[1]
|
Knezevic, N.N., Candido, K.D., Vlaeyen, J.W.S., Van Zundert, J. and Cohen, S.P. (2021) Low Back Pain. The Lancet, 398, 78-92. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Hartvigsen, J., Hancock, M.J., Kongsted, A., Louw, Q., Ferreira, M.L., Genevay, S., et al. (2018) What Low Back Pain Is and Why We Need to Pay Attention. The Lancet, 391, 2356-2367. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Aikenmu, K., Wang, Z. and Meng, Q. (2020) Comprehensive Multi-Factors Reveal the Pathogenesis of Degenerative Intervertebral Disc. Cellular and Molecular Biology, 66, 65-71. [Google Scholar] [CrossRef]
|
[4]
|
Liu, H., Kang, H., Song, C., Lei, Z., Li, L., Guo, J., et al. (2018) Urolithin a Inhibits the Catabolic Effect of TNFα on Nucleus Pulposus Cell and Alleviates Intervertebral Disc Degeneration in Vivo. Frontiers in Pharmacology, 9, Article No. 1043. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Li, P., Hou, G., Zhang, R., Gan, Y., Xu, Y., Song, L., et al. (2017) High-Magnitude Compression Accelerates the Premature Senescence of Nucleus Pulposus Cells via the P38 MAPK-ROS Pathway. Arthritis Research & Therapy, 19, Article No. 209. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Mohanty, S., Pinelli, R., Pricop, P., Albert, T.J. and Dahia, C.L. (2019) Chondrocyte‐Like Nested Cells in the Aged Intervertebral Disc Are Late‐Stage Nucleus Pulposus Cells. Aging Cell, 18, e13006. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Nishida, K., Kang, J.D., Gilbertson, L.G., Moon, S., Suh, J., Vogt, M.T., et al. (1999) 1999 Volvo Award Winner in Basic Science Studies: An in Vivo Study of Adenovirus-Mediated Transfer of the Human Transforming Growth Factor Beta 1 Encoding Gene. Spine, 24, 2419-2425. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Boos, N., Weissbach, S., Rohrbach, H., Weiler, C., Spratt, K.F. and Nerlich, A.G. (2002) Classification of Age-Related Changes in Lumbar Intervertebral Discs: 2002 Volvo Award in Basic Science. Spine, 27, 2631-2644. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Cheung, K.M.C., Karppinen, J., Chan, D., Ho, D.W.H., Song, Y., Sham, P., et al. (2009) Prevalence and Pattern of Lumbar Magnetic Resonance Imaging Changes in a Population Study of One Thousand Forty-Three Individuals. Spine, 34, 934-940. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Yurube, T., Ito, M., Kakiuchi, Y., Kuroda, R. and Kakutani, K. (2020) Autophagy and mTOR Signaling during Intervertebral Disc Aging and Degeneration. JOR SPINE, 3, e1082. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
周清, 阮狄克. 间充质干细胞修复椎间盘退变的研究进展[J]. 中国脊柱脊髓杂志, 2022, 32(6): 547-552.
|
[12]
|
Kamali, A., Ziadlou, R., Lang, G., Pfannkuche, J., Cui, S., Li, Z., et al. (2021) Small Molecule-Based Treatment Approaches for Intervertebral Disc Degeneration: Current Options and Future Directions. Theranostics, 11, 27-47. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Lin, J., Chen, J., Zhang, Z., Xu, T., Shao, Z., Wang, X., et al. (2019) Luteoloside Inhibits Il-1β-Induced Apoptosis and Catabolism in Nucleus Pulposus Cells and Ameliorates Intervertebral Disk Degeneration. Frontiers in Pharmacology, 10, Article ID: 868. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Tellegen, A.R., Rudnik-Jansen, I., Beukers, M., Miranda-Bedate, A., Bach, F.C., de Jong, W., et al. (2018) Intradiscal Delivery of Celecoxib-Loaded Microspheres Restores Intervertebral Disc Integrity in a Preclinical Canine Model. Journal of Controlled Release, 286, 439-450. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Krupkova, O., Handa, J., Hlavna, M., Klasen, J., Ospelt, C., Ferguson, S.J., et al. (2016) The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. Oxidative Medicine and Cellular Longevity, 2016, Article ID: 7031397. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Hua, W., Li, S., Luo, R., Wu, X., Zhang, Y., Liao, Z., et al. (2020) Icariin Protects Human Nucleus Pulposus Cells from Hydrogen Peroxide-Induced Mitochondria-Mediated Apoptosis by Activating Nuclear Factor Erythroid 2-Related Factor 2. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 1866, Article 165575. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Klawitter, M., Quero, L., Klasen, J., Gloess, A.N., Klopprogge, B., Hausmann, O., et al. (2012) Curcuma DMSO Extracts and Curcumin Exhibit an Anti-Inflammatory and Anti-Catabolic Effect on Human Intervertebral Disc Cells, Possibly by Influencing TLR2 Expression and JNK Activity. Journal of Inflammation, 9, Article No. 29. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
张文捷, 张勇, 史明, 等. 淫羊藿苷调控髓核来源间充质干细胞凋亡修复椎间盘退变[J]. 中国组织工程研究, 2023, 27(24): 3803-3809.
|
[19]
|
Chen, Y., Zheng, Z., Wang, J., Tang, C., Khor, S., Chen, J., et al. (2018) Berberine Suppresses Apoptosis and Extracellular Matrix (ECM) Degradation in Nucleus Pulposus Cells and Ameliorates Disc Degeneration in a Rodent Model. International Journal of Biological Sciences, 14, 682-692. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Deng, X., Wu, W., Liang, H., Huang, D., Jing, D., Zheng, D., et al. (2017) Icariin Prevents Il‐1β‐Induced Apoptosis in Human Nucleus Pulposus via the PI3K/AKT Pathway. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 2198323. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Zhang, Z., Wang, C., Lin, J., Jin, H., Wang, K., Yan, Y., et al. (2021) ERRATUM: Therapeutic Potential of Naringin for Intervertebral Disc Degeneration: Involvement of Autophagy against Oxidative Stress-Induced Apoptosis in Nucleus Pulposus Cells. The American Journal of Chinese Medicine, 49, 2049-2052. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
张树文. 基于氧化应激探讨槲皮素防治椎间盘退变的实验研究[D]: [博士学位论文]. 乌鲁木齐: 新疆医科大学, 2021.
|
[23]
|
Hua, W., Zhang, Y., Wu, X., Kang, L., Tu, J., Zhao, K., et al. (2018) Icariin Attenuates Interleukin-1β-Induced Inflammatory Response in Human Nucleus Pulposus Cells. Current Pharmaceutical Design, 23, 6071-6078. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Wu, P.H., Kim, H.S. and Jang, I. (2020) Intervertebral Disc Diseases PART 2: A Review of the Current Diagnostic and Treatment Strategies for Intervertebral Disc Disease. International Journal of Molecular Sciences, 21, Article 2135. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Dowdell, J., Erwin, M., Choma, T., Vaccaro, A., Iatridis, J. and Cho, S.K. (2017) Intervertebral Disk Degeneration and Repair. Neurosurgery, 80, S46-S54. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Feng, C., Liu, H., Yang, Y., Huang, B. and Zhou, Y. (2015) Growth and Differentiation Factor-5 Contributes to the Structural and Functional Maintenance of the Intervertebral Disc. Cellular Physiology and Biochemistry, 35, 1-16. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Chujo, T., An, H.S., Akeda, K., Miyamoto, K., Muehleman, C., Attawia, M., et al. (2006) Effects of Growth Differentiation Factor-5 on the Intervertebral Disc—In Vitro Bovine Study and in Vivo Rabbit Disc Degeneration Model Study. Spine, 31, 2909-2917. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Li, X., Leo, B.M., Beck, G., Balian, G. and Anderson, G.D. (2004) Collagen and Proteoglycan Abnormalities in the Gdf-5-Deficient Mice and Molecular Changes When Treating Disk Cells with Recombinant Growth Factor. Spine, 29, 2229-2234. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Vadalà, G., Mozetic, P., Rainer, A., Centola, M., Loppini, M., Trombetta, M., et al. (2012) Bioactive Electrospun Scaffold for Annulus Fibrosus Repair and Regeneration. European Spine Journal, 21, 20-26. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Illien-Jünger, S., Pattappa, G., Peroglio, M., Benneker, L.M., Stoddart, M.J., Sakai, D., et al. (2012) Homing of Mesenchymal Stem Cells in Induced Degenerative Intervertebral Discs in a Whole Organ Culture System. Spine, 37, 1865-1873. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Kim, H., Yeom, J.S., Koh, Y., Yeo, J., Kang, K., Kang, Y., et al. (2014) Anti‐Inflammatory Effect of Platelet‐Rich Plasma on Nucleus Pulposus Cells with Response of TNF‐α and IL‐1. Journal of Orthopaedic Research, 32, 551-556. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Gelalis, I.D., Christoforou, G., Charchanti, A., Gkiatas, I., Pakos, E., Papadopoulos, D., et al. (2019) Autologous Platelet-Rich Plasma (PRP) Effect on Intervertebral Disc Restoration: An Experimental Rabbit Model. European Journal of Orthopaedic Surgery & Traumatology, 29, 545-551. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Vasiliadis, E.S., Pneumaticos, S.G., Evangelopoulos, D.S. and Papavassiliou, A.G. (2014) Biologic Treatment of Mild and Moderate Intervertebral Disc Degeneration. Molecular Medicine, 20, 400-409. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Mwale, F., Wang, H.T., Roughley, P., Antoniou, J. and Haglund, L. (2014) Link N and Mesenchymal Stem Cells Can Induce Regeneration of the Early Degenerate Intervertebral Disc. Tissue Engineering Part A, 20, 2942-2949. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Williams, R.J., Tryfonidou, M.A., Snuggs, J.W. and Le Maitre, C.L. (2021) Cell Sources Proposed for Nucleus Pulposus Regeneration. JOR SPINE, 4, e1175. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Ambrosio, L., Schol, J., Ruiz-Fernandez, C., Tamagawa, S., Soma, H., Tilotta, V., et al. (2024) ISSLS PRIZE in Basic Science 2024: Superiority of Nucleus Pulposus Cell-versus Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Attenuating Disc Degeneration and Alleviating Pain. European Spine Journal, 33, 1713-1727. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Elmounedi, N., Bahloul, W. and Keskes, H. (2024) Current Therapeutic Strategies of Intervertebral Disc Regenerative Medicine. Molecular Diagnosis & Therapy, 28, 745-775. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Peredo, A.P., Tsinman, T.K., Bonnevie, E.D., et al. (2024) Developmental Morphogens Direct Human Induced Pluripotent Stem Cells toward an Annulus Fibrosus-Like Cell Phenotype. JOR Spine, 7, e1313.
|
[39]
|
Sakai, D. and Andersson, G.B.J. (2015) Stem Cell Therapy for Intervertebral Disc Regeneration: Obstacles and Solutions. Nature Reviews Rheumatology, 11, 243-256. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Hohaus, C., Ganey, T.M., Minkus, Y. and Meisel, H.J. (2008) Cell Transplantation in Lumbar Spine Disc Degeneration Disease. European Spine Journal, 17, 492-503. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Watanabe, T., Sakai, D., Yamamoto, Y., Iwashina, T., Serigano, K., Tamura, F., et al. (2010) Human Nucleus Pulposus Cells Significantly Enhanced Biological Properties in a Coculture System with Direct Cell‐to‐Cell Contact with Autologous Mesenchymal Stem Cells. Journal of Orthopaedic Research, 28, 623-630. [Google Scholar] [CrossRef] [PubMed]
|
[42]
|
Murphy, M.B., Moncivais, K. and Caplan, A.I. (2013) Mesenchymal Stem Cells: Environmentally Responsive Therapeutics for Regenerative Medicine. Experimental & Molecular Medicine, 45, e54-e54. [Google Scholar] [CrossRef] [PubMed]
|
[43]
|
Pennicooke, B., Moriguchi, Y., Hussain, I., Bonssar, L. and Härtl, R. (2016) Biological Treatment Approaches for Degenerative Disc Disease: A Review of Clinical Trials and Future Directions. Cureus, 8, e892. [Google Scholar] [CrossRef] [PubMed]
|
[44]
|
Roh, E., Darai, A., Kyung, J., Choi, H., Kwon, S., Bhujel, B., et al. (2021) Genetic Therapy for Intervertebral Disc Degeneration. International Journal of Molecular Sciences, 22, Article 1579. [Google Scholar] [CrossRef] [PubMed]
|
[45]
|
Zhai, Y., Yang, L., Zheng, W., Wang, Q., Zhu, Z., Han, F., et al. (2023) A Precise Design Strategy for a Cell-Derived Extracellular Matrix Based on Crispr/cas9 for Regulating Neural Stem Cell Function. Biomaterials Science, 11, 6537-6544. [Google Scholar] [CrossRef] [PubMed]
|
[46]
|
Modi, D., Mohammad, Warsi, M.H., Garg, V., Bhatia, M., Kesharwani, P., et al. (2021) Formulation Development, Optimization, and in Vitro Assessment of Thermoresponsive Ophthalmic Pluronic F127-Chitosan in Situ Tacrolimus Gel. Journal of Biomaterials Science, Polymer Edition, 32, 1678-1702. [Google Scholar] [CrossRef] [PubMed]
|
[47]
|
Madamsetty, V.S., Tavakol, S., Moghassemi, S., Dadashzadeh, A., Schneible, J.D., Fatemi, I., et al. (2022) Chitosan: A Versatile Bio-Platform for Breast Cancer Theranostics. Journal of Controlled Release, 341, 733-752. [Google Scholar] [CrossRef] [PubMed]
|
[48]
|
Frapin, L., Clouet, J., Delplace, V., Fusellier, M., Guicheux, J. and Le Visage, C. (2019) Lessons Learned from Intervertebral Disc Pathophysiology to Guide Rational Design of Sequential Delivery Systems for Therapeutic Biological Factors. Advanced Drug Delivery Reviews, 149, 49-71. [Google Scholar] [CrossRef] [PubMed]
|
[49]
|
Liu, Y., Ren, L. and Wang, Y. (2013) Crosslinked Collagen-Gelatin-Hyaluronic Acid Biomimetic Film for Cornea Tissue Engineering Applications. Materials Science and Engineering: C, 33, 196-201. [Google Scholar] [CrossRef] [PubMed]
|
[50]
|
Sawamura, K., Ikeda, T., Nagae, M., Okamoto, S., Mikami, Y., Hase, H., et al. (2009) Characterization of in Vivo Effects of Platelet-Rich Plasma and Biodegradable Gelatin Hydrogel Microspheres on Degenerated Intervertebral Discs. Tissue Engineering Part A, 15, 3719-3727. [Google Scholar] [CrossRef] [PubMed]
|
[51]
|
Chou, A.I. and Nicoll, S.B. (2009) Characterization of Photocrosslinked Alginate Hydrogels for Nucleus Pulposus Cell Encapsulation. Journal of Biomedical Materials Research Part A, 91, 187-194. [Google Scholar] [CrossRef] [PubMed]
|
[52]
|
Sionkowska, A., Kaczmarek, B., Lewandowska, K., Grabska, S., Pokrywczyńska, M., Kloskowski, T., et al. (2016) 3D Composites Based on the Blends of Chitosan and Collagen with the Addition of Hyaluronic Acid. International Journal of Biological Macromolecules, 89, 442-448. [Google Scholar] [CrossRef] [PubMed]
|
[53]
|
Dai, T., Tanaka, M., Huang, Y. and Hamblin, M.R. (2011) Chitosan Preparations for Wounds and Burns: Antimicrobial and Wound-Healing Effects. Expert Review of Anti-Infective Therapy, 9, 857-879. [Google Scholar] [CrossRef] [PubMed]
|
[54]
|
Wismer, N., Grad, S., Fortunato, G., Ferguson, S.J., Alini, M. and Eglin, D. (2014) Biodegradable Electrospun Scaffolds for Annulus Fibrosus Tissue Engineering: Effect of Scaffold Structure and Composition on Annulus Fibrosus Cells in Vitro. Tissue Engineering Part A, 20, 672-682. [Google Scholar] [CrossRef] [PubMed]
|
[55]
|
Aragon, J., Navascues, N., Mendoza, G. and Irusta, S. (2017) Laser-Treated Electrospun Fibers Loaded with Nano-Hydroxyapatite for Bone Tissue Engineering. International Journal of Pharmaceutics, 525, 112-122. [Google Scholar] [CrossRef] [PubMed]
|
[56]
|
Francisco, A.T., Hwang, P.Y., Jeong, C.G., Jing, L., Chen, J. and Setton, L.A. (2014) Photocrosslinkable Laminin-Functionalized Polyethylene Glycol Hydrogel for Intervertebral Disc Regeneration. Acta Biomaterialia, 10, 1102-1111. [Google Scholar] [CrossRef] [PubMed]
|
[57]
|
Henry, N., Clouet, J., Le Visage, C., Weiss, P., Gautron, E., Renard, D., et al. (2017) Silica Nanofibers as a New Drug Delivery System: A Study of the Protein-Silica Interactions. Journal of Materials Chemistry B, 5, 2908-2920. [Google Scholar] [CrossRef] [PubMed]
|
[58]
|
Vinatier, C., Gauthier, O., Fatimi, A., Merceron, C., Masson, M., Moreau, A., et al. (2009) An Injectable Cellulose‐Based Hydrogel for the Transfer of Autologous Nasal Chondrocytes in Articular Cartilage Defects. Biotechnology and Bioengineering, 102, 1259-1267. [Google Scholar] [CrossRef] [PubMed]
|
[59]
|
Balmert, S.C. and Little, S.R. (2012) Biomimetic Delivery with Micro‐ and Nanoparticles. Advanced Materials, 24, 3757-3778. [Google Scholar] [CrossRef] [PubMed]
|
[60]
|
Phromsopha, T. and Baimark, Y. (2014) Preparation of Starch/Gelatin Blend Microparticles by a Water-in-Oil Emulsion Method for Controlled Release Drug Delivery. International Journal of Biomaterials, 2014, Article ID: 829490. [Google Scholar] [CrossRef] [PubMed]
|
[61]
|
Wilczewska, A.Z., Niemirowicz, K., Markiewicz, K.H. and Car, H. (2012) Nanoparticles as Drug Delivery Systems. Pharmacological Reports, 64, 1020-1037. [Google Scholar] [CrossRef] [PubMed]
|
[62]
|
Wang, W., Lu, K., Yu, C., Huang, Q. and Du, Y. (2019) Nano-Drug Delivery Systems in Wound Treatment and Skin Regeneration. Journal of Nanobiotechnology, 17, Article No. 82. [Google Scholar] [CrossRef] [PubMed]
|
[63]
|
Liu, W., Ma, Z., Wang, Y. and Yang, J. (2023) Multiple Nano-Drug Delivery Systems for Intervertebral Disc Degeneration: Current Status and Future Perspectives. Bioactive Materials, 23, 274-299. [Google Scholar] [CrossRef] [PubMed]
|
[64]
|
van Rijt, S. and Habibovic, P. (2017) Enhancing Regenerative Approaches with Nanoparticles. Journal of The Royal Society Interface, 14, Article 20170093. [Google Scholar] [CrossRef] [PubMed]
|