|
[1]
|
Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C.J., Laversanne, M., et al. (2022) Global Burden of Colorectal Cancer in 2020 and 2040: Incidence and Mortality Estimates from Globocan. Gut, 72, 338-344. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Liang, Y., Zhang, N., Wang, M., Liu, Y., Ma, L., Wang, Q. et al. (2023) Distributions and Trends of the Global Burden of Colorectal Cancer Attributable to Dietary Risk Factors over the Past 30 Years. Nutrients, 16, Article 132. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Zhang, Q., Xu, E.G., Li, J., Chen, Q., Ma, L., Zeng, E.Y., et al. (2020) A Review of Microplastics in Table Salt, Drinking Water, and Air: Direct Human Exposure. Environmental Science & Technology, 54, 3740-3751. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Zhang, Z., Xu, M., Wang, L., Gu, W., Li, X., Han, Z., et al. (2023) Continuous Oral Exposure to Micro-and Nanoplastics Induced Gut Microbiota Dysbiosis, Intestinal Barrier and Immune Dysfunction in Adult Mice. Environment International, 182, Article ID: 108353. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Casella, C. and Ballaz, S.J. (2024) Genotoxic and Neurotoxic Potential of Intracellular Nanoplastics: A Review. Journal of Applied Toxicology, 44, 1657-1678. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Li, M., Yu, H., Wang, Y., Li, J., Ma, G. and Wei, X. (2020) QSPR Models for Predicting the Adsorption Capacity for Microplastics of Polyethylene, Polypropylene and Polystyrene. Scientific Reports, 10, Article No. 14597. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Wang, H., Zhu, J., He, Y., Wang, J., Zeng, N. and Zhan, X. (2023) Photoaging Process and Mechanism of Four Commonly Commercial Microplastics. Journal of Hazardous Materials, 451, Article ID: 131151. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Brahana, P., Zhang, M., Nakouzi, E. and Bharti, B. (2024) Weathering Influences the Ice Nucleation Activity of Microplastics. Nature Communications, 15, Article No. 9579. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Kang, Q., Zhang, K., Dekker, S.C. and Mao, J. (2025) Microplastics in Soils: A Comprehensive Review. Science of the Total Environment, 960, Article ID: 178298. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Siddiqui, S.A., Singh, S., Bahmid, N.A., Shyu, D.J.H., Domínguez, R., Lorenzo, J.M., et al. (2023) Polystyrene Microplastic Particles in the Food Chain: Characteristics and Toxicity—A Review. Science of the Total Environment, 892, Article ID: 164531. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Sobhani, Z., Lei, Y., Tang, Y., Wu, L., Zhang, X., Naidu, R., et al. (2020) Microplastics Generated When Opening Plastic Packaging. Scientific Reports, 10, Article No. 4841. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Jansen, M.A.K., Barnes, P.W., Bornman, J.F., Rose, K.C., Madronich, S., White, C.C., et al. (2023) The Montreal Protocol and the Fate of Environmental Plastic Debris. Photochemical & Photobiological Sciences, 22, 1203-1211. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. and Dudas, S.E. (2020) Correction to Human Consumption of Microplastics. Environmental Science & Technology, 54, 10974-10974. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Amato-Lourenço, L.F., Carvalho-Oliveira, R., Júnior, G.R., dos Santos Galvão, L., Ando, R.A. and Mauad, T. (2021) Presence of Airborne Microplastics in Human Lung Tissue. Journal of Hazardous Materials, 416, Article ID: 126124. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Liu, S., Wang, C., Yang, Y., Du, Z., Li, L., Zhang, M., et al. (2024) Microplastics in Three Types of Human Arteries Detected by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). Journal of Hazardous Materials, 469, Article ID: 133855. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Ragusa, A., Svelato, A., Santacroce, C., Catalano, P., Notarstefano, V., Carnevali, O., et al. (2021) Plasticenta: First Evidence of Microplastics in Human Placenta. Environment International, 146, Article ID: 106274. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Zhang, J., Wang, L., Trasande, L. and Kannan, K. (2021) Occurrence of Polyethylene Terephthalate and Polycarbonate Microplastics in Infant and Adult Feces. Environmental Science & Technology Letters, 8, 989-994. [Google Scholar] [CrossRef]
|
|
[18]
|
Schwabl, P., Köppel, S., Königshofer, P., Bucsics, T., Trauner, M., Reiberger, T., et al. (2019) Detection of Various Microplastics in Human Stool. Annals of Internal Medicine, 171, 453-457. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Li, J., Wang, K., Lin, Z., Zhu, M., Xu, S., Cui, Z., et al. (2025) Detection and Quantification of Microplastics in Meconium by Pyrolysis-Gas Chromatography/Mass Spectrometry (Py-GC/MS). Journal of Chromatography A, 1749, Article ID: 465868. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Du, J., Xu, S., Zhou, Q., Li, H., Fu, L., Tang, J., et al. (2020) A Review of Microplastics in the Aquatic Environmental: Distribution, Transport, Ecotoxicology, and Toxicological Mechanisms. Environmental Science and Pollution Research, 27, 11494-11505. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Galloway, T.S. (2015) Micro-and Nano-Plastics and Human Health. In: Bergmann, M., Gutow, L. and Klages, M., Eds., Marine Anthropogenic Litter, Springer, 343-366. [Google Scholar] [CrossRef]
|
|
[22]
|
Cox, K.D., Covernton, G.A., Davies, H.L., Dower, J.F., Juanes, F. and Dudas, S.E. (2019) Human Consumption of Microplastics. Environmental Science & Technology, 53, 7068-7074. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Li, J., Qu, X., Su, L., Zhang, W., Yang, D., Kolandhasamy, P., et al. (2016) Microplastics in Mussels along the Coastal Waters of China. Environmental Pollution, 214, 177-184. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Neves, D., Sobral, P., Ferreira, J.L. and Pereira, T. (2015) Ingestion of Microplastics by Commercial Fish off the Portuguese Coast. Marine Pollution Bulletin, 101, 119-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Karami, A., Golieskardi, A., Keong Choo, C., Larat, V., Galloway, T.S. and Salamatinia, B. (2017) The Presence of Microplastics in Commercial Salts from Different Countries. Scientific Reports, 7, Article No. 46173. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Liebezeit, G. and Liebezeit, E. (2013) Non-Pollen Particulates in Honey and Sugar. Food Additives & Contaminants: Part A, 30, 2136-2140. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Oßmann, B.E., Sarau, G., Holtmannspötter, H., Pischetsrieder, M., Christiansen, S.H. and Dicke, W. (2018) Small-Sized Microplastics and Pigmented Particles in Bottled Mineral Water. Water Research, 141, 307-316. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M.B. and Janssen, C.R. (2015) Microplastics Are Taken up by Mussels (Mytilus edulis) and Lugworms (Arenicola marina) Living in Natural Habitats. Environmental Pollution, 199, 10-17. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Yang, D., Shi, H., Li, L., Li, J., Jabeen, K. and Kolandhasamy, P. (2015) Microplastic Pollution in Table Salts from China. Environmental Science & Technology, 49, 13622-13627. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Meaza, I., Toyoda, J.H. and Wise Sr, J.P. (2021) Microplastics in Sea Turtles, Marine Mammals and Humans: A One Environmental Health Perspective. Frontiers in Environmental Science, 8, Article 575614. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Dris, R., Gasperi, J., Mirande, C., Mandin, C., Guerrouache, M., Langlois, V., et al. (2017) A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environmental Pollution, 221, 453-458. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Prata, J.C. (2018) Airborne Microplastics: Consequences to Human Health? Environmental Pollution, 234, 115-126. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Vianello, A., Jensen, R.L., Liu, L. and Vollertsen, J. (2019) Simulating Human Exposure to Indoor Airborne Microplastics Using a Breathing Thermal Manikin. Scientific Reports, 9, Article No. 8670. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Atis, S., Tutluoglu, B., Levent, E., Ozturk, C., Tunaci, A., Sahin, K., et al. (2005) The Respiratory Effects of Occupational Polypropylene Flock Exposure. European Respiratory Journal, 25, 110-117. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Agarwal, D.K., Kaw, J.L., Srivastava, S.P. and Seth, P.K. (1978) Some Biochemical and Histopathological Changes Induced by Polyvinyl Chloride Dust in Rat Lung. Environmental Research, 16, 333-341. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Pauly, J.L., Stegmeier, S.J., Allaart, H.A., Cheney, R.T., Zhang, P.J., Mayer, A.G., et al. (1998) Inhaled Cellulosic and Plastic Fibers Found in Human Lung Tissue. Cancer Epidemiology, Biomarkers & Prevention, 7, 419-428.
|
|
[37]
|
Bastyans, S., Jackson, S. and Fejer, G. (2022) Micro and Nano-Plastics, a Threat to Human Health? Emerging Topics in Life Sciences, 6, 411-422.
|
|
[38]
|
Salthouse, T.N. and Matlaga, B.F. (1975) Significance of Cellular Enzyme Activity at Nonabsorbable Suture Implant Sites: Silk, Polyester, and Polypropylene. Journal of Surgical Research, 19, 127-132. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Harusato, A., Seo, W., Abo, H., Nakanishi, Y., Nishikawa, H. and Itoh, Y. (2023) Impact of Particulate Microplastics Generated from Polyethylene Terephthalate on Gut Pathology and Immune Microenvironments. iScience, 26, Article ID: 106474. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Visalli, G., Facciolà, A., Pruiti Ciarello, M., De Marco, G., Maisano, M. and Di Pietro, A. (2021) Acute and Sub-Chronic Effects of Microplastics (3 and 10 μm) on the Human Intestinal Cells HT-29. International Journal of Environmental Research and Public Health, 18, Article 5833. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Huang, Z., Weng, Y., Shen, Q., Zhao, Y., Luo, T., Xiao, Y., et al. (2023) Nano-and Micro-Polystyrene Plastics Interfered the Gut Barrier Function Mediated by Exosomal miRNAs in Rats. Environmental Pollution, 335, Article ID: 122275. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Qiao, J., Chen, R., Wang, M., Bai, R., Cui, X., Liu, Y., et al. (2021) Perturbation of Gut Microbiota Plays an Important Role in Micro/Nanoplastics-Induced Gut Barrier Dysfunction. Nanoscale, 13, 8806-8816. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Garcia, M.M., Romero, A.S., Merkley, S.D., Meyer-Hagen, J.L., Forbes, C., Hayek, E.E., et al. (2023) In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. bio-Rxiv.
|
|
[44]
|
Luan, J., Wen, L., Bao, Y., Bai, H., Zhao, C., Zhang, S., et al. (2024) Systemic Toxicity of Biodegradable Polyglycolic Acid Microplastics on the Gut-Liver-Brain Axis in Zebrafish. Science of the Total Environment, 954, Article ID: 176898. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Xu, W., Ye, S., Liu, W., Guo, H., Zhang, L., Wei, S., et al. (2024) Single-Cell RNA-Seq Analysis Decodes the Kidney Microenvironment Induced by Polystyrene Microplastics in Mice Receiving a High-Fat Diet. Journal of Nanobiotechnology, 22, Article No. 13.
|
|
[46]
|
Palaniappan, S., Sadacharan, C.M. and Rostama, B. (2021) Polystyrene and Polyethylene Microplastics Decrease Cell Viability and Dysregulate Inflammatory and Oxidative Stress Markers of MDCK and L929 Cells in Vitro. Exposure and Health, 14, 75-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Yang, Q., Dai, H., Wang, B., Xu, J., Zhang, Y., Chen, Y., et al. (2023) Nanoplastics Shape Adaptive Anticancer Immunity in the Colon in Mice. Nano Letters, 23, 3516-3523. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Fournier, E., Ratel, J., Denis, S., Leveque, M., Ruiz, P., Mazal, C., et al. (2023) Exposure to Polyethylene Microplastics Alters Immature Gut Microbiome in an Infant in Vitro Gut Model. Journal of Hazardous Materials, 443, Article ID: 130383. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Bourlieu, C., Ménard, O., Bouzerzour, K., Mandalari, G., Macierzanka, A., Mackie, A.R., et al. (2014) Specificity of Infant Digestive Conditions: Some Clues for Developing Relevant in Vitro Models. Critical Reviews in Food Science and Nutrition, 54, 1427-1457. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Morrison, D.J. and Preston, T. (2016) Formation of Short Chain Fatty Acids by the Gut Microbiota and Their Impact on Human Metabolism. Gut Microbes, 7, 189-200. [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., et al. (2013) Fecal Microbiome and Volatile Organic Compound Metabolome in Obese Humans with Nonalcoholic Fatty Liver Disease. Clinical Gastroenterology and Hepatology, 11, 868-875.e3. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Lamas, B., Natividad, J.M. and Sokol, H. (2018) Aryl Hydrocarbon Receptor and Intestinal Immunity. Mucosal Immunology, 11, 1024-1038. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Andoh, A. (2016) Physiological Role of Gut Microbiota for Maintaining Human Health. Digestion, 93, 176-181. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zheng, P.C., Li, R., Lai, K.P. and Zhang, X.X. (2024) Biological Exposure to Microplastics and Nanoplastics and Plastic Additives: Impairment of Glycolipid Metabolism and Adverse Effects on Metabolic Diseases. Environmental Science and Pollution Research, 31, 60778-60791. [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Iurk, V.B., Ingles, M., Correa, G.S., Silva, C.R., Staichak, G., Pileggi, S.A.V., et al. (2024) The Potential Influence of Microplastics on the Microbiome and Disease Susceptibility in Sea Turtles. Science of the Total Environment, 946, Article ID: 174298. [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Su, X., Gao, Y. and Yang, R. (2022) Gut Microbiota-Derived Tryptophan Metabolites Maintain Gut and Systemic Homeostasis. Cells, 11, Article 2296. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Roager, H.M. and Licht, T.R. (2018) Microbial Tryptophan Catabolites in Health and Disease. Nature Communications, 9, Article No. 3294. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Rothhammer, V. and Quintana, F.J. (2019) The Aryl Hydrocarbon Receptor: An Environmental Sensor Integrating Immune Responses in Health and Disease. Nature Reviews Immunology, 19, 184-197. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Agus, A., Planchais, J. and Sokol, H. (2018) Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host & Microbe, 23, 716-724. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Hu, M. and Palić, D. (2020) Micro-and Nano-Plastics Activation of Oxidative and Inflammatory Adverse Outcome Pathways. Redox Biology, 37, Article ID: 101620. [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Ding, R., Ma, Y., Li, T., Sun, M., Sun, Z. and Duan, J. (2023) The Detrimental Effects of Micro-and Nano-Plastics on Digestive System: An Overview of Oxidative Stress-Related Adverse Outcome Pathway. Science of the Total Environment, 878, Article ID: 163144. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
Cui, J., Zhang, Y., Liu, L., Zhang, Q., Xu, S. and Guo, M. (2023) Polystyrene Microplastics Induced Inflammation with Activating the TLR2 Signal by Excessive Accumulation of ROS in Hepatopancreas of Carp (Cyprinus carpio). Ecotoxicology and Environmental Safety, 251, Article ID: 114539. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Jeong, C., Won, E., Kang, H., Lee, M., Hwang, D., Hwang, U., et al. (2016) Microplastic Size-Dependent Toxicity, Oxidative Stress Induction, and P-JNK and P-P38 Activation in the Monogonont Rotifer (Brachionus koreanus). Environmental Science & Technology, 50, 8849-8857. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Paul-Pont, I., Lacroix, C., González Fernández, C., Hégaret, H., Lambert, C., Le Goïc, N., et al. (2016) Exposure of Marine Mussels Mytilus Spp. to Polystyrene Microplastics: Toxicity and Influence on Fluoranthene Bioaccumulation. Environmental Pollution, 216, 724-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Cui, M., He, Q., Wang, Z., Yu, Y., Gao, H., Liu, Z., et al. (2023) Mucin2 Regulated by Ho1/p38/IL-10 Axis Plays a Protective Role in Polystyrene Nanoplastics-Mediated Intestinal Toxicity. Environmental Pollution, 330, Article ID: 121808. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Tian, S., Li, R., Li, J. and Zou, J. (2025) Polystyrene Nanoplastics Promote Colitis-Associated Cancer by Disrupting Lipid Metabolism and Inducing DNA Damage. Environment International, 195, Article ID: 109258. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Carini, F., Mazzola, M., Rappa, F., Jurjus, A., Geagea, A.G., Al Kattar, S., et al. (2017) Colorectal Carcinogenesis: Role of Oxidative Stress and Antioxidants. Anticancer Research, 37, 4759-4766.
|
|
[68]
|
Das, A., Paul, S., Chakrabarty, S., Dasgupta, M. and Chakrabarti, G. (2022) Microtubule-Targeting Agents Induce Ros-Mediated Apoptosis in Cancer. In: Chakraborti, S., Ray, B.K. and Roychoudhury, S., Eds., Handbook of Oxidative Stress in Cancer: Mechanistic Aspects, Springer, 565-582. [Google Scholar] [CrossRef]
|
|
[69]
|
McCubrey, J.A., LaHair, M.M. and Franklin, R.A. (2006) Reactive Oxygen Species-Induced Activation of the MAP Kinase Signaling Pathways. Antioxidants & Redox Signaling, 8, 1775-1789. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Schulze, M., Wang, X., Hamad, J., Quintanilha, J.C.F., Pasquina, L.W., Hopkins, J.F., et al. (2025) Real‐World Genomic Landscape of Colon and Rectal Cancer. FEBS Open Bio, 15, 674-685. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ali, W., Jeong, H., Kim, D., Lee, J., Zinck, P., Souissi, S., et al. (2025) Adverse Effects of Environmentally Relevant Microplastics on in Vivo Endpoints, Oxidative Stress, and Mitogen-Activated Protein Kinase Signaling Pathway and Multixenobiotic Resistance System in the Marine Rotifer Brachionus plicatilis. Science of the Total Environment, 958, Article ID: 178027. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Xie, X., Deng, T., Duan, J., Xie, J., Yuan, J. and Chen, M. (2020) Exposure to Polystyrene Microplastics Causes Reproductive Toxicity through Oxidative Stress and Activation of the P38 MAPK Signaling Pathway. Ecotoxicology and Environmental Safety, 190, Article ID: 110133. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Jeong, C., Kang, H., Lee, M., Kim, D., Han, J., Hwang, D., et al. (2017) Adverse Effects of Microplastics and Oxidative Stress-Induced MAPK/Nrf2 Pathway-Mediated Defense Mechanisms in the Marine Copepod Paracyclopina nana. Scientific Reports, 7, Article No. 41323. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
He, F., Ru, X. and Wen, T. (2020) NRF2, a Transcription Factor for Stress Response and Beyond. International Journal of Molecular Sciences, 21, Article 4777. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Li, S., Shi, M., Wang, Y., Xiao, Y., Cai, D. and Xiao, F. (2021) Keap1-Nrf2 Pathway Up-Regulation via Hydrogen Sulfide Mitigates Polystyrene Microplastics Induced-Hepatotoxic Effects. Journal of Hazardous Materials, 402, Article ID: 123933. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Wu, S., Lu, H. and Bai, Y. (2019) Nrf2 in Cancers: A Double‐Edged Sword. Cancer Medicine, 8, 2252-2267. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Li, B., Ding, Y., Cheng, X., Sheng, D., Xu, Z., Rong, Q., et al. (2020) Polyethylene Microplastics Affect the Distribution of Gut Microbiota and Inflammation Development in Mice. Chemosphere, 244, Article ID: 125492. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Liu, B., Deng, X., Jiang, Q., Li, G., Zhang, J., Zhang, N., et al. (2020) Scoparone Improves Hepatic Inflammation and Autophagy in Mice with Nonalcoholic Steatohepatitis by Regulating the ROS/P38/Nrf2 Axis and PI3K/Akt/mTOR Pathway in Macrophages. Biomedicine & Pharmacotherapy, 125, Article ID: 109895. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Chen, Q., Zhang, H., Yang, Y., Zhang, S., Wang, J., Zhang, D., et al. (2022) Metformin Attenuates Uva-Induced Skin Photoaging by Suppressing Mitophagy and the PI3K/Akt/mTOR Pathway. International Journal of Molecular Sciences, 23, Article 6960. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Yi, J., Zhu, J., Wu, J., Thompson, C.B. and Jiang, X. (2020) Oncogenic Activation of PI3K-Akt-mTOR Signaling Suppresses Ferroptosis via SREBP-Mediated Lipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 117, 31189-31197. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Narayanankutty, A. (2019) PI3K/Akt/mTOR Pathway as a Therapeutic Target for Colorectal Cancer: A Review of Preclinical and Clinical Evidence. Current Drug Targets, 20, 1217-1226. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Zhao, M., Mishra, L. and Deng, C. (2018) The Role of TGF-β/SMAD4 Signaling in Cancer. International Journal of Biological Sciences, 14, 111-123. [Google Scholar] [CrossRef] [PubMed]
|
|
[83]
|
Tochhawng, L., Deng, S., Pervaiz, S. and Yap, C.T. (2013) Redox Regulation of Cancer Cell Migration and Invasion. Mitochondrion, 13, 246-253. [Google Scholar] [CrossRef] [PubMed]
|
|
[84]
|
Vijayachandra, K., Higgins, W., Lee, J. and Glick, A. (2008) Induction of P16ink4a and P19ARF by TGFβ1 Contributes to Growth Arrest and Senescence Response in Mouse Keratinocytes. Molecular Carcinogenesis, 48, 181-186. [Google Scholar] [CrossRef] [PubMed]
|
|
[85]
|
Xu, J., Lamouille, S. and Derynck, R. (2009) TGF-β-Induced Epithelial to Mesenchymal Transition. Cell Research, 19, 156-172. [Google Scholar] [CrossRef] [PubMed]
|
|
[86]
|
Huang, Z., Zhang, Z., Zhou, C., Liu, L. and Huang, C. (2022) Epithelial-Mesenchymal Transition: The History, Regulatory Mechanism, and Cancer Therapeutic Opportunities. MedComm, 3, e144. [Google Scholar] [CrossRef] [PubMed]
|
|
[87]
|
Liu, W., Geng, C., Li, X., Li, Y., Song, S. and Wang, C. (2022) Downregulation of SLC9A8 Promotes Epithelial-Mesenchymal Transition and Metastasis in Colorectal Cancer Cells via the IL6-JAK1/STAT3 Signaling Pathway. Digestive Diseases and Sciences, 68, 1873-1884. [Google Scholar] [CrossRef] [PubMed]
|
|
[88]
|
Kim, Y., Jeong, J., Lee, S., Choi, I. and Choi, J. (2020) Identification of Adverse Outcome Pathway Related to High-Density Polyethylene Microplastics Exposure: Caenorhabditis Elegans Transcription Factor RNAI Screening and Zebrafish Study. Journal of Hazardous Materials, 388, Article ID: 121725. [Google Scholar] [CrossRef] [PubMed]
|
|
[89]
|
Tamargo, A., Molinero, N., Reinosa, J.J., Alcolea-Rodriguez, V., Portela, R., Bañares, M.A., et al. (2022) PET Microplastics Affect Human Gut Microbiota Communities during Simulated Gastrointestinal Digestion, First Evidence of Plausible Polymer Biodegradation during Human Digestion. Scientific Reports, 12, Article No. 528. [Google Scholar] [CrossRef] [PubMed]
|
|
[90]
|
Zhou, Y., Zhang, G., Zhang, D., Zhu, N., Bo, J., Meng, X., et al. (2024) Microplastic Biofilms Promote the Horizontal Transfer of Antibiotic Resistance Genes in Estuarine Environments. Marine Environmental Research, 202, Article ID: 106777. [Google Scholar] [CrossRef] [PubMed]
|
|
[91]
|
Stevenson, E.M., Rushby-Jones, O., Buckling, A., Cole, M., Lindeque, P.K. and Murray, A.K. (2024) Selective Colonization of Microplastics, Wood and Glass by Antimicrobial-Resistant and Pathogenic Bacteria. Microbiology, 170, Article No. 170. [Google Scholar] [CrossRef] [PubMed]
|
|
[92]
|
Hernández-Sánchez, C., Pestana-Ríos, Á.A., Villanova-Solano, C., Domínguez-Hernández, C., Díaz-Peña, F.J., Rodríguez-Álvarez, C., et al. (2023) Bacterial Colonization of Microplastics at the Beaches of an Oceanic Island, Tenerife, Canary Islands. International Journal of Environmental Research and Public Health, 20, Article 3951.
|
|
[93]
|
Hou, J., Lei, Z., Cui, L., Hou, Y., Yang, L., An, R., et al. (2021) Polystyrene Microplastics Lead to Pyroptosis and Apoptosis of Ovarian Granulosa Cells via NLRP3/Caspase-1 Signaling Pathway in Rats. Ecotoxicology and Environmental Safety, 212, Article ID: 112012. [Google Scholar] [CrossRef] [PubMed]
|
|
[94]
|
Reuter, C., Alzheimer, M., Walles, H. and Oelschlaeger, T.A. (2017) An Adherent Mucus Layer Attenuates the Genotoxic Effect of Colibactin. Cellular Microbiology, 20, e12812. [Google Scholar] [CrossRef] [PubMed]
|
|
[95]
|
Tomkovich, S. and Jobin, C. (2018) Microbial Networking in Cancer: When Two Toxins Collide. British Journal of Cancer, 118, 1407-1409. [Google Scholar] [CrossRef] [PubMed]
|
|
[96]
|
Liu, S., Shi, J., Wang, J., Dai, Y., Li, H., Li, J., et al. (2021) Interactions between Microplastics and Heavy Metals in Aquatic Environments: A Review. Frontiers in Microbiology, 12, Article 652520. [Google Scholar] [CrossRef] [PubMed]
|
|
[97]
|
Tu, C., Chen, T., Zhou, Q., Liu, Y., Wei, J., Waniek, J.J., et al. (2020) Biofilm Formation and Its Influences on the Properties of Microplastics as Affected by Exposure Time and Depth in the Seawater. Science of the Total Environment, 734, Article ID: 139237. [Google Scholar] [CrossRef] [PubMed]
|
|
[98]
|
Tomkovich, S., Dejea, C.M., Winglee, K., Drewes, J.L., Chung, L., Housseau, F., et al. (2019) Human Colon Mucosal Biofilms from Healthy or Colon Cancer Hosts Are Carcinogenic. Journal of Clinical Investigation, 129, 1699-1712. [Google Scholar] [CrossRef] [PubMed]
|
|
[99]
|
Saeed, M.S., Fahd, F., Khan, F., Chen, B. and Sadiq, R. (2023) Human Health Risk Model for Microplastic Exposure in the Arctic Region. Science of the Total Environment, 895, Article ID: 165150. [Google Scholar] [CrossRef] [PubMed]
|
|
[100]
|
Ali, M., Xu, D., Yang, X. and Hu, J. (2024) Microplastics and PAHs Mixed Contamination: An In-Depth Review on the Sources, Co-Occurrence, and Fate in Marine Ecosystems. Water Research, 257, Article ID: 121622. [Google Scholar] [CrossRef] [PubMed]
|
|
[101]
|
Rong, J., Yuan, C., Yin, X., Wu, X., He, F., Wang, Y., et al. (2024) Co-Exposure of Polystyrene Nanoplastics and Copper Induces Development Toxicity and Intestinal Mitochondrial Dysfunction in Vivo and in Vitro. Science of the Total Environment, 930, Article ID: 172681. [Google Scholar] [CrossRef] [PubMed]
|
|
[102]
|
Hu, L., Feng, X., Lan, Y., Zhang, J., Nie, P. and Xu, H. (2024) Co-Exposure with Cadmium Elevates the Toxicity of Microplastics: Trojan Horse Effect from the Perspective of Intestinal Barrier. Journal of Hazardous Materials, 466, Article ID: 133587. [Google Scholar] [CrossRef] [PubMed]
|
|
[103]
|
Li, Y., Lou, J., Hong, S., Hou, D., Lv, Y., Guo, Z., et al. (2023) The Role of Heavy Metals in the Development of Colorectal Cancer. BMC Cancer, 23, Article No. 616. [Google Scholar] [CrossRef] [PubMed]
|
|
[104]
|
Zheng, C.X. (2001) The Prognostic Value of Preoperative Serum Levels of CEA, CA19-9 and CA72-4 in Patients with Colorectal Cancer. World Journal of Gastroenterology, 7, 431-434. [Google Scholar] [CrossRef] [PubMed]
|
|
[105]
|
Ren, G., Zheng, G., Du, K., Dang, Z., Dan, H., Dou, X., et al. (2024) Prognostic Value of Dynamic Changes of Pre-and Post-Operative Tumor Markers in Colorectal Cancer. Clinical and Translational Oncology, 26, 2047-2059. [Google Scholar] [CrossRef] [PubMed]
|
|
[106]
|
You, W., Sheng, N., Yan, L., Chen, H., Gong, J., He, Z., et al. (2019) The Difference in Prognosis of Stage II and III Colorectal Cancer Based on Preoperative Serum Tumor Markers. Journal of Cancer, 10, 3757-3766. [Google Scholar] [CrossRef] [PubMed]
|
|
[107]
|
Pan, W., Han, Y., Zhang, M., Zhu, K., Yang, Z., Qiu, M., et al. (2025) Effects of Microplastics on Chemo-Resistance and Tumorigenesis of Colorectal Cancer. Apoptosis, 30, 1005-1020. [Google Scholar] [CrossRef] [PubMed]
|
|
[108]
|
Domenech, J., Annangi, B., Marcos, R., Hernández, A. and Catalán, J. (2023) Insights into the Potential Carcinogenicity of Micro-and Nano-plastics. Mutation Research—Reviews in Mutation Research, 791, Article ID: 108453. [Google Scholar] [CrossRef] [PubMed]
|
|
[109]
|
Wardani, I., Hazimah Mohamed Nor, N., Wright, S.L., Kooter, I.M. and Koelmans, A.A. (2024) Nano-and Microplastic PBK Modeling in the Context of Human Exposure and Risk Assessment. Environment International, 186, Article ID: 108504. [Google Scholar] [CrossRef] [PubMed]
|
|
[110]
|
Rahman, A., Sarkar, A., Yadav, O.P., Achari, G. and Slobodnik, J. (2021) Potential Human Health Risks Due to Environmental Exposure to Nano-and Microplastics and Knowledge Gaps: A Scoping Review. Science of the Total Environment, 757, Article ID: 143872. [Google Scholar] [CrossRef] [PubMed]
|