[1]
|
Zeng, X., Xie, Y.J., Liu, Y.T., Long, S. and Mo, Z. (2020) Polycystic Ovarian Syndrome: Correlation between Hyperandrogenism, Insulin Resistance and Obesity. Clinica Chimica Acta, 502, 214-221. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Duda-Madej, A., Stecko, J., Sobieraj, J., Szymańska, N. and Kozłowska, J. (2022) Naringenin and Its Derivatives—Health-Promoting Phytobiotic against Resistant Bacteria and Fungi in Humans. Antibiotics, 11, Article No. 1628. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Miller, W.L. and Auchus, R.J. (2011) The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocrine Reviews, 32, 81-151. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Nelson, V.L., Qin, K., Rosenfield, R.L., Wood, J.R., Penning, T.M., Legro, R.S., et al. (2001) The Biochemical Basis for Increased Testosterone Production in Theca Cells Propagated from Patients with Polycystic Ovary Syndrome. The Journal of Clinical Endocrinology & Metabolism, 86, 5925-5933. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
王莉. 柚皮素对多囊卵巢综合征模型大鼠的卵巢保护及激素调节作用[J]. 中国优生与遗传杂志, 2023, 31(4): 721-725.
|
[6]
|
徐晶, 申丽媛, 屈清华. 基于PI3K/AKT通路探究柚皮素改善多囊卵巢综合征大鼠胰岛素抵抗的作用机制[J]. 天津医药, 2022, 50(3): 270-275.
|
[7]
|
Zygmunt, K., Faubert, B., MacNeil, J. and Tsiani, E. (2010) Naringenin, a Citrus Flavonoid, Increases Muscle Cell Glucose Uptake via AMPK. Biochemical and Biophysical Research Communications, 398, 178-183. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Xiang, Y., Wang, M., Yu, G., Wan, L., Song, Y., Li, Y., et al. (2023) Naringenin Alleviates the Excessive Lipid Deposition of Polycystic Ovary Syndrome Rats and Insulin‐Resistant Adipocytes by Promoting PKGIα. American Journal of Reproductive Immunology, 90, e13795. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Yan, H., Wang, L., Zhang, G., Li, N., Zhao, Y., Liu, J., et al. (2024) Oxidative Stress and Energy Metabolism Abnormalities in Polycystic Ovary Syndrome: From Mechanisms to Therapeutic Strategies. Reproductive Biology and Endocrinology, 22, Article No. 159. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Ferrer, M.J., Silva, A.F., Abruzzese, G.A., Velázquez, M.E. and Motta, A.B. (2021) Lipid Metabolism and Relevant Disorders to Female Reproductive Health. Current Medicinal Chemistry, 28, 5625-5647. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
杨莹. 柚皮素改善非酒精性脂肪性肝病的作用机制研究[D]: [硕士学位论文]. 成都: 四川大学, 2021.
|
[12]
|
王颢, 郭真, 袁良杰, 等. 柚皮素抑制高脂饮食肥胖大鼠体重的实验研究[J]. 中国现代医学杂志, 2008(15): 2131-2134, 2137.
|
[13]
|
Pan, T., Lee, Y., Takimoto, E., Ueda, K., Liu, P. and Shen, H. (2024) Inhibitory Effects of Naringenin on Estrogen Deficiency-Induced Obesity via Regulation of Mitochondrial Dynamics and AMPK Activation Associated with White Adipose Tissue Browning. Life Sciences, 340, Article ID: 122453. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Abraham Gnanadass, S., Divakar Prabhu, Y. and Valsala Gopalakrishnan, A. (2021) Association of Metabolic and Inflammatory Markers with Polycystic Ovarian Syndrome (PCOS): An Update. Archives of Gynecology and Obstetrics, 303, 631-643. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Li, J., Xu, X., Liu, X., Zeng, T., Zhang, L. and Zheng, Q. (2024) Anti-Inflammatory Effects and Related Mechanisms of Naringenin in Human Periodontal Ligament Stem Cells under Lipopolysaccharide Stimulation Based on RNA Sequencing. West China Journal of Stomatology, 42, 512-520.
|
[16]
|
Liu, X., Lu, B., Fu, J., Zhu, X., Song, E. and Song, Y. (2021) Amorphous Silica Nanoparticles Induce Inflammation via Activation of NLRP3 Inflammasome and HMGB1/TLR4/MYD88/NF-κB Signaling Pathway in HUVEC Cells. Journal of Hazardous Materials, 404, Article ID: 124050. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Hämäläinen, M., Nieminen, R., Vuorela, P., Heinonen, M. and Moilanen, E. (2007) Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-κB Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit Only NF-κB Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages. Mediators of Inflammation, 2007, Article ID: 045673. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Zeber-Lubecka, N., Ciebiera, M. and Hennig, E.E. (2023) Polycystic Ovary Syndrome and Oxidative Stress—From Bench to Bedside. International Journal of Molecular Sciences, 24, Article No. 14126. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Rai, R., Singh, V., Jat, D. and Mishra, S.K. (2025) Naringenin Attenuates Hepato-Nephrotoxicity Induced by Aluminum Nanoparticles through the Mitigation of Oxidative Stress and Apoptosis. Journal of Trace Elements in Medicine and Biology, 90, Article ID: 127686. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Wang, H., Liang, J., Wang, Y., Zheng, J., Liu, Y., Zhao, Y., et al. (2024) Exploring the Effects of Naringin on Oxidative Stress-Impaired Osteogenic Differentiation via the Wnt/β-Catenin and PI3K/Akt Pathways. Scientific Reports, 14, Article No. 14047. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
成建璋, 茶喆, 向辉, 等. 柚皮素通过激活mTOR/p70S6K信号通路减轻胰岛素抵抗并改善H2O2诱导的SH-SY5Y细胞氧化应激损伤[J]. 重庆医科大学学报, 2019, 44(4): 424-429.
|
[22]
|
王凯华. 基于线粒体功能失调与Nrf2介导的抗氧化应激探索柚皮素对脑缺血再灌注损伤的神经保护作用[D]: [博士学位论文]. 广州: 南方医科大学, 2017.
|
[23]
|
Thackray, V.G. (2019) Sex, Microbes, and Polycystic Ovary Syndrome. Trends in Endocrinology & Metabolism, 30, 54-65. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Wu, Y.X., Yang, X.Y., Han, B.S., Hu, Y.Y., An, T., Lv, B.H., et al. (2022) Naringenin Regulates Gut Microbiota and SIRT1/PGC-1α Signaling Pathway in Rats with Letrozole-Induced Polycystic Ovary Syndrome. Biomedicine & Pharmacotherapy, 153, Article ID: 113286. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Liu, M.M., Chen, X.H., Lu, X.M., Wang, F.F., Wang, C., Liu, Y., et al. (2021) Variations in the Profiles of Vascular-Related Factors among Different Sub-Types of Polycystic Ovarian Syndrome in Northern China. Frontiers in Endocrinology, 11, Article ID: 527592. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Patil, K., Hinduja, I. and Mukherjee, S. (2020) Alteration in Angiogenic Potential of Granulosa-Lutein Cells and Follicular Fluid Contributes to Luteal Defects in Polycystic Ovary Syndrome. Human Reproduction, 36, 1052-1064. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
王瑜, 梁超, 王宝爱, 等. 柚皮素对大龄脑缺血模型大鼠脑皮质微血管新生的影响[J]. 心脑血管病防治, 2023, 23(8): 22-26.
|
[28]
|
Haoula, Z., Salman, M. and Atiomo, W. (2012) Evaluating the Association between Endometrial Cancer and Polycystic Ovary Syndrome. Human Reproduction, 27, 1327-1331. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Luo, E.D., Jiang, H.M., Chen, W., Wang, Y., Tang, M., Guo, W., et al. (2023) Advancements in Lead Therapeutic Phytochemicals Polycystic Ovary Syndrome: A Review. Frontiers in Pharmacology, 13, Article ID: 1065243. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Cheng, H., Jiang, X., Zhang, Q., Ma, J., Cheng, R., Yong, H., et al. (2020) Naringin Inhibits Colorectal Cancer Cell Growth by Repressing the PI3K/AKT/mTOR Signaling Pathway. Experimental and Therapeutic Medicine, 19, 3798-3804. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Mulvihill, E.E., Burke, A.C. and Huff, M.W. (2016) Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis. Annual Review of Nutrition, 36, 275-299. [Google Scholar] [CrossRef] [PubMed]
|