[1]
|
Jia, J., Wei, C., Chen, S., Li, F., Tang, Y., Qin, W., et al. (2018) The Cost of Alzheimer’s Disease in China and Re‐estimation of Costs Worldwide. Alzheimer’s & Dementia, 14, 483-491. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Karlawish, J. and Grill, J.D. (2024) Alzheimer’s Disease Biomarkers and the Tyranny of Treatment. eBioMedicine, 108, Article 105291. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Ma, C., Hong, F. and Yang, S. (2022) Amyloidosis in Alzheimer’s Disease: Pathogeny, Etiology, and Related Therapeutic Directions. Molecules, 27, Article 1210. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Huang, Y. and Liu, R. (2020) The Toxicity and Polymorphism of β-Amyloid Oligomers. International Journal of Molecular Sciences, 21, Article 4477. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Tiwari, S., Atluri, V., Kaushik, A., Yndart, A. and Nair, M. (2019) Alzheimer’s Disease: Pathogenesis, Diagnostics, and Therapeutics. International Journal of Nanomedicine, 14, 5541-5554. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Li, C. and Götz, J. (2017) Tau-Based Therapies in Neurodegeneration: Opportunities and Challenges. Nature Reviews Drug Discovery, 16, 863-883. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Ovod, V., Ramsey, K.N., Mawuenyega, K.G., Bollinger, J.G., Hicks, T., Schneider, T., et al. (2017) Amyloid Β Concentrations and Stable Isotope Labeling Kinetics of Human Plasma Specific to Central Nervous System Amyloidosis. Alzheimer’s & Dementia, 13, 841-849. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
Zhang, D., Zhang, W., Ming, C., Gao, X., Yuan, H., Lin, X., et al. (2024) P-Tau217 Correlates with Neurodegeneration in Alzheimer’s Disease, and Targeting P-Tau217 with Immunotherapy Ameliorates Murine Tauopathy. Neuron, 112, 1676-1693.E12. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Doroszkiewicz, J., Groblewska, M. and Mroczko, B. (2022) Molecular Biomarkers and Their Implications for the Early Diagnosis of Selected Neurodegenerative Diseases. International Journal of Molecular Sciences, 23, Article 4610. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Gonzalez-Ortiz, F., Kac, P.R., Brum, W.S., Zetterberg, H., Blennow, K. and Karikari, T.K. (2023) Plasma Phospho-Tau in Alzheimer’s Disease: Towards Diagnostic and Therapeutic Trial Applications. Molecular Neurodegeneration, 18, Article No. 18. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Milà-Alomà, M., Ashton, N.J., Shekari, M., Salvadó, G., Ortiz-Romero, P., Montoliu-Gaya, L., et al. (2022) Plasma P-Tau231 and P-Tau217 as State Markers of Amyloid-Β Pathology in Preclinical Alzheimer’s Disease. Nature Medicine, 28, 1797-1801. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Li, L., Che, P., Liu, D., Wang, Y., Li, J., He, D., et al. (2025) Diagnostic and Discriminative Accuracy of Plasma Phosphorylated Tau 217 for Symptomatic Alzheimerʼs Disease in a Chinese Cohort. The Journal of Prevention of Alzheimer’s Disease, 12, Article 100092. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Gaetani, L., Blennow, K., Calabresi, P., Di Filippo, M., Parnetti, L. and Zetterberg, H. (2019) Neurofilament Light Chain as a Biomarker in Neurological Disorders. Journal of Neurology, Neurosurgery & Psychiatry, 90, 870-881. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Palermo, G., Mazzucchi, S., Della Vecchia, A., Siciliano, G., Bonuccelli, U., Azuar, C., et al. (2020) Different Clinical Contexts of Use of Blood Neurofilament Light Chain Protein in the Spectrum of Neurodegenerative Diseases. Molecular Neurobiology, 57, 4667-4691. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Gallingani, C., Carbone, C., Tondelli, M. and Zamboni, G. (2024) Neurofilaments Light Chain in Neurodegenerative Dementias: A Review of Imaging Correlates. Brain Sciences, 14, Article 272. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Nicsanu, R., Cervellati, C., Benussi, L., Squitti, R., Zanardini, R., Rosta, V., et al. (2022) Increased Serum Beta-Secretase 1 Activity Is an Early Marker of Alzheimer’s Disease. Journal of Alzheimer’s Disease, 87, 433-441. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Saraceno, C., Cervellati, C., Trentini, A., Crescenti, D., Longobardi, A., Geviti, A., et al. (2024) Serum Beta-Secretase 1 Activity Is a Potential Marker for the Differential Diagnosis between Alzheimer’s Disease and Frontotemporal Dementia: A Pilot Study. International Journal of Molecular Sciences, 25, Article 8354. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Pang, K., Jiang, R., Zhang, W., Yang, Z., Li, L., Shimozawa, M., et al. (2022) An App Knock-In Rat Model for Alzheimer’s Disease Exhibiting Aβ and Tau Pathologies, Neuronal Death and Cognitive Impairments. Cell Research, 32, 157-175. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Triaca, V., Ruberti, F. and Canu, N. (2021) NGF and the Amyloid Precursor Protein in Alzheimer’s Disease: From Molecular Players to Neuronal Circuits. In: Calzà, L., Aloe, L. and Giardino, L., Eds., Advances in Experimental Medicine and Biology, Springer International Publishing, 145-165. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Maurya, R., Bhattacharjee, G., Khambhati, K., et al. (2023) Amyloid Precursor Protein in Alzheimer’s Disease. Progress in Molecular Biology and Translational Science, 196, 261-270.
|
[21]
|
Fortea, J., Pegueroles, J., Alcolea, D., Belbin, O., Dols-Icardo, O., Vaqué-Alcázar, L., et al. (2024) APOE4 Homozygosity Represents a Distinct Genetic Form of Alzheimer’s Disease. Nature Medicine, 30, 1284-1291. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Ferrari-Souza, J.P., Bellaver, B., Ferreira, P.C.L., Benedet, A.L., Povala, G., Lussier, F.Z., et al. (2023) APOEε4 Potentiates Amyloid Β Effects on Longitudinal Tau Pathology. Nature Aging, 3, 1210-1218. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Scarabino, D., Broggio, E., Gambina, G., Maida, C., Gaudio, M.R. and Corbo, R.M. (2016) Apolipoprotein E Genotypes and Plasma Levels in Mild Cognitive Impairment Conversion to Alzheimer’s Disease: A Follow‐Up Study. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 171, 1131-1138. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Abdullah, L., Evans, J.E., Emmerich, T., Crynen, G., Shackleton, B., Keegan, A.P., et al. (2017) APOE ε4 Specific Imbalance of Arachidonic Acid and Docosahexaenoic Acid in Serum Phospholipids Identifies Individuals with Preclinical Mild Cognitive Impairment/Alzheimer’s Disease. Aging, 9, 964-985. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Prins, S., de Kam, M.L., Teunissen, C.E., et al. (2022) Inflammatory Plasma Biomarkers in Subjects with Preclinical Alzheimer’s Disease. Alzheimer’s Research & Therapy, 14, Article 106.
|
[26]
|
Nie, C., Sun, Y., Zhen, H., Guo, M., Ye, J., Liu, Z., et al. (2020) Differential Expression of Plasma Exo-Mirna in Neurodegenerative Diseases by Next-Generation Sequencing. Frontiers in Neuroscience, 14, Article 438. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Lugli, G., Cohen, A.M., Bennett, D.A., Shah, R.C., Fields, C.J., Hernandez, A.G., et al. (2015) Plasma Exosomal Mirnas in Persons with and without Alzheimer Disease: Altered Expression and Prospects for Biomarkers. PLOS ONE, 10, e0139233. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Li, W. and Zheng, Y. (2023) MicroRNAs in Extracellular Vesicles of Alzheimer’s Disease. Cells, 12, Article 1378. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Salta, E. and De Strooper, B. (2017) MicroRNA‐132: A Key Noncoding RNA Operating in the Cellular Phase of Alzheimer’s Disease. The FASEB Journal, 31, 424-433. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Wu, H.Z.Y., Thalamuthu, A., Cheng, L., Fowler, C., Masters, C.L., Sachdev, P., et al. (2020) Differential Blood Mirna Expression in Brain Amyloid Imaging-Defined Alzheimer’s Disease and Controls. Alzheimer’s Research & Therapy, 12, Article No. 59. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Varesi, A., Carrara, A., Pires, V.G., Floris, V., Pierella, E., Savioli, G., et al. (2022) Blood-Based Biomarkers for Alzheimer’s Disease Diagnosis and Progression: An Overview. Cells, 11, Article 1367. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Kim, M., Nevado-Holgado, A., Whiley, L., Snowden, S.G., Soininen, H., Kloszewska, I., et al. (2017) Association between Plasma Ceramides and Phosphatidylcholines and Hippocampal Brain Volume in Late Onset Alzheimer’s Disease. Journal of Alzheimer’s Disease, 60, 809-817. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Akyol, S., Ugur, Z., Yilmaz, A., Ustun, I., Gorti, S.K.K., Oh, K., et al. (2021) Lipid Profiling of Alzheimer’s Disease Brain Highlights Enrichment in Glycerol(Phospho)Lipid, and Sphingolipid Metabolism. Cells, 10, Article 2591. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Lista, S., Imbimbo, B.P., Grasso, M., Fidilio, A., Emanuele, E., Minoretti, P., et al. (2024) Tracking Neuroinflammatory Biomarkers in Alzheimer’s Disease: A Strategy for Individualized Therapeutic Approaches? Journal of Neuroinflammation, 21, Article No. 187. [Google Scholar] [CrossRef] [PubMed]
|
[35]
|
Delaby, C., Hirtz, C. and Lehmann, S. (2023) Overview of the Blood Biomarkers in Alzheimer’s Disease: Promises and Challenges. Revue Neurologique, 179, 161-172. [Google Scholar] [CrossRef] [PubMed]
|