧化的过程中,可检测出大量活跃氧簇(Reactive Oxygen Species, ROS)生成,而细胞防御功能由于Nrf2 (Nuclear factor erythroid 2-related factor 2, Nrf2)蛋白信号链低效而逐步衰减[12]。ROS通过攻击线粒体DNA和膜磷脂,使电子传递链解耦联,引发能量代谢障碍,形成恶性循环[13]。此外,脂毒性代谢产物激活蛋白激酶C (Protein Kinase C, PKC)和c-Jun N端激酶(c-Jun N-terminal kinase, JNK)通路,能够进一步加剧胰岛素抵抗和细胞损伤[14]。肝细胞脂毒性释放损伤相关分子(Damage-Associated Molecular Patterns, DAMPs)激活肝内Kupffer细胞和浸润的巨噬细胞,通过Toll样受体4 (Toll-like receptor 4, TLR4)和核因子κB (Nuclear Factor kappa B, NF-κB)通路促进促炎因子的分泌[15]

由此可见,胰岛素抵抗与脂代谢紊乱构成了非酒精性脂肪性肝病的病理核心,氧化应激、炎症等共同驱动疾病进展,NAFLD的发病机制总体呈现出多维度、网络化特征。

3. PI3K/Akt信号通路

3.1. PI3K信号通路

PI3K是一类脂质激酶家族,根据结构和功能可分为I类、II类、III类三个亚型[16],其中I类PI3K在细胞信号传导中最为关键[17]。I类PI3K由催化亚基和调节亚基组成,调节亚基负责与上游激活信号结合,而催化亚基执行脂质磷酸化功能,两者结合可以形成异源二聚体[18]。生长因子、细胞因子或激素与细胞膜上的受体结合后,受体发生二聚化并自磷酸化[19]。招募PI3K至细胞膜后,PI3K催化细胞膜上的磷脂酰肌醇二磷酸转化为磷脂酰肌醇三磷酸,后者作为第二信使,募集下游含PH结构域的效应蛋白至膜上从而发挥作用[20]

PI3K信号通路对代谢的调控功能可以通过两个方面来实现。首先,PI3K可以促进葡萄糖转运体GLUT4转位至细胞膜,增强细胞对葡萄糖的摄取,从而发挥对糖代谢的调控作用[21]。其次,PI3K能够激活转录因子SREBP-1c,驱动脂肪酸和胆固醇的合成,对脂代谢进行调控[22]。PI3K也可以通过激活下游Akt和mTOR通路,抑制促凋亡蛋白,推动细胞周期进程,最终促进细胞存活[23]

3.2. Akt信号通路

Akt属于丝氨酸和苏氨酸激酶家族,共包含三个亚型:Akt1、Akt2及Akt3,其中不同的亚型在不同组织中的表达量和生理作用也不相同,Akt1是表达最广泛的一种亚型,它主要调控细胞的存活和生长过程[24]。Akt2在肝脏、肌肉、脂肪等胰岛素敏感组织中高表达,在机体的其他部位表达量较低,主要发挥糖脂代谢调控的作用[25]。Akt3主要参与发育和神经功能,在脑和睾丸中表达量较高[26]

Akt信号通路的激活主要通过上游信号触发、磷酸化激活、下游信号传递等过程[27]。首先,PI3K通路激活后生成PIP3,Akt通过PH结构域与PIP3结合,从细胞质转位至细胞膜,完成上游信号触发[28]。然后,磷酸肌醇依赖性激酶1 (3-Phosphoinositide-Dependent Protein Kinase 1, PDK1)使Akt的Thr308位点磷酸化,激活部分活性,雷帕霉素靶蛋白复合体2 (mammalian target of rapamycin complex 2, mTORC2)磷酸化Ser473位点,使Akt完全活化[29]。最终,活化的Akt脱离细胞膜,进入细胞质或细胞核,磷酸化下游靶蛋白[30]

3.3. PI3K/Akt信号通路的生物学功能

PI3K作为脂质激酶,其I类亚型由催化亚基和调节亚基组成,依赖受体酪氨酸激酶或GPCRs的磷酸化招募至膜上,催化PIP2转化为PIP3 [31]。除激活Akt外,还可直接调控其他含PH结构域的效应分子,影响细胞迁移和免疫应答[32]。Julie等研究表明,PI3Kγ亚型在炎症中通过GPCR信号独立于Akt激活中性粒细胞趋化[33]。PI3K/Akt通路通过激活SREBP-1c促进脂肪酸合成,抑制脂解酶活性,协同减少脂质分解,维持能量储存[34]。二者均通过抑制凋亡信号支持细胞存活[35]。PI3K生成的PIP3招募Akt至细胞膜,活化的Akt通过磷酸化促凋亡蛋白BAD和Caspase-9,阻断线粒体凋亡途径[36]。由此可见,PI3K与Akt在功能上能够形成“启动–执行”的协同关系。二者共同维持代谢稳态与细胞生存,但其结构多样性与靶点特异性赋予了PI3K/Akt通路多层次的调控潜力。

4. PI3K/Akt信号通路在NAFLD中的调控机制

4.1. 脂质代谢的调控

PI3K/Akt信号通路作为胰岛素信号转导的核心路径,在NAFLD的脂质代谢调控中发挥关键作用。该通路通过调节脂肪酸合成、氧化及脂质转运的动态平衡,直接影响肝脏脂质蓄积进程[37]。研究表明,PI3K/Akt的激活可通过磷酸化抑制糖原合成酶激酶-3β,进而促进固醇调节元件结合蛋白-1c的核转位,显著上调脂肪酸合成关键酶的表达,导致肝细胞中甘油三酯(Triglyceride, TG)过度合成。有动物实验证实,高脂饮食诱导的NAFLD模型中,肝脏Akt磷酸化水平升高与SREBP-1c活性增强呈显著正相关[38]

4.2. 胰岛素敏感性的调节

NAFLD作为全球范围内常见的慢性肝病,其发病与胰岛素抵抗密切相关。PI3K/Akt信号通路在维持机体正常代谢,尤其是调节胰岛素敏感性方面发挥着核心作用[39]。在正常生理状态下,胰岛素与细胞表面受体结合,激活受体酪氨酸激酶,使PI3K的调节亚基与之结合并活化,进而催化磷脂酰肌醇-4,5-二磷酸生成磷脂酰肌醇-3,4,5-三磷酸(Phosphatidylinositol-3,4,5-trisphosphate, PIP3) [40]。PIP3作为第二信使招募并激活Akt,活化的Akt通过磷酸化下游多种底物,促进葡萄糖转运体4 (glucose transporter 4, GLUT4)转位至细胞膜,增强细胞对葡萄糖的摄取,降低血糖水平,维持胰岛素敏感性[41]

在NAFLD中,该信号通路受到多种因素干扰。游离脂肪酸的大量堆积、炎症因子的释放等,均可抑制PI3K/Akt信号通路[42]。Jiang等研究表明,肿瘤坏死因子-α可通过激活抑制性蛋白激酶,使PI3K的调节亚基磷酸化,抑制PI3K活性,阻碍Akt的激活,导致GLUT4转位障碍,细胞摄取葡萄糖能力下降,胰岛素抵抗加剧,肝脏脂肪合成增加,进一步加重NAFLD病情[43]

4.3. 炎症与氧化应激

正常情况下,PI3K/Akt信号通路通过维持肝脏内环境稳态对炎症与氧化应激起到一定的调控作用。当受到胰岛素等刺激时,PI3K被激活,促使Akt磷酸化[44]。活化的Akt可作用于下游的核因子κB (nuclear factor kappa B, NF-κB)抑制蛋白激酶,抑制NF-κB的活化,从而减少炎症因子如肿瘤坏死因子-α、白细胞介素-6等的转录与释放,最终降低炎症反应[45]

4.4. 肝纤维化的促进

活化的Akt通过多条途径推动肝纤维化。对PI3K/Akt信号通路促进肝纤维化机制的深入研究,有助于为NAFLD相关肝纤维化的治疗找到更有效的干预靶点。一方面,Akt能够通过激活下游的信号分子促进肝星状细胞的活化[46]。有研究指出,哺乳动物雷帕霉素靶蛋白(mammalian target of rapamycin, mTOR)能够使静止的HSC转变为活化状态,大量增殖并分泌细胞外基质,导致细胞外基质过度沉积,加速肝纤维化进程[47]。另一方面,Akt抑制基质金属蛋白酶的表达,同时促进其抑制因子(tissue inhibitor of metalloproteinases, TIMPs)的生成。MMPs负责降解细胞外基质,其活性被抑制,而TIMPs含量增加,使得细胞外基质降解减少,进一步加重肝脏纤维化程度[48]

在正常肝脏中,PI3K/Akt信号通路维持着肝脏细胞的正常生理功能,适度调控细胞增殖、存活与代谢[49]。Riaz等研究表明,氧化应激、炎症反应产生的大量活性氧和炎症因子,可激活PI3K,促使Akt磷酸化,但在NAFLD进程中,氧化应激、炎症反应等多种因素会导致PI3K/Akt信号通路异常激活,从而加重NAFLD疾病进程[50]

5. 靶向PI3K/Akt通路的治疗策略

在调节细胞能量转换、增殖行为及生物活性维系的诸多通路体系中,PI3K-Akt相关信号网络通常被视为一条关键的核心纵向监控链。且有实际情况表明,此类信号支路的异常变化与非酒精性脂肪变性疾病进展存在着明显关联[51]

PI3K类酶活调控剂的核心作用机制,是通过与PI3Kα、PI3Kβ、PI3Kγ、PI3Kδ亚型的p110亚基等磷脂酰肌醇激酶催化亚基中的ATP结合口袋特异性结合,形成稳定的复合物以竞争性抑制ATP结合,进而直接阻断PI3K介导的磷脂酰肌醇向磷脂酰肌醇-3-磷酸、磷脂酰肌醇-3,4-二磷酸及磷脂酰肌醇-3,4,5-三磷酸的磷酸化级联反应,最终导致下游包括Akt1、Akt2、Akt3亚型的Akt蛋白的磷酸化激活受阻,其介导的细胞存活、代谢调控等信号级联被显著抑制[52]。在PI3K抑制剂的临床前研究中,Idelalisib作为一款选择性PI3Kδ亚型抑制剂,在通过高脂饮食联合四氯化碳诱导建立的慢性肝功能障碍模型小鼠中的干预实验显示,经每日50 mg/kg剂量灌胃处理4周后,小鼠肝组织中脂质生成关键调控因子固醇调节元件结合蛋白-1c的mRNA表达水平较模型对照组降低,其下游靶基因脂肪酸合成酶的蛋白表达水平降低;同时,肝组织匀浆中三酰甘油含量由模型组的较高水平降至较低水平,肝小叶内脂肪空泡数量显著减少,但该药物对调控肝脏代谢的PI3Kα等PI3K其他亚型无明显抑制作用,且在高剂量处理时出现小鼠外周血淋巴细胞计数下降的免疫抑制倾向[53]。然而,早期研发的非选择性PI3K抑制剂——第一代泛PI3K抑制剂Buparlisib存在明显的亚型选择性缺陷,其对PI3Kα、PI3Kβ、PI3Kγ、PI3Kδ四种亚型的半数抑制浓度均处于较低水平范围内,缺乏亚型区分能力。临床前及I期临床试验数据显示,这类药物在干预肝脏疾病时,常因抑制PI3Kα亚型,影响胰岛素信号调控,最终导致血糖稳态失衡;且受试者空腹血糖较基线升高,糖化血红蛋白也相应升高;同时,因抑制PI3Kγ、PI3Kδ亚型,影响免疫细胞活化调控,引发综合免疫功能下降,临床表现为外周血CD4⁺T细胞计数减少,呼吸道感染发生率增加[54]

针对上述问题,新一代PI3K亚型选择性抑制剂成为研发焦点,这类药物通过优化分子结构,实现对特定PI3K亚型的精准调控。例如,选择性PI3Kα抑制剂Alpelisib的衍生物在小鼠非酒精性脂肪性肝病模型中的研究表明,该化合物对PI3Kα的半数抑制浓度为较低水平,而对PI3Kδ、PI3Kγ的半数抑制浓度均为较高水平;经一定剂量腹腔注射处理8周后,模型小鼠肝组织中三酰甘油含量显著降低,肝纤维化标志物α-平滑肌肌动蛋白的表达水平也相应降低,且血糖波动幅度小,对小鼠空腹血糖及胰岛素敏感性无显著影响,体现出良好的肝脏靶向性与安全性[55]

除PI3K抑制剂外,Akt通路靶向干预药物也在逐步推进。这类药物主要通过两种作用模式发挥功效:一是针对Akt蛋白的PH结构域,通过小分子化合物与PH结构域结合,阻止Akt向细胞膜募集并与磷脂酰肌醇-3,4,5-三磷酸结合,从而抑制其磷酸化激活;二是针对Akt的激酶催化结构域,通过竞争性抑制ATP结合,直接阻断Akt对下游底物的磷酸化作用。两种干预方式最终均会导致下游哺乳动物雷帕霉素靶蛋白复合物1、糖原合成酶激酶-3等关键信号节点的活性受抑,其中mTORC1活性降低可减少肝脏脂质合成相关蛋白的表达,GSK-3活性受抑则可促进糖原合成,协同改善肝脏代谢紊乱[56]

在Akt抑制剂的临床研究中,一种选择性Akt1/Akt2抑制剂MK-2206联合胰岛素增敏剂二甲双胍的II期临床试验结果显示,在五十多例非酒精性脂肪性肝炎患者中,经12周联合治疗后,采用磁共振波谱检测的肝内脂肪含量较基线平均降低28.6%,其中32例患者的IHL降低幅度 ≥ 30%;但在安全性评估中,18例患者出现以痤疮样皮疹为主的短暂性皮肤不适,12例患者出现恶心、腹泻等轻中度消化道应激反应。目前,以开发缓释制剂降低血药浓度波动和调整与二甲双胍的给药间隔等给药工艺优化及联合用药方案的调整已成为后续研究重点[57]

由于PI3K/Akt通路的复杂网络特性,联合靶向治疗成为突破单药局限的重要方向,有临床前研究表明,PI3K抑制剂与PPARα激动剂联用可协同增强脂肪酸氧化,并且对抑制脂质合成也能发挥较好作用[58]

6. 总结与展望

NAFLD发病机制中,PI3K/Akt分子级联体系居于十分重要的地位,其对病理进展层面起着潜移默化且复杂的影响作用。在胰岛素敏感性调节方面,正常情况下此信号体系活跃时,对葡萄糖摄入具有推动意义,同时维持血糖状态相对稳定。反观NAFLD背景下,PI3K/Akt相关传导网络遭受障碍,则可见胰岛素应答能力降低现象更加明显。实际情况表明,在炎症反应及氧化刺激管控方面,这种极其完备繁复的分子通路若能处于平衡状态,将有利于减少促炎因子外排、提升细胞抗氧化性能;但当该系统紊乱以后,常会诱导炎性过程骤增,并引起一系列氧损伤后果。而在肝组织纤维演变阶段,异常兴奋激活的PI3K/Akt调控轴可以间接促进肝内星形细胞呈强烈活化态度,导致细胞外基质过量累积,纤维化速度因此加快。这类表现说明,研究取向要聚焦各环节精准调剂,从而有助于研发目标更明确、副效用更可控的新型药物。还需不断拓展PI3K/Akt及其与多套生物信号交互关系,全方位解析NAFLD这一疾病背后的高阶分子网络,为联合干预提供理论支撑。除此之外,有关针对PI3K/Akt信号维修或修饰的新手法,给NAFLD治疗方向带来了焕然一新的希望,也增加了患者康复概率。

参考文献

[1] 季敬, 姜昊, 彭娇, 等. 基于网络药理学和实验验证探讨降脂理肝汤治疗非酒精性脂肪肝的作用机制[J]. 中国药理学通报, 2025, 41(2): 356-364.
[2] Fan, Y., Zhang, S., Wang, Y., Wang, H., Li, H. and Bai, L. (2025) Inter-Organ Metabolic Interaction Networks in Non-Alcoholic Fatty Liver Disease. Frontiers in Endocrinology, 15, Article 1494560. [Google Scholar] [CrossRef] [PubMed]
[3] Cheng, Y., Su, J., Wang, X., Huang, R., Zhao, Z., Tian, K., et al. (2025) Associations between Brominated Flame Retardants Exposure and Non-Alcoholic Fatty Liver Disease: Mediation Analysis in the NHANES. Ecotoxicology and Environmental Safety, 290, Article ID: 117762. [Google Scholar] [CrossRef] [PubMed]
[4] 卓莉莉, 瞿欢佳, 张秋玲. 2型糖尿病与肥胖对纤维化4指数筛查非酒精性脂肪性肝病早期肝纤维化影响的研究[J]. 中国全科医学, 2025, 28(11): 1354-1360.
[5] Kyhl, L.K., Nordestgaard, B.G., Tybjærg-Hansen, A., Smith, G.D. and Nielsen, S.F. (2025) VLDL Triglycerides and Cholesterol in Non-Alcoholic Fatty Liver Disease and Myocardial Infarction. Atherosclerosis, 401, Article ID: 119094. [Google Scholar] [CrossRef] [PubMed]
[6] Luo, S., Lu, Z., Wang, L., Li, Y., Zeng, Y. and Lu, H. (2025) Hepatocyte HIF-2α Aggravates NAFLD by Inducing Ferroptosis through Increasing Extracellular Iron. American Journal of Physiology-Endocrinology and Metabolism, 328, E92-E104. [Google Scholar] [CrossRef] [PubMed]
[7] He, Y., Zhang, C., Wu, S., Li, K., Zhang, S., Tian, M., et al. (2025) Central NUCB2/Nesfatin-1 Signaling Ameliorates Liver Steatosis through Suppression of Endoplasmic Reticulum Stress in the Hypothalamus. Metabolism, 162, Article ID: 156046. [Google Scholar] [CrossRef] [PubMed]
[8] Li, Y., Li, W., Zhu, X., Xu, N., Meng, Q., Jiang, W., et al. (2024) VEGFB Ameliorates Insulin Resistance in NAFLD via the PI3K/AKT Signal Pathway. Journal of Translational Medicine, 22, Article No. 976. [Google Scholar] [CrossRef] [PubMed]
[9] Liu, T., Sui, M., Tian, M., Wu, N., Zhao, S., Wang, Y., et al. (2025) Sulfonated Albumin from Hepatocytes Accelerates Liver Fibrosis in Nonalcoholic Fatty Liver Disease through Endoplasmic Reticulum Stress. Free Radical Biology and Medicine, 228, 150-162. [Google Scholar] [CrossRef] [PubMed]
[10] Alabdul Razzak, I., Fares, A., Stine, J.G. and Trivedi, H.D. (2024) The Role of Exercise in Steatotic Liver Diseases: An Updated Perspective. Liver International, 45, e16220. [Google Scholar] [CrossRef] [PubMed]
[11] Zhang, J., Yuan, Y., Gao, X., et al. (2025) Scopoletin Ameliorates Hyperlipidemia and Hepatic Steatosis via AMPK, Nrf2/HO-1 and NF-κB Signaling Pathways. Biochemical Pharmacology, 231, Article 116639. [Google Scholar] [CrossRef] [PubMed]
[12] Leite, J.S.M., Vilas-Boas, E.A., Takahashi, H.K., et al. (2025) Liver Lipid Metabolism, Oxidative Stress, and Inflammation in Glutamine-Supplemented ob/ob Mice. The Journal of Nutritional Biochemistry, 138, Article ID: 109842.
[13] Choi, S., Shin, M. and Kim, W. (2025) Targeting the DNA Damage Response (DDR) of Cancer Cells with Natural Compounds Derived from Panax Ginseng and Other Plants. Journal of Ginseng Research, 49, 1-11. [Google Scholar] [CrossRef] [PubMed]
[14] Nadel, G., Yao, Z., Hacohen-Lev-Ran, A., Wainstein, E., Maik-Rachline, G., Ziv, T., et al. (2024) Phosphorylation of PP2Ac by PKC Is a Key Regulatory Step in the PP2A-Switch-Dependent AKT Dephosphorylation That Leads to Apoptosis. Cell Communication and Signaling, 22, Article No. 154. [Google Scholar] [CrossRef] [PubMed]
[15] Iannucci, A., Caneparo, V., Raviola, S., Debernardi, I., Colangelo, D., Miggiano, R., et al. (2020) Toll-Like Receptor 4-Mediated Inflammation Triggered by Extracellular IFI16 Is Enhanced by Lipopolysaccharide Binding. PLOS Pathogens, 16, e1008811. [Google Scholar] [CrossRef] [PubMed]
[16] Zak, K.M., Waterson, A.G., Geist, L.,et al. (2025) Discovery of Small Molecules that Bind to Son of Sevenless 2 (SOS2). Journal of Medicinal Chemistry, 68, 2680-2693.
[17] Czyzyk, D., Yan, W., Messing, S., Gillette, W., Tsuji, T., Yamaguchi, M., et al. (2025) Structural Insights into Isoform-Specific RAS-PI3Kα Interactions and the Role of RAS in PI3Kα Activation. Nature Communications, 16, Article No. 525. [Google Scholar] [CrossRef] [PubMed]
[18] Yao, L., Zi, G., He, M., Xu, Y., Wang, L. and Peng, B. (2025) Asparagine Endopeptidase Regulates Lysosome Homeostasis via Modulating Endomembrane Phosphoinositide Composition. Cell Death & Disease, 15, Article No. 883. [Google Scholar] [CrossRef] [PubMed]
[19] Thakore, P., Yamasaki, E., Ali, S., Sanchez Solano, A., Labelle-Dumais, C., Gao, X., et al. (2023) PI3K Block Restores Age-Dependent Neurovascular Coupling Defects Associated with Cerebral Small Vessel Disease. Proceedings of the National Academy of Sciences of the United States of America, 120, e2306479120. [Google Scholar] [CrossRef] [PubMed]
[20] Grzymajlo, K., El Hafny‐Rahbi, B. and Kieda, C. (2023) Tumour Suppressor PTEN Activity Is Differentially Inducible by Myo‐Inositol Phosphates. Journal of Cellular and Molecular Medicine, 27, 879-890. [Google Scholar] [CrossRef] [PubMed]
[21] Yang, B., Yang, R., Zhang, X., Wang, W. and Kan, J. (2025) Hovenia dulcis (Guaizao) Polysaccharide Ameliorates Hyperglycemia through Multiple Signaling Pathways in Rats with Type 2 Diabetes Mellitus. International Journal of Biological Macromolecules, 285, Article ID: 138338. [Google Scholar] [CrossRef] [PubMed]
[22] Shan, B., Zhao, C., Peng, C., Miao, Y., Lei, S., Zhao, L., et al. (2025) Theabrownin from Pu-Erh Tea Attenuated High-Fat Diet-Induced Metabolic Syndrome in Rat by Regulating MicroRNA and Affecting Gut Microbiota. International Journal of Biological Macromolecules, 285, Article ID: 138368. [Google Scholar] [CrossRef] [PubMed]
[23] Milosevic, K., Milosevic, A., Stevanovic, I., Zivkovic, A., Laketa, D., Janjic, M.M., et al. (2025) Agmatine Suppresses Glycolysis via the Pi3k/Akt/mTOR/HIF‐1α Signaling Pathway and Improves Mitochondrial Function in Microglia Exposed to Lipopolysaccharide. BioFactors, 51, e2149. [Google Scholar] [CrossRef] [PubMed]
[24] Guerau-de-Arellano, M., Piedra-Quintero, Z.L. and Tsichlis, P.N. (2022) Akt Isoforms in the Immune System. Frontiers in Immunology, 13, Article 990874. [Google Scholar] [CrossRef] [PubMed]
[25] Fu, S., Gong, X., Liang, K., Ding, K., Qiu, L., Cen, H., et al. (2024) KLF3 Impacts Insulin Sensitivity and Glucose Uptake in Skeletal Muscle. American Journal of Physiology-Cell Physiology, 327, C1219-C1235. [Google Scholar] [CrossRef] [PubMed]
[26] Huuki-Myers, L.A., Montgomery, K.D., Kwon, S.H., et al. (2023) Data-Driven Identification of Total RNA Expression Genes for Estimation of RNA Abundance in Heterogeneous Cell Types Highlighted in Brain Tissue. Genome Biology, 24, Article No. 233. [Google Scholar] [CrossRef] [PubMed]
[27] Shi, X., Wang, X., Jin, L., Halakivi-Clarke, L., Clarke, R., Neuwald, A.F., et al. (2025) Bayesian Identification of Differentially Expressed Isoforms Using a Novel Joint Model of RNA-Seq Data. PLOS Computational Biology, 21, e1012750. [Google Scholar] [CrossRef] [PubMed]
[28] Leroux, A.E. and Biondi, R.M. (2023) The Choreography of Protein Kinase PDK1 and Its Diverse Substrate Dance Partners. Biochemical Journal, 480, 1503-1532. [Google Scholar] [CrossRef] [PubMed]
[29] Xiang, C., Chen, L., Zhu, S., Chen, Y., Huang, H., Yang, C., et al. (2024) CRLF1 Bridges AKT and mTORC2 through SIN1 to Inhibit Pyroptosis and Enhance Chemo-Resistance in Ovarian Cancer. Cell Death & Disease, 15, Article No. 662. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, W., Tan, J., Liu, X., Guo, W., Li, M., Liu, X., et al. (2024) Author Correction: Cytoplasmic Endonuclease G Promotes Nonalcoholic Fatty Liver Disease via mTORC2-AKT-ACLY and Endoplasmic Reticulum Stress. Nature Communications, 15, Article No. 7167. [Google Scholar] [CrossRef] [PubMed]
[31] Lin, B., Zhou, Y., Huang, Z., Ma, M., Qi, M., Jiang, Z., et al. (2024) GPR34 Senses Demyelination to Promote Neuroinflammation and Pathologies. Cellular & Molecular Immunology, 21, 1131-1144. [Google Scholar] [CrossRef] [PubMed]
[32] Xu, J., Peng, Q., Cai, J., Shangguan, J., Su, W., Chen, G., et al. (2024) The Schwann Cell-Specific G-Protein Gαo (Gnao1) Is a Cell-Intrinsic Controller Contributing to the Regulation of Myelination in Peripheral Nerve System. Acta Neuropathologica Communications, 12, Article No. 24. [Google Scholar] [CrossRef] [PubMed]
[33] Jin, J.R., Gogvadze, E., Xavier, A.R., Bohnacker, T., Voelzmann, J. and Wymann, M.P. (2020) PI3Kγ Regulatory Protein P84 Determines Mast Cell Sensitivity to Ras Inhibition—Moving Towards Cell Specific PI3K Targeting? Frontiers in Immunology, 11, Article 585070. [Google Scholar] [CrossRef] [PubMed]
[34] Shan, B., Zhao, C., Peng, C., Miao, Y., Lei, S., Zhao, L., et al. (2025) Theabrownin from Pu-Erh Tea Attenuated High-Fat Diet-Induced Metabolic Syndrome in Rat by Regulating microRNA and Affecting Gut Microbiota. International Journal of Biological Macromolecules, 285, Article ID: 138368. [Google Scholar] [CrossRef] [PubMed]
[35] Liu, J., Wang, X., Zhu, Y., Deng, H., Huang, X., Jayavanth, P., et al. (2023) Theabrownin from Dark Tea Ameliorates Insulin Resistance via Attenuating Oxidative Stress and Modulating IRS-1/PI3K/Akt Pathway in HepG2 Cells. Nutrients, 15, Article 3862. [Google Scholar] [CrossRef] [PubMed]
[36] Chen, W., Sun, M., Sun, Y., Yang, Q., Gao, H., Li, L., et al. (2024) Proteasome Inhibition Induces Apoptosis through Simultaneous Inactivation of MCL-1/BCL-XL by NOXA Independent of CHOP and JNK Pathways. Toxicology, 508, Article ID: 153906. [Google Scholar] [CrossRef] [PubMed]
[37] Liang, M., Huo, M., Guo, Y., Zhang, Y., Xiao, X., Xv, J., et al. (2022) Aqueous Extract of Artemisia Capillaris Improves Non-Alcoholic Fatty Liver and Obesity in Mice Induced by High-Fat Diet. Frontiers in Pharmacology, 13, Article 1084435. [Google Scholar] [CrossRef] [PubMed]
[38] Wu, Y., Yan, Q., Yue, S., Pan, L., Yang, D., Tao, L., et al. (2024) NUP85 Alleviates Lipid Metabolism and Inflammation by Regulating PI3K/AKT Signaling Pathway in Nonalcoholic Fatty Liver Disease. International Journal of Biological Sciences, 20, 2219-2235. [Google Scholar] [CrossRef] [PubMed]
[39] 胡朝妙, 廖晗禹, 姜盛铭, 等. 玉屏风散调控IRS/PI3K/Akt通路对2型糖尿病大鼠肝脏胰岛素抵抗的作用机制[J]. 中国中药杂志, 2024, 49(12): 3280-3287.
[40] Zhang, H., Chen, C., Ding, L., Shi, H., Wang, C., Xue, C., et al. (2020) Sea Cucumbers-Derived Sterol Sulfate Alleviates Insulin Resistance and Inflammation in High-Fat-High-Fructose Diet-Induced Obese Mice. Pharmacological Research, 160, Article ID: 105191. [Google Scholar] [CrossRef] [PubMed]
[41] Dong, J., Liang, Q., Niu, Y., Jiang, S., Zhou, L., Wang, J., et al. (2020) Effects of Nigella Sativa Seed Polysaccharides on Type 2 Diabetic Mice and Gut Microbiota. International Journal of Biological Macromolecules, 159, 725-738. [Google Scholar] [CrossRef] [PubMed]
[42] Yang, F., Zhang, Y., Ren, H., Wang, J., Shang, L., Liu, Y., et al. (2019) Ischemia Reperfusion Injury Promotes Recurrence of Hepatocellular Carcinoma in Fatty Liver via ALOX12-12HETE-GPR31 Signaling Axis. Journal of Experimental & Clinical Cancer Research, 38, Article No. 489. [Google Scholar] [CrossRef] [PubMed]
[43] Jiang, Y., Luo, P., Cao, Y., Peng, D., Huo, S., Guo, J., et al. (2024) The Role of STAT3/VAV3 in Glucolipid Metabolism during the Development of HFD-Induced MAFLD. International Journal of Biological Sciences, 20, 2027-2043. [Google Scholar] [CrossRef] [PubMed]
[44] Moreno, E., Matondo, A.B., Bongiovanni, L., van de Lest, C.H.A., Molenaar, M.R., Toussaint, M.J.M., et al. (2022) Inhibition of Polyploidization in PTEN‐Deficient Livers Reduces Steatosis. Liver International, 42, 2442-2452. [Google Scholar] [CrossRef] [PubMed]
[45] Choi, W., Kim, H.S., Kim, D., Hong, Y.D., Kim, H., Kim, J.H., et al. (2025) Ethanol Extract of Lymphanax with Gypenoside 17 and Ginsenoside Re Exerts Anti-Inflammatory Properties by Targeting the AKT/NF-κB Pathway. Journal of Ginseng Research, 49, 22-33. [Google Scholar] [CrossRef] [PubMed]
[46] Wang, X., Cao, S., Huang, Y., Li, L., Xu, D. and Liu, L. (2024) Salidroside Alleviates Cholestasis-Induced Liver Fibrosis by Inhibiting Hepatic Stellate Cells via Activation of the PI3K/AKT/GSK-3β Signaling Pathway and Regulating Intestinal Flora Distribution. Frontiers in Pharmacology, 15, Article 1396023. [Google Scholar] [CrossRef] [PubMed]
[47] Wang, S., Ding, Q., Xiu, A., Xia, Y., Wang, G. and Zhang, C. (2023) Upregulation of ATG9b by Propranolol Promotes Autophagic Cell Death of Hepatic Stellate Cells to Improve Liver Fibrosis. Journal of Cellular and Molecular Medicine, 28, e18047. [Google Scholar] [CrossRef] [PubMed]
[48] Kang, K., Park, S., Rho, S.B. and Lee, J. (2008) Tissue Inhibitor of Metalloproteinases-3 Interacts with Angiotensin II Type 2 Receptor and Additively Inhibits Angiogenesis. Cardiovascular Research, 79, 150-160. [Google Scholar] [CrossRef] [PubMed]
[49] Zhang, H., Cai, D. and Bai, X. (2020) Macrophages Regulate the Progression of Osteoarthritis. Osteoarthritis and Cartilage, 28, 555-561. [Google Scholar] [CrossRef] [PubMed]
[50] Riaz, F., Chen, Q., Lu, K., Osoro, E.K., Wu, L., Feng, L., et al. (2021) Inhibition of miR‐188‐5p Alleviates Hepatic Fibrosis by Significantly Reducing the Activation and Proliferation of HSCS through PTEN/PI3K/AKT Pathway. Journal of Cellular and Molecular Medicine, 25, 4073-4087. [Google Scholar] [CrossRef] [PubMed]
[51] Xu, H., Zhao, Q., Song, N., Yan, Z., Lin, R., Wu, S., et al. (2020) AdipoR1/AdipoR2 Dual Agonist Recovers Nonalcoholic Steatohepatitis and Related Fibrosis via Endoplasmic Reticulum-Mitochondria Axis. Nature Communications, 11, Article No. 5807. [Google Scholar] [CrossRef] [PubMed]
[52] Jhanwar-Uniyal, M., Zeller, S.L., Spirollari, E., Das, M., Hanft, S.J. and Gandhi, C.D. (2024) Discrete Mechanistic Target of Rapamycin Signaling Pathways, Stem Cells, and Therapeutic Targets. Cells, 13, Article 409. [Google Scholar] [CrossRef] [PubMed]
[53] Martucci, N.J., Stoops, J., Bowen, W., Orr, A., Cotner, M., Michalopoulos, G.K., et al. (2024) A Novel Role for the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Delta Isoform in Hepatocellular Proliferation. The American Journal of Pathology, 194, 1511-1527. [Google Scholar] [CrossRef] [PubMed]
[54] De, S.K. (2024) Leniolisib: A Novel Treatment for Activated Phosphoinositide-3 Kinase Delta Syndrome. Frontiers in Pharmacology, 15, Article 1337436. [Google Scholar] [CrossRef] [PubMed]
[55] Olayinka-Adefemi, F., Hou, S. and Marshall, A.J. (2023) Dual Inhibition of Phosphoinositide 3-Kinases Delta and γ Reduces Chronic B Cell Activation and Autoantibody Production in a Mouse Model of Lupus. Frontiers in Immunology, 14, Article 1115244. [Google Scholar] [CrossRef] [PubMed]
[56] Guo, Z., Li, Z., Guo, J., Gan, L., Mo, H., Zhang, J., et al. (2024) A N7-Methylguanosine Modified Circular RNA, Circipp2a2, Promotes Malignant Behaviors in Hepatocellular Carcinoma by Serving as a Scaffold in Modulating the Hornerin/PI3K/AKT/GSK3β Axis. Cell Death & Disease, 15, Article No. 868. [Google Scholar] [CrossRef] [PubMed]
[57] 沙博文, 王曾, 周锦仁, 等. 洛铂对肝癌肿瘤免疫及PD-L1表达的影响[J]. 南京医科大学学报(自然科学版), 2021, 41(4): 503-508.
[58] Shen, B., Feng, H., Cheng, J., Li, Z., Jin, M., Zhao, L., et al. (2020) Geniposide Alleviates Non‐Alcohol Fatty Liver Disease via Regulating Nrf2/AMPK/mTOR Signalling Pathways. Journal of Cellular and Molecular Medicine, 24, 5097-5108. [Google Scholar] [CrossRef] [PubMed]