微塑料促进结直肠癌的发生发展
Microplastics Promote the Occurrence and Development of Colorectal Cancer
DOI: 10.12677/acm.2025.15102846, PDF, HTML, XML,   
作者: 康逸群, 詹 瑾:赣南医科大学第一临床医学院,江西 赣州;曾涵仪:赣南医科大学第一附属医院生殖医学科,江西 赣州;黄海涛, 崔 超*:赣南医科大学第一附属医院胃肠外科,江西 赣州
关键词: 微塑料结直肠癌肠道屏障氧化应激生物膜Microplastics Colorectal Cancer Intestinal Barrier Oxidative Stress Biofilm
摘要: 自20世纪初高分子合成技术突破以来,塑料制品因其卓越的物理化学特性在全球范围内获得广泛应用。然而,伴随全球塑料年产量攀升至3.59亿吨,由其衍生的环境污染已成为21世纪最严峻的生态挑战之一。值得注意的是,中国作为全球最大的塑料生产国,其环境微塑料污染负荷与人群健康风险呈现显著的地域相关性。近年流行病学研究揭示,自塑料工业化普及后,结直肠癌(Colorectal Cancer, CRC)发病率呈现与塑料制品使用率同步增长的趋势,提示环境微塑料暴露与肠道肿瘤发生可能存在潜在关联机制。我们探讨了微塑料作为这一变化的驱动因素可能发挥的作用,揭示微塑料的致癌效应:微塑料破坏肠道保护功能;微塑料通过干扰菌群、破坏免疫屏障导致肿瘤免疫逃逸;微塑料诱发持续性氧化损伤,进而驱动促癌通路的异常活化;微塑料作为“特洛伊木马”成为毒物载体,与微生物、有机污染物、重金属产生协同致癌效应;最后是微塑料影响结直肠癌患者的预后转归。本综述将为建立基于微塑料暴露的CRC风险预警模型提供方向,并为制定环境健康综合防控策略开辟新路径。
Abstract: Since the breakthrough in polymer synthesis technology in the early 20th century, plastic products have been widely adopted globally due to their exceptional physicochemical properties. However, with annual plastic production soaring to 359 million tons worldwide, plastic-derived environmental pollution has become one of the most severe ecological challenges of the 21st century. Notably, as the largest plastic producer globally, China exhibits significant regional correlations between environmental microplastic pollution levels and human health risks. Recent epidemiological studies have revealed a synchronous increase in colorectal cancer (CRC) incidence and plastic product usage since the industrialization and popularization of plastics, suggesting a potential mechanistic link between environmental microplastic exposure and intestinal carcinogenesis. We explore the role of microplastics as a driving factor behind this trend and elucidate their carcinogenic effects: microplastics compromise intestinal protective functions; disrupt microbiota and impair immune barriers, leading to tumor immune escape; induce persistent oxidative damage, thereby activating pro-carcinogenic pathways; act as a “Trojan horse” by carrying toxicants such as microorganisms, organic pollutants, and heavy metals, resulting in synergistic carcinogenic effects; and ultimately influence the prognosis and outcomes of CRC patients. This review aims to provide direction for establishing a microplastic exposure-based early warning model for CRC risk and to pioneer new approaches for developing comprehensive environmental health prevention and control strategies.
文章引用:康逸群, 曾涵仪, 詹瑾, 黄海涛, 崔超. 微塑料促进结直肠癌的发生发展[J]. 临床医学进展, 2025, 15(10): 981-993. https://doi.org/10.12677/acm.2025.15102846

1. 引言

结直肠癌作为消化系统恶性肿瘤的典型代表,其疾病负担正以惊人的速度全球蔓延。最新统计数据显示,CRC年新发病例已突破190万例,预计至2040年将形成320万例/年的流行病学态势,伴随约160万例的年死亡病例[1]。这种发病率的时空分布特征与全球塑料污染版图存在显著重叠,促使我们重新审视环境污染物在肿瘤发生中的驱动作用。微塑料(<5 μm)已通过大气沉降、食物链富集等途径实现生物圈全域渗透,研究显示,人类通过饮食、呼吸等途径每日摄入数百至数千颗微塑料颗粒,其中胃肠道是其主要的蓄积场所[2]。自2018年首次在人粪便样本中检出9种聚合物类型,标志着微塑料已完成从环境污染物到人体内源性暴露因子的身份转变[3]。尽管现有研究已证实微塑料暴露可导致肠道通透性增加、菌群失调等病理改变[4],但其促癌机制仍存在较大空白亟待解决,本文描述的几种可能存在的致癌机制:首先,微塑料通过其物理化学特性破坏肠道粘液层、降低肠道保护功能;其次微塑料通过干扰不同菌群的定植和代谢,削弱了免疫调节功能,为肿瘤的发生和进展创造了免疫抑制微环境;在分子层面,微塑料诱导的氧化应激通过驱动癌相关基因的异常表达;作为复合污染体系的核心组分,微塑料联合有机污染物、重金属产生致癌协同效应;最后探讨了微塑料提高结直肠癌患者对化疗药物的耐药性并影响患者的预后转归。本文希望通过系统阐明微塑料暴露如何促进CRC发生发展,为环境致癌物的早期筛查和精准干预提供科学依据。

2. 微塑料

2.1. 微塑料的基本结构及特性

塑料制品在紫外线辐射、机械力和生物活动的共同作用下,逐渐被分解成粒径范围从微米级(<5 mm)到纳米级(1~100 nm)不等的微塑料[5]。微塑料的高比表面积和多孔结构使其对有机污染物和重金属有强吸附性[6],且由于化学性质稳定,难以自然降解,导致微塑料在环境中长期存留,其表面会因紫外线、氧化或微生物作用发生老化而改变吸附能力和毒性[7]。此外低密度微塑料易通过大气传输[8],而高密度颗粒更易在土壤或水体中沉降[9]。这意味其传播范围更广,影响程度更深。微塑料的结构和特性使其在环境中表现出复杂的生态效应,这些效应不仅取决于其自身理化性质,还与环境介质和共存污染物的相互作用密切相关。

2.2. 微塑料的来源及接触途径

微塑料的来源可分为两种主要类型:一级来源和二级来源。初级微塑料是为特定用途而制造的,例如化妆品和个人护理产品中的微珠[10],而次级微塑料是较大塑料制品通过物理、化学和生物过程降解而产生的,包括由于紫外线辐射、环境因素、机械力[11] [12]。越来越多的证据表明,微塑料存在于人体组织中。有研究以美国人的饮食为例,估计人类每年的微塑料消费量范围为39,000~52,000个颗粒,具体的数值因年龄和性别而有差异。如果考虑到呼吸吸入的量,这些值将增加到74,000和121,000。此外,通过饮用瓶装水达到建议饮水量的人每年可能会多摄入90,000个微塑料,而仅饮用自来水的人每年可多摄入4000个微塑料。然而,鉴于方法学和数据的局限性,这些数值有被低估的可能[13]。研究显示人类肺部检测到了12种微塑料,主要聚合物是聚氯乙烯(PVC) [14]。此外,所有动脉样本中均检测到微塑料,平均浓度较高,为118.66 ± 53.87 μg/g组织重量,浓度分布显示微塑料在动脉粥样硬化斑块中可能积累更多,且以PET是最常见类型[15]。人类胎盘组织检出的微塑料,主要为粒径介于5至10 μm的球形或不规则碎片[16],值得注意的是,不仅人体粪便样本中同样存在微塑料,在胎粪(新生儿第一次粪便)样本中检测到八种目标微塑料,反映了母体和胎儿暴露的可能性[17]-[19]。这些研究结果表明,微塑料已经暴露于人体并可能长期在体内积累。Du等人[20]指出,当微塑料污染物与生物体直接接触时;通常会导致短期急性毒性。当微塑料和污染物融入食物网时,就会发生间接接触,导致慢性器官毒性,这将极易诱发消化系毒性。人类接触微塑料的途径包括摄入、吸入和皮肤接触。

2.2.1. 经消化道摄入途径

摄入是最主要途径[21],基于食物消费模型估算,人类年均摄入量可达39,000至52,000颗粒[22]。现有研究在多种食品中检出微塑料,包括贻贝[23]、商品鱼类[24]、食盐[25]、食糖[26]和瓶装水[27]。欧洲居民因食用双壳贝类年均暴露量约11,000颗粒[28];而食盐摄入导致的年暴露量在欧洲和中国分别为37与100颗粒[25] [29]。食品中微塑料的存在引起了人们对食物网内潜在生物累积和生物放大的担忧,这最终可能影响人类健康[12] [30]

2.2.2. 经呼吸道吸入途径

早期研究显示,室外空气中微塑料浓度为0.3~1.5个/立方米,室内浓度可达0.4~56.5个/立方米(其中33%为聚合物),包含可吸入尺寸颗粒[31]。据估算,个体每日吸入量约为26~130个[32];而基于人体模型采样,轻度活动的男性日吸入量可达272个[33]。职业暴露研究揭示,合成纺织、植绒及氯乙烯/聚氯乙烯行业工人因长期吸入微塑料,出现气道病变和间质性肺病相关症状,其损伤已在动物模型中成功复现[34] [35]。人类肺癌组织活检中亦检出250 μm塑料纤维[36],虽未确立因果关系,但提示高浓度暴露或高易感人群可能面临呼吸系统损伤风险。

2.2.3. 经皮肤接触途径

皮肤接触虽然研究较少,但也是一种潜在途径,研究推测纳米塑料(<100 nm)可能穿透皮肤屏障[37],聚酯与聚丙烯的手术缝合线在植入21天后更容易引发炎症,且伴随纤维包裹形成[38];目前关于该途径的研究虽少,但由于皮肤广泛暴露于粉尘、合成纤维和化妆品微珠等塑料颗粒及外科手术中常用可吸收缝合线的现状,探究微塑料对于皮肤接触毒性仍具有重要意义。

3. 微塑料破坏肠道功能

3.1. 微塑料破坏黏液层

微塑料可通过物理摩擦或化学作用破坏肠道黏液层的完整性。实验表明,聚乙烯对苯二甲酸酯(PET)微塑料在小鼠模型中导致结肠黏液层变薄,杯状细胞数量显著减少,从而削弱黏液屏障的物理保护功能[39]。另有研究发现3 μm和10 μm的聚苯乙烯颗粒可显著减少HT29细胞(肠上皮细胞模型)中杯状细胞的比例,并下调黏蛋白基因(如MUC2、MUC5AC)的表达,导致黏液分泌不足[40]。微塑料长期诱导的肠道慢性炎症反应也加剧粘液层的破坏,导致黏液层持续变薄和功能退化,在连续4周暴露于聚苯乙烯微塑料的小鼠出现结肠隐窝结构异常,黏液分泌细胞再生能力下降,最终导致慢性肠炎和屏障功能衰竭[41];炎症导致的氧化应激也会损伤黏液层中的黏蛋白结构,降低其黏弹性和保护功能[42]。纳米级微塑料(50 nm PS-NPs)还可跨黏液层转运,可穿透黏液层直接接触肠上皮细胞,甚至通过胞吞作用进入血液循环,导致黏液屏障的局部缺陷[43]从而进一步影响黏液层的修复能力[44]

3.2. 微塑料影响肠道免疫功能

MPs还可引起肠道免疫功能失调。微塑料通过激活TLR-Myd88信号通路,上调溶菌酶(Lys)、集落刺激因子受体(CSF1R)等免疫相关基因引发肠道局部免疫过度反应,这种失调可能会损害免疫系统有效应对肿瘤的能力,从而可能促进癌症的发生和进展[45] [46]。通过连续灌胃小鼠模型研究发现,聚苯乙烯微纳塑料(PS-MNP)暴露显著抑制了肠系膜淋巴结中CD8+ T细胞的分化,并降低肠道分泌型免疫球蛋白A (sIgA)通过干扰肠道免疫微环境间接影响T细胞功能,提示免疫调节失衡可能与肿瘤免疫逃逸相关[4]。Yang等人通过细胞和动物实验验证纳米塑料(NPs)通过巨噬细胞溶酶体损伤激活IL-1β信号通路,驱动Th17细胞分化与Treg细胞扩增,并诱导T细胞耗竭,从而重塑结肠免疫抑制微环境并促进结直肠癌进展[47]

值得注意的是微塑料影响肠道免疫功能的更主要方式之一是改变肠道微生物群。摄入聚苯乙烯微塑料会导致有益细菌,例如厚壁菌门的细菌的减少,同时增加潜在有害的病原体,例如肠杆菌科和脱硫弧菌科[42] [48]。肠道菌群通过分解宿主无法代谢的膳食成分,包括膳食纤维和蛋白质残基,生成具有重要生理功能的生物活性物质:短链脂肪酸(SCFAs) [49]、芳香烃受体(AhR)配体[50]。其中,SCFAs (以乙酸、丙酸及丁酸为主)由厚壁菌门和拟杆菌门等特定菌群通过膳食纤维发酵产生,而AhR配体(吲哚类物质作为AhR内源性配体)则源于双歧杆菌等菌属对色氨酸的代谢转化。这两类代谢物共同维护肠上皮细胞间连接结构的完整性,揭示了肠道菌群代谢活性与屏障功能间的分子互作机制[51]-[53]。微塑料通过抑制产丁酸菌的丰度导致菌群代谢产物中的短链脂肪酸(SCFAs)水平显著降低[54],加剧肠道屏障完整性的破坏[55]。而PE MPs暴露条件下,AhR信号传导途径的活化程度呈现显著抑制特征,提示肠道微生物生成AhR内源性配体的功能可能被削弱[48],这种生物学效应可能与坦纳氏菌科(Tannerellaceae菌科)中有AhR配体合成特性的模式菌,狄氏副拟杆菌(Parabacteroides distasonis)的丰度降低存在潜在关联[56]。而研究证实,色氨酸代谢衍生的内源性AhR配体,如吲哚类化合物,不仅对肠黏膜屏障的结构完整性具有关键支撑作用,更在调控固有免疫细胞亚群分化、调节免疫应答阈值以及维持黏膜免疫网络动态平衡等方面发挥中枢调节功能[52] [57]-[59],AhR配体的下降也削弱了免疫调节功能,为肿瘤的发生和进展创造了免疫抑制微环境。

4. 微塑料诱导的氧化应激与信号级联通路激活

4.1. 微塑料诱导的氧化应激

有毒理学研究证实,氧化应激机制在微塑料(MPs)介导的生物毒性中具有核心地位[60] [61]。塑料颗粒被细胞吸收时,可改变细胞膜脂质排列,增加膜张力,同时表面自由基与磷脂分子发生氧化反应,导致膜孔隙率升高及通透性异常并显著增加细胞内ROS的产生[62]-[64]。如聚苯乙烯纳米塑料(PS-NPs)在人类肠道Caco-2细胞模型中通过阳离子表面特性诱导了ROS的大量积累,进而引发DNA氧化损伤[65];在结肠炎相关癌症(CAC)模型中,PS-NPs暴露导致肠道组织ROS升高,并伴随超氧化物歧化酶(SOD)、过氧化氢酶(CAT)等抗氧化酶活性异常[66],导致活性氧的大量积累不能被有效清除。

4.2. 微塑料诱导氧化应激激活信号级联反应

首先由微塑料诱导的大量累积的ROS可通过氧化应激致DNA损伤,尤其在结直肠癌的早期阶段,未修复的DNA损伤可能导致致癌性转化[67]。因此通过阐明微塑料(MPs)对肠道致癌的作用机制需系统解析ROS激活的信号级联通路(图1)。ROS触发的氧化应激可启动多维度信号传导系统,包括:① MAPKs超家族(含JNK、p38、ERK1/2亚型);② Nrf2/Keap1抗氧化通路;③ PI3K/Akt信号轴;④ TGF-β细胞分化调控通路。这些通路通过协同作用精确调控细胞周期进展、能量代谢稳态及程序性死亡等生物学事件[68]。ROS不仅作为MAPK通路的上游激活因子,还可通过调控下游激酶磷酸化水平放大其生物学效应[69]。根据上文所提及的微塑料可诱导肠道细胞ROS大量产生,而ROS异常激活调控MAPK信号通路,这不难推测出微塑料通过激活MAPK信号通路诱发肠道癌变[70]。实验证据显示,MPs的粒径参数显著影响MAPK通路激活强度——以轮虫(Brachionus plicatilis)为模型的研究发现,暴露于0.5 μm聚苯乙烯微球(浓度10 μg/mL,24小时)较6 μm颗粒能更显著上调MAPK相关效应蛋白表达,提示小粒径MPs具有更强的毒性介导能力[71]。而Balb/c小鼠接受1 mg/d剂量的5 µm MPs给药时[72],拟镖水蚤(Paracyclopina nana)暴露于0.5或6 µm粒径、20 µg/mL浓度的MPs环境时[73],上述受试对象也均呈现MAPK信号通路的显著激活现象。作为调控基因表达、蛋白合成、细胞增殖与凋亡的关键酶体系,MAPK家族通过三级磷酸化级联反应参与细胞内信号转导,微塑料暴露显著激活该通路为解释MPs毒性效应提供了新视角。

核因子E2相关因子2 (Nrf2)作为调控抗氧化反应元件(ARE)的核心转录因子,通过激活超氧化物歧化酶(SOD)、谷胱甘肽过氧化物酶(GPx)等抗氧化酶编码基因,发挥细胞氧化应激防御功能[74]。当微塑料(MPs)诱导的氧化应激激活MAPK信号通路时,会触发Nrf2/Keap1通路介导的ARE基因表达级联反应[75]。值得注意的是,尽管Nrf2/Keap1通路可上调相关的具有细胞保护效应的蛋白表达,但临床研究发现该通路的持续性激活与恶性肿瘤及不良预后存在显著相关性[76],这也提供了MPs暴露导致的氧化应激促进肿瘤转化进程的又一视角。

活性氧(ROS)的过量积累还可显著促进PI3K/AKT/mTOR信号通路的活化[77]。实验发现相较于对照组,微塑料处理组中PI3K、AKT和mTOR的磷酸化修饰程度呈现显著增强,提示该通路在纳米塑料暴露条件下呈现异常激活状态[66]。这一信号级联反应不仅参与氧化应激调控,还与脂肪酸代谢及DNA损伤修复密切相关[78]-[80],现已证实PI3K/Akt/mTOR通路的过度激活通过促进细胞增殖、抑制凋亡以及增强代谢适应能力驱动结直肠癌发展[81]。因此可推测出微塑料通过氧化应激过度激活PI3K/AKT/mTOR信号轴从而促进结直肠癌的发生发展。

在肿瘤发生起始阶段,TGF-β蛋白通过双重调控机制发挥抗肿瘤效应:一方面阻滞细胞周期进程,另一方面激活细胞程序性死亡[82]。Smad蛋白在TGF-β信号通路中属于中心介质,ROS深度参与TGF-β信号转导,通过调控Smad磷酸化状态,使肿瘤细胞逃脱TGF-β在癌变早期施加的增殖抑制效应,这一机制在上皮–间质转化(EMT)中尤为显著[83] [84]。EMT在癌症转移中起关键作用,在EMT进程中,上皮细胞表型发生显著转变,E-钙黏蛋白(E-cadherin)表达水平显著降低,同时伴随细胞连接复合体的动态重构——Zonula occludens (ZO)蛋白、密蛋白(claudins)及闭合素(occludin)发生空间分布改变[85]。这种细胞极性紊乱与细胞骨架重组共同驱动间充质相关转录程序的激活,促使基质金属蛋白酶(MMPs)等水解酶类表达上调[86]。上述分子事件协同打破细胞–基质间稳态,最终赋予癌细胞突破基底膜屏障的迁移侵袭能力,而CRC的发展也可能发生此类进程[87]。目前研究进展只在斑马鱼模型上通过微塑料暴露显著激活TGF-β信号通路[88],然而微塑料通过氧化应激激活TGF-β信号通路驱动CRC发生发展仍需得到进一步验证。

Figure 1. MPs trigger oxidative stress and activate associated signaling cascade networks

1. 微塑料(MPs)诱导氧化应激并激活相关信号级联反应

5. 微塑料的“特洛伊木马”效应

微塑料作为“特洛伊木马”可携带多种微生物和化学、金属“乘客”,显著增强其致癌潜力。其高度疏水的表面特性能够促进微生物黏附与定植,形成异质性生物膜结构,从而成为病原体和有害物质的传播载体[89]。生物膜为志贺菌属、副溶血性弧菌等致病菌提供附着位点,并通过水平基因转移(HGT)和垂直基因转移(VGT)加速抗生素抗性基因(ARGs)的扩散,诱导抗生素抗性细菌(ARB)的产生,延长致癌菌群在肠道的滞留时间,间接推动癌变进程[90]-[92]。例如,携带pks基因的大肠杆菌(pks + E. coli)可借助微塑料作为载体,在肠道粘液层受损后直接黏附于上皮细胞,持续释放基因毒性物质colibactin,引起DNA双链断裂和基因组不稳定,最终促进结直肠癌发生[93]-[95]。生物膜也可包裹微塑料并改变其表面性质,增强其在肠道内的滞留能力和与上皮细胞的接触机会,进一步增加局部致癌潜力[96]-[98]。除了生物性“乘客”,微塑料还可吸附重金属、多环芳烃(PAHs)等有机毒物,形成复合污染体系,在肠道中协同放大毒性效应。例如,吸附PAHs的微塑料可诱导DNA损伤和细胞突变,提高结直肠癌发病率[99] [100];纳米塑料与铜联合暴露可显著增加人结肠癌细胞(HCT-116)基因组不稳定性[101]。微塑料作为载体不仅提升这些有害物质的生物可利用性,还促进其进入组织深处[102]。流行病学研究表明,重金属暴露与结直肠癌发病率呈正相关[103],进一步证实了微塑料在结直肠癌中协同致癌作用。

6. 微塑料对结直肠癌治疗的阻碍

研究发现结直肠癌患者的肿瘤组织中的微塑料种类和分布比癌旁组织更复杂,由于结直肠癌组织中的Clathrin蛋白(一种参与内吞作用的关键蛋白)的高表达促进了MPs的主动摄取,且发现MPs的积累又与CEA、CA19-9和PDS水平呈正相关,进一步证实了MPs影响结直肠癌患者的生存及预后转归[104]-[106]。体外和体内实验还表明,MPs会增加CRC细胞的自噬水平,特别是通过激活mTOR/ULK1轴,导致保护性自噬增强,使得癌细胞对奥沙利铂等化疗药物产生耐药性[107],从而影响结直肠癌患者的治疗。

7. 结论

在本综述中,我们探讨了MPs削弱肠道保护屏障功能,为致癌因子渗透和慢性炎症提供微环境基础,诱导的菌群失调从而降低保护性代谢物水平引发免疫稳态失衡,促进肿瘤免疫逃逸。MPs通过诱导ROS过量累积,驱动MAPK、PI3K/AKT/mTOR、TGF-β促癌通路的异常激活,同时干扰Nrf2/Keap1抗氧化防御系统,导致DNA损伤修复失败与基因组不稳定性,指出了微塑料通过氧化应激诱导结直肠癌发生发展的研究空白;最后还描述了微塑料还与微生物、有机复合物、重金属形成协同致癌复合体放大致癌风险;结直肠癌组织中Clathrin蛋白的高表达促进了MPs的主动摄取,且微塑料通过上调保护性自噬降低结直肠癌患者化疗敏感性最终导致不良临床结局等几种潜在机制促进结直肠癌的发生发展。塑料制品已全面融入日常生活,其健康风险日益凸显,针对微塑料在结直肠癌中的具体作用,现有研究仍存在诸多空白,目前亟需推进系统性研究,明确其致病路径,并制定针对性防控策略以降低癌症风险及相关健康损害。

8. 挑战与空白

本文阐明的相关机制大部分集中于水生生物或啮齿类动物的短期实验,无法完全模拟人体复杂的生理环境及长期低剂量暴露效应[108];微塑料的毒性效应与其类型、尺寸、形状及浓度高度相关,但当前缺乏统一的毒性阈值标准,导致实验结果难以直接比较或外推至人体风险[109]。尽管在人体组织中发现微塑料,但直接关联健康结局的流行病学证据“仅是冰山一角”,缺乏大样本队列研究量化暴露与疾病关系[110]。未来需结合体外类器官模型进行长期追踪研究,明确微塑料在结直肠癌发生中的生理病理关系及相关分子机制。

NOTES

*通讯作者。

参考文献

[1] Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C.J., Laversanne, M., et al. (2022) Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from Globocan. Gut, 72, 338-344. [Google Scholar] [CrossRef] [PubMed]
[2] Liang, Y., Zhang, N., Wang, M., Liu, Y., Ma, L., Wang, Q. et al. (2023) Distributions and Trends of the Global Burden of Colorectal Cancer Attributable to Dietary Risk Factors over the Past 30 Years. Nutrients, 16, Article 132. [Google Scholar] [CrossRef] [PubMed]
[3] Zhang, Q., Xu, E.G., Li, J., Chen, Q., Ma, L., Zeng, E.Y., et al. (2020) A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 54, 3740-3751. [Google Scholar] [CrossRef] [PubMed]
[4] Zhang, Z., Xu, M., Wang, L., Gu, W., Li, X., Han, Z., et al. (2023) Continuous Oral Exposure to Micro-and Nanoplastics Induced Gut Microbiota Dysbiosis, Intestinal Barrier and Immune Dysfunction in Adult Mice. Environment International, 182, Article ID: 108353. [Google Scholar] [CrossRef] [PubMed]
[5] Casella, C. and Ballaz, S.J. (2024) Genotoxic and Neurotoxic Potential of Intracellular Nanoplastics: A Review. Journal of Applied Toxicology, 44, 1657-1678. [Google Scholar] [CrossRef] [PubMed]
[6] Li, M., Yu, H., Wang, Y., Li, J., Ma, G. and Wei, X. (2020) QSPR Models for Predicting the Adsorption Capacity for Microplastics of Polyethylene, Polypropylene and Polystyrene. Scientific Reports, 10, Article No. 14597. [Google Scholar] [CrossRef] [PubMed]
[7] Wang, H., Zhu, J., He, Y., Wang, J., Zeng, N. and Zhan, X. (2023) Photoaging Process and Mechanism of Four Commonly Commercial Microplastics. Journal of Hazardous Materials, 451, Article ID: 131151. [Google Scholar] [CrossRef] [PubMed]
[8] Brahana, P., Zhang, M., Nakouzi, E. and Bharti, B. (2024) Weathering Influences the Ice Nucleation Activity of Microplastics. Nature Communications, 15, Article No. 9579. [Google Scholar] [CrossRef] [PubMed]
[9] Kang, Q., Zhang, K., Dekker, S.C. and Mao, J. (2025) Microplastics in Soils: A Comprehensive Review. Science of the Total Environment, 960, Article ID: 178298. [Google Scholar] [CrossRef] [PubMed]
[10] Siddiqui, S.A., Singh, S., Bahmid, N.A., Shyu, D.J.H., Domínguez, R., Lorenzo, J.M., et al. (2023) Polystyrene Microplastic Particles in the Food Chain: Characteristics and Toxicity—A Review. Science of the Total Environment, 892, Article ID: 164531. [Google Scholar] [CrossRef] [PubMed]
[11] Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., et al. (2020) Microplastics Generated When Opening Plastic Packaging. Scientific Reports, 10, Article No. 4841. [Google Scholar] [CrossRef] [PubMed]
[12] Jansen, M.A.K., Barnes, P.W., Bornman, J.F., Rose, K.C., Madronich, S., White, C.C., et al. (2023) The Montreal Protocol and the Fate of Environmental Plastic Debris. Photochemical & Photobiological Sciences, 22, 1203-1211. [Google Scholar] [CrossRef] [PubMed]
[13] Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. and Dudas, S.E. (2020) Correction to Human Consumption of Microplastics. Environmental Science & Technology, 54, 10974-10974. [Google Scholar] [CrossRef] [PubMed]
[14] Amato-Lourenço, L.F., Carvalho-Oliveira, R., Júnior, G.R., dos Santos Galvão, L., Ando, R.A. and Mauad, T. (2021) Presence of Airborne Microplastics in Human Lung Tissue. Journal of Hazardous Materials, 416, Article ID: 126124. [Google Scholar] [CrossRef] [PubMed]
[15] Liu, S., Wang, C., Yang, Y., Du, Z., Li, L., Zhang, M., et al. (2024) Microplastics in Three Types of Human Arteries Detected by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). Journal of Hazardous Materials, 469, Article ID: 133855. [Google Scholar] [CrossRef] [PubMed]
[16] Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., et al. (2021) Plasticenta: First Evidence of Microplastics in Human Placenta. Environment International, 146, Article ID: 106274. [Google Scholar] [CrossRef] [PubMed]
[17] Zhang, J., Wang, L., Trasande, L. and Kannan, K. (2021) Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environmental Science & Technology Letters, 8, 989-994. [Google Scholar] [CrossRef
[18] Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., et al. (2019) Detection of Various Microplastics in Human Stool. Annals of Internal Medicine, 171, 453-457. [Google Scholar] [CrossRef] [PubMed]
[19] Li, J., Wang, K., Lin, Z., Zhu, M., Xu, S., Cui, Z., et al. (2025) Detection and Quantification of Microplastics in Meconium by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). Journal of Chromatography A, 1749, Article ID: 465868. [Google Scholar] [CrossRef] [PubMed]
[20] Du, J., Xu, S., Zhou, Q., Li, H., Fu, L., Tang, J., et al. (2020) A Review of Microplastics in the Aquatic Environmental: Distribution, Transport, Ecotoxicology, and Toxicological Mechanisms. Environmental Science and Pollution Research, 27, 11494-11505. [Google Scholar] [CrossRef] [PubMed]
[21] Galloway, T.S. (2015) Micro-and Nano-Plastics and Human Health. In: Bergmann, M., Gutow, L. and Klages, M., Eds., Marine Anthropogenic Litter, Springer, 343-366. [Google Scholar] [CrossRef
[22] Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. and Dudas, S.E. (2019) Human Consumption of Microplastics. Environmental Science & Technology, 53, 7068-7074. [Google Scholar] [CrossRef] [PubMed]
[23] Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., et al. (2016) Microplastics in Mussels along the Coastal Waters of China. Environmental Pollution, 214, 177-184. [Google Scholar] [CrossRef] [PubMed]
[24] Neves, D., Sobral, P., Ferreira, J.L. and Pereira, T. (2015) Ingestion of Microplastics by Commercial Fish off the Portuguese Coast. Marine Pollution Bulletin, 101, 119-126. [Google Scholar] [CrossRef] [PubMed]
[25] Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T.S. and Salamatinia, B. (2017) The Presence of Microplastics in Commercial Salts from Different Countries. Scientific Reports, 7, Article No. 46173. [Google Scholar] [CrossRef] [PubMed]
[26] Liebezeit, G. and Liebezeit, E. (2013) Non-Pollen Particulates in Honey and Sugar. Food Additives & Contaminants: Part A, 30, 2136-2140. [Google Scholar] [CrossRef] [PubMed]
[27] Oßmann, B.E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S.H. and Dicke, W. (2018) Small-Sized Microplastics and Pigmented Particles in Bottled Mineral Water. Water Research, 141, 307-316. [Google Scholar] [CrossRef] [PubMed]
[28] Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B. and Janssen, C.R. (2015) Microplastics Are Taken up by Mussels (Mytilus edulis) and Lugworms (Arenicola marina) Living in Natural Habitats. Environmental Pollution, 199, 10-17. [Google Scholar] [CrossRef] [PubMed]
[29] Yang, D., Shi, H., Li, L., Li, J., Jabeen, K. and Kolandhasamy, P. (2015) Microplastic Pollution in Table Salts from China. Environmental Science & Technology, 49, 13622-13627. [Google Scholar] [CrossRef] [PubMed]
[30] Meaza, I., Toyoda, J.H. and Wise Sr, J.P. (2021) Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Frontiers in Environmental Science, 8, Article 575614. [Google Scholar] [CrossRef] [PubMed]
[31] Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., et al. (2017) A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environmental Pollution, 221, 453-458. [Google Scholar] [CrossRef] [PubMed]
[32] Prata, J.C. (2018) Airborne Microplastics: Consequences to Human Health? Environmental Pollution, 234, 115-126. [Google Scholar] [CrossRef] [PubMed]
[33] Vianello, A., Jensen, R.L., Liu, L. and Vollertsen, J. (2019) Simulating Human Exposure to Indoor Airborne Microplastics Using a Breathing Thermal Manikin. Scientific Reports, 9, Article No. 8670. [Google Scholar] [CrossRef] [PubMed]
[34] Atis, S., Tutluoglu, B., Levent, E., Ozturk, C., Tunaci, A., Sahin, K., et al. (2005) The Respiratory Effects of Occupational Polypropylene Flock Exposure. European Respiratory Journal, 25, 110-117. [Google Scholar] [CrossRef] [PubMed]
[35] Agarwal, D.K., Kaw, J.L., Srivastava, S.P. and Seth, P.K. (1978) Some Biochemical and Histopathological Changes Induced by Polyvinyl Chloride Dust in Rat Lung. Environmental Research, 16, 333-341. [Google Scholar] [CrossRef] [PubMed]
[36] Pauly, J.L., Stegmeier, S.J., Allaart, H.A., Cheney, R.T., Zhang, P.J., Mayer, A.G., et al. (1998) Inhaled Cellulosic and Plastic Fibers Found in Human Lung Tissue. Cancer Epidemiology, Biomarkers & Prevention, 7, 419-428.
[37] Bastyans, S., Jackson, S. and Fejer, G. (2022) Micro and Nano-Plastics, a Threat to Human Health? Emerging Topics in Life Sciences, 6, 411-422.
[38] Salthouse, T.N. and Matlaga, B.F. (1975) Significance of Cellular Enzyme Activity at Nonabsorbable Suture Implant Sites: Silk, Polyester, and Polypropylene. Journal of Surgical Research, 19, 127-132. [Google Scholar] [CrossRef] [PubMed]
[39] Harusato, A., Seo, W., Abo, H., Nakanishi, Y., Nishikawa, H. and Itoh, Y. (2023) Impact of Particulate Microplastics Generated from Polyethylene Terephthalate on Gut Pathology and Immune Microenvironments. iScience, 26, Article ID: 106474. [Google Scholar] [CrossRef] [PubMed]
[40] Visalli, G., Facciolà, A., Pruiti Ciarello, M., De Marco, G., Maisano, M. and Di Pietro, A. (2021) Acute and Sub-Chronic Effects of Microplastics (3 and 10 μm) on the Human Intestinal Cells HT-29. International Journal of Environmental Research and Public Health, 18, Article 5833. [Google Scholar] [CrossRef] [PubMed]
[41] Huang, Z., Weng, Y., Shen, Q., Zhao, Y., Luo, T., Xiao, Y., et al. (2023) Nano-and Micro-Polystyrene Plastics Interfered the Gut Barrier Function Mediated by Exosomal miRNAs in Rats. Environmental Pollution, 335, Article ID: 122275. [Google Scholar] [CrossRef] [PubMed]
[42] Qiao, J., Chen, R., Wang, M., Bai, R., Cui, X., Liu, Y., et al. (2021) Perturbation of Gut Microbiota Plays an Important Role in Micro/Nanoplastics-Induced Gut Barrier Dysfunction. Nanoscale, 13, 8806-8816. [Google Scholar] [CrossRef] [PubMed]
[43] Garcia, M.M., Romero, A.S., Merkley, S.D., Meyer-Hagen, J.L., Forbes, C., Hayek, E.E., et al. (2023) In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. bio-Rxiv.
[44] Luan, J., Wen, L., Bao, Y., Bai, H., Zhao, C., Zhang, S., et al. (2024) Systemic Toxicity of Biodegradable Polyglycolic Acid Microplastics on the Gut-Liver-Brain Axis in Zebrafish. Science of the Total Environment, 954, Article ID: 176898. [Google Scholar] [CrossRef] [PubMed]
[45] Xu, W., Ye, S., Liu, W., Guo, H., Zhang, L., Wei, S., et al. (2024) Single-Cell RNA-Seq Analysis Decodes the Kidney Microenvironment Induced by Polystyrene Microplastics in Mice Receiving a High-Fat Diet. Journal of Nanobiotechnology, 22, Article No. 13.
[46] Palaniappan, S., Sadacharan, C.M. and Rostama, B. (2021) Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells in Vitro. Exposure and Health, 14, 75-85. [Google Scholar] [CrossRef] [PubMed]
[47] Yang, Q., Dai, H., Wang, B., Xu, J., Zhang, Y., Chen, Y., et al. (2023) Nanoplastics Shape Adaptive Anticancer Immunity in the Colon in Mice. Nano Letters, 23, 3516-3523. [Google Scholar] [CrossRef] [PubMed]
[48] Fournier, E., Ratel, J., Denis, S., Leveque, M., Ruiz, P., Mazal, C., et al. (2023) Exposure to Polyethylene Microplastics Alters Immature Gut Microbiome in an Infant in Vitro Gut Model. Journal of Hazardous Materials, 443, Article ID: 130383. [Google Scholar] [CrossRef] [PubMed]
[49] Bourlieu, C., Ménard, O., Bouzerzour, K., Mandalari, G., Macierzanka, A., Mackie, A.R., et al. (2014) Specificity of Infant Digestive Conditions: Some Clues for Developing Relevant in Vitro Models. Critical Reviews in Food Science and Nutrition, 54, 1427-1457. [Google Scholar] [CrossRef] [PubMed]
[50] Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
[51] Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., et al. (2013) Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 11, 868-875.e3. [Google Scholar] [CrossRef] [PubMed]
[52] Lamas, B., Natividad, J.M. and Sokol, H. (2018) Aryl Hydrocarbon Receptor and Intestinal Immunity. Mucosal Immunology, 11, 1024-1038. [Google Scholar] [CrossRef] [PubMed]
[53] Andoh, A. (2016) Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion, 93, 176-181. [Google Scholar] [CrossRef] [PubMed]
[54] Zheng, P.C., Li, R., Lai, K.P. and Zhang, X.X. (2024) Biological Exposure to Microplastics and Nanoplastics and Plastic Additives: Impairment of Glycolipid Metabolism and Adverse Effects on Metabolic Diseases. Environmental Science and Pollution Research, 31, 60778-60791. [Google Scholar] [CrossRef] [PubMed]
[55] Iurk, V.B., Ingles, M., Correa, G.S., Silva, C.R., Staichak, G., Pileggi, S.A.V., et al. (2024) The Potential Influence of Microplastics on the Microbiome and Disease Susceptibility in Sea Turtles. Science of the Total Environment, 946, Article ID: 174298. [Google Scholar] [CrossRef] [PubMed]
[56] Su, X., Gao, Y. and Yang, R. (2022) Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 11, Article 2296. [Google Scholar] [CrossRef] [PubMed]
[57] Roager, H.M. and Licht, T.R. (2018) Microbial Tryptophan Catabolites in Health and Disease. Nature Communications, 9, Article No. 3294. [Google Scholar] [CrossRef] [PubMed]
[58] Rothhammer, V. and Quintana, F.J. (2019) The Aryl Hydrocarbon Receptor: An Environmental Sensor Integrating Immune Responses in Health and Disease. Nature Reviews Immunology, 19, 184-197. [Google Scholar] [CrossRef] [PubMed]
[59] Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724. [Google Scholar] [CrossRef] [PubMed]
[60] Hu, M. and Palić, D. (2020) Micro-and Nano-Plastics Activation of Oxidative and Inflammatory Adverse Outcome Pathways. Redox Biology, 37, Article ID: 101620. [Google Scholar] [CrossRef] [PubMed]
[61] Ding, R., Ma, Y., Li, T., Sun, M., Sun, Z. and Duan, J. (2023) The Detrimental Effects of Micro-and Nano-Plastics on Digestive System: An Overview of Oxidative Stress-Related Adverse Outcome Pathway. Science of the Total Environment, 878, Article ID: 163144. [Google Scholar] [CrossRef] [PubMed]
[62] Cui, J., Zhang, Y., Liu, L., Zhang, Q., Xu, S. and Guo, M. (2023) Polystyrene Microplastics Induced Inflammation with Activating the TLR2 Signal by Excessive Accumulation of ROS in Hepatopancreas of Carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 251, Article ID: 114539. [Google Scholar] [CrossRef] [PubMed]
[63] Jeong, C., Won, E., Kang, H., Lee, M., Hwang, D., Hwang, U., et al. (2016) Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and P-JNK and P-P38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environmental Science & Technology, 50, 8849-8857. [Google Scholar] [CrossRef] [PubMed]
[64] Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., et al. (2016) Exposure of Marine Mussels Mytilus Spp. to Polystyrene Microplastics: Toxicity and Influence on Fluoranthene Bioaccumulation. Environmental Pollution, 216, 724-737. [Google Scholar] [CrossRef] [PubMed]
[65] Cui, M., He, Q., Wang, Z., Yu, Y., Gao, H., Liu, Z., et al. (2023) Mucin2 Regulated by Ho1/p38/IL-10 Axis Plays a Protective Role in Polystyrene Nanoplastics-Mediated Intestinal Toxicity. Environmental Pollution, 330, Article ID: 121808. [Google Scholar] [CrossRef] [PubMed]
[66] Tian, S., Li, R., Li, J. and Zou, J. (2025) Polystyrene Nanoplastics Promote Colitis-Associated Cancer by Disrupting Lipid Metabolism and Inducing DNA Damage. Environment International, 195, Article ID: 109258. [Google Scholar] [CrossRef] [PubMed]
[67] Carini, F., Mazzola, M., Rappa, F., Jurjus, A., Geagea, A.G., Al Kattar, S., et al. (2017) Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Research, 37, 4759-4766.
[68] Das, A., Paul, S., Chakrabarty, S., Dasgupta, M. and Chakrabarti, G. (2022) Microtubule-Targeting Agents Induce Ros-Mediated Apoptosis in Cancer. In: Chakraborti, S., Ray, B.K. and Roychoudhury, S., Eds., Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, Springer, 565-582. [Google Scholar] [CrossRef
[69] McCubrey, J.A., LaHair, M.M. and Franklin, R.A. (2006) Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxidants & Redox Signaling, 8, 1775-1789. [Google Scholar] [CrossRef] [PubMed]
[70] Schulze, M., Wang, X., Hamad, J., Quintanilha, J.C.F., Pasquina, L.W., Hopkins, J.F., et al. (2025) Real‐World Genomic Landscape of Colon and Rectal Cancer. FEBS Open Bio, 15, 674-685. [Google Scholar] [CrossRef] [PubMed]
[71] Ali, W., Jeong, H., Kim, D., Lee, J., Zinck, P., Souissi, S., et al. (2025) Adverse Effects of Environmentally Relevant Microplastics on in Vivo Endpoints, Oxidative Stress, and Mitogen-Activated Protein Kinase Signaling Pathway and Multixenobiotic Resistance System in the Marine Rotifer Brachionus plicatilis. Science of the Total Environment, 958, Article ID: 178027. [Google Scholar] [CrossRef] [PubMed]
[72] Xie, X., Deng, T., Duan, J., Xie, J., Yuan, J. and Chen, M. (2020) Exposure to Polystyrene Microplastics Causes Reproductive Toxicity through Oxidative Stress and Activation of the P38 MAPK Signaling Pathway. Ecotoxicology and Environmental Safety, 190, Article ID: 110133. [Google Scholar] [CrossRef] [PubMed]
[73] Jeong, C., Kang, H., Lee, M., Kim, D., Han, J., Hwang, D., et al. (2017) Adverse Effects of Microplastics and Oxidative Stress-Induced MAPK/Nrf2 Pathway-Mediated Defense Mechanisms in the Marine Copepod Paracyclopina nana. Scientific Reports, 7, Article No. 41323. [Google Scholar] [CrossRef] [PubMed]
[74] He, F., Ru, X. and Wen, T. (2020) NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences, 21, Article 4777. [Google Scholar] [CrossRef] [PubMed]
[75] Li, S., Shi, M., Wang, Y., Xiao, Y., Cai, D. and Xiao, F. (2021) Keap1-Nrf2 Pathway Up-Regulation via Hydrogen Sulfide Mitigates Polystyrene Microplastics Induced-Hepatotoxic Effects. Journal of Hazardous Materials, 402, Article ID: 123933. [Google Scholar] [CrossRef] [PubMed]
[76] Wu, S., Lu, H. and Bai, Y. (2019) Nrf2 in Cancers: A Double‐Edged Sword. Cancer Medicine, 8, 2252-2267. [Google Scholar] [CrossRef] [PubMed]
[77] Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., et al. (2020) Polyethylene Microplastics Affect the Distribution of Gut Microbiota and Inflammation Development in Mice. Chemosphere, 244, Article ID: 125492. [Google Scholar] [CrossRef] [PubMed]
[78] Liu, B., Deng, X., Jiang, Q., Li, G., Zhang, J., Zhang, N., et al. (2020) Scoparone Improves Hepatic Inflammation and Autophagy in Mice with Nonalcoholic Steatohepatitis by Regulating the ROS/P38/Nrf2 Axis and PI3K/Akt/mTOR Pathway in Macrophages. Biomedicine & Pharmacotherapy, 125, Article ID: 109895. [Google Scholar] [CrossRef] [PubMed]
[79] Chen, Q., Zhang, H., Yang, Y., Zhang, S., Wang, J., Zhang, D., et al. (2022) Metformin Attenuates Uva-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/Akt/mTOR Pathway. International Journal of Molecular Sciences, 23, Article 6960. [Google Scholar] [CrossRef] [PubMed]
[80] Yi, J., Zhu, J., Wu, J., Thompson, C.B. and Jiang, X. (2020) Oncogenic Activation of PI3K-Akt-mTOR Signaling Suppresses Ferroptosis via SREBP-Mediated Lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 31189-31197. [Google Scholar] [CrossRef] [PubMed]
[81] Narayanankutty, A. (2019) PI3K/Akt/mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Current Drug Targets, 20, 1217-1226. [Google Scholar] [CrossRef] [PubMed]
[82] Zhao, M., Mishra, L. and Deng, C. (2018) The Role of TGF-β/SMAD4 Signaling in Cancer. International Journal of Biological Sciences, 14, 111-123. [Google Scholar] [CrossRef] [PubMed]
[83] Tochhawng, L., Deng, S., Pervaiz, S. and Yap, C.T. (2013) Redox Regulation of Cancer Cell Migration and Invasion. Mitochondrion, 13, 246-253. [Google Scholar] [CrossRef] [PubMed]
[84] Vijayachandra, K., Higgins, W., Lee, J. and Glick, A. (2008) Induction of P16ink4a and P19ARF by TGFβ1 Contributes to Growth Arrest and Senescence Response in Mouse Keratinocytes. Molecular Carcinogenesis, 48, 181-186. [Google Scholar] [CrossRef] [PubMed]
[85] Xu, J., Lamouille, S. and Derynck, R. (2009) TGF-β-Induced Epithelial to Mesenchymal Transition. Cell Research, 19, 156-172. [Google Scholar] [CrossRef] [PubMed]
[86] Huang, Z., Zhang, Z., Zhou, C., Liu, L. and Huang, C. (2022) Epithelial-Mesenchymal Transition: The History, Regulatory Mechanism, and Cancer Therapeutic Opportunities. MedComm, 3, e144. [Google Scholar] [CrossRef] [PubMed]
[87] Liu, W., Geng, C., Li, X., Li, Y., Song, S. and Wang, C. (2022) Downregulation of SLC9A8 Promotes Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer Cells via the IL6-JAK1/STAT3 Signaling Pathway. Digestive Diseases and Sciences, 68, 1873-1884. [Google Scholar] [CrossRef] [PubMed]
[88] Kim, Y., Jeong, J., Lee, S., Choi, I. and Choi, J. (2020) Identification of Adverse Outcome Pathway Related to High-Density Polyethylene Microplastics Exposure: Caenorhabditis Elegans Transcription Factor RNAI Screening and Zebrafish Study. Journal of Hazardous Materials, 388, Article ID: 121725. [Google Scholar] [CrossRef] [PubMed]
[89] Tamargo, A., Molinero, N., Reinosa, J.J., Alcolea-Rodriguez, V., Portela, R., Bañares, M.A., et al. (2022) PET Microplastics Affect Human Gut Microbiota Communities during Simulated Gastrointestinal Digestion, First Evidence of Plausible Polymer Biodegradation during Human Digestion. Scientific Reports, 12, Article No. 528. [Google Scholar] [CrossRef] [PubMed]
[90] Zhou, Y., Zhang, G., Zhang, D., Zhu, N., Bo, J., Meng, X., et al. (2024) Microplastic Biofilms Promote the Horizontal Transfer of Antibiotic Resistance Genes in Estuarine Environments. Marine Environmental Research, 202, Article ID: 106777. [Google Scholar] [CrossRef] [PubMed]
[91] Stevenson, E.M., Rushby-Jones, O., Buckling, A., Cole, M., Lindeque, P.K. and Murray, A.K. (2024) Selective Colonization of Microplastics, Wood and Glass by Antimicrobial-Resistant and Pathogenic Bacteria. Microbiology, 170, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
[92] Hernández-Sánchez, C., Pestana-Ríos, Á.A., Villanova-Solano, C., Domínguez-Hernández, C., Díaz-Peña, F.J., Rodríguez-Álvarez, C., et al. (2023) Bacterial Colonization of Microplastics at the Beaches of an Oceanic Island, Tenerife, Canary Islands. International Journal of Environmental Research and Public Health, 20, Article 3951.
[93] Hou, J., Lei, Z., Cui, L., Hou, Y., Yang, L., An, R., et al. (2021) Polystyrene Microplastics Lead to Pyroptosis and Apoptosis of Ovarian Granulosa Cells via NLRP3/Caspase-1 Signaling Pathway in Rats. Ecotoxicology and Environmental Safety, 212, Article ID: 112012. [Google Scholar] [CrossRef] [PubMed]
[94] Reuter, C., Alzheimer, M., Walles, H. and Oelschlaeger, T.A. (2017) An Adherent Mucus Layer Attenuates the Genotoxic Effect of Colibactin. Cellular Microbiology, 20, e12812. [Google Scholar] [CrossRef] [PubMed]
[95] Tomkovich, S. and Jobin, C. (2018) Microbial Networking in Cancer: When Two Toxins Collide. British Journal of Cancer, 118, 1407-1409. [Google Scholar] [CrossRef] [PubMed]
[96] Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., et al. (2021) Interactions between Microplastics and Heavy Metals in Aquatic Environments: A Review. Frontiers in Microbiology, 12, Article 652520. [Google Scholar] [CrossRef] [PubMed]
[97] Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J.J., et al. (2020) Biofilm Formation and Its Influences on the Properties of Microplastics as Affected by Exposure Time and Depth in the Seawater. Science of the Total Environment, 734, Article ID: 139237. [Google Scholar] [CrossRef] [PubMed]
[98] Tomkovich, S., Dejea, C.M., Winglee, K., Drewes, J.L., Chung, L., Housseau, F., et al. (2019) Human Colon Mucosal Biofilms from Healthy or Colon Cancer Hosts Are Carcinogenic. Journal of Clinical Investigation, 129, 1699-1712. [Google Scholar] [CrossRef] [PubMed]
[99] Saeed, M.S., Fahd, F., Khan, F., Chen, B. and Sadiq, R. (2023) Human Health Risk Model for Microplastic Exposure in the Arctic Region. Science of the Total Environment, 895, Article ID: 165150. [Google Scholar] [CrossRef] [PubMed]
[100] Ali, M., Xu, D., Yang, X. and Hu, J. (2024) Microplastics and PAHs Mixed Contamination: An In-Depth Review on the Sources, Co-Occurrence, and Fate in Marine Ecosystems. Water Research, 257, Article ID: 121622. [Google Scholar] [CrossRef] [PubMed]
[101] Rong, J., Yuan, C., Yin, X., Wu, X., He, F., Wang, Y., et al. (2024) Co-Exposure of Polystyrene Nanoplastics and Copper Induces Development Toxicity and Intestinal Mitochondrial Dysfunction in Vivo and in Vitro. Science of the Total Environment, 930, Article ID: 172681. [Google Scholar] [CrossRef] [PubMed]
[102] Hu, L., Feng, X., Lan, Y., Zhang, J., Nie, P. and Xu, H. (2024) Co-Exposure with Cadmium Elevates the Toxicity of Microplastics: Trojan Horse Effect from the Perspective of Intestinal Barrier. Journal of Hazardous Materials, 466, Article ID: 133587. [Google Scholar] [CrossRef] [PubMed]
[103] Li, Y., Lou, J., Hong, S., Hou, D., Lv, Y., Guo, Z., et al. (2023) The Role of Heavy Metals in the Development of Colorectal Cancer. BMC Cancer, 23, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
[104] Zheng, C.X. (2001) The Prognostic Value of Preoperative Serum Levels of CEA, CA19-9 and CA72-4 in Patients with Colorectal Cancer. World Journal of Gastroenterology, 7, 431-434. [Google Scholar] [CrossRef] [PubMed]
[105] Ren, G., Zheng, G., Du, K., Dang, Z., Dan, H., Dou, X., et al. (2024) Prognostic Value of Dynamic Changes of Pre-and Post-Operative Tumor Markers in Colorectal Cancer. Clinical and Translational Oncology, 26, 2047-2059. [Google Scholar] [CrossRef] [PubMed]
[106] You, W., Sheng, N., Yan, L., Chen, H., Gong, J., He, Z., et al. (2019) The Difference in Prognosis of Stage II and III Colorectal Cancer Based on Preoperative Serum Tumor Markers. Journal of Cancer, 10, 3757-3766. [Google Scholar] [CrossRef] [PubMed]
[107] Pan, W., Han, Y., Zhang, M., Zhu, K., Yang, Z., Qiu, M., et al. (2025) Effects of Microplastics on Chemo-Resistance and Tumorigenesis of Colorectal Cancer. Apoptosis, 30, 1005-1020. [Google Scholar] [CrossRef] [PubMed]
[108] Domenech, J., Annangi, B., Marcos, R., Hernández, A. and Catalán, J. (2023) Insights into the Potential Carcinogenicity of Micro-and Nano-plastics. Mutation ResearchReviews in Mutation Research, 791, Article ID: 108453. [Google Scholar] [CrossRef] [PubMed]
[109] Wardani, I., Hazimah Mohamed Nor, N., Wright, S.L., Kooter, I.M. and Koelmans, A.A. (2024) Nano-and Microplastic PBK Modeling in the Context of Human Exposure and Risk Assessment. Environment International, 186, Article ID: 108504. [Google Scholar] [CrossRef] [PubMed]
[110] Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. and Slobodnik, J. (2021) Potential Human Health Risks Due to Environmental Exposure to Nano-and Microplastics and Knowledge Gaps: A Scoping Review. Science of the Total Environment, 757, Article ID: 143872. [Google Scholar] [CrossRef] [PubMed]