[1]
|
Kalra, R.S., Dhanjal, J.K., Das, M., Singh, B. and Naithani, R. (2021) Cell Transdifferentiation and Reprogramming in Disease Modeling: Insights into the Neuronal and Cardiac Disease Models and Current Translational Strategies. Cells, 10, Article 2558. [Google Scholar] [CrossRef] [PubMed]
|
[2]
|
Almeida, M., Inácio, J.M., Vital, C.M., Rodrigues, M.R., Araújo, B.C. and Belo, J.A. (2025) Cell Reprogramming, Transdifferentiation, and Dedifferentiation Approaches for Heart Repair. International Journal of Molecular Sciences, 26, Article 3063. [Google Scholar] [CrossRef] [PubMed]
|
[3]
|
Lee, S.S., Martinez Peña, E.G., Willis, A.A., Wang, C.C., Haddad, N.R. and Garza, L.A. (2025) Cell Therapy and the Skin: Great Potential but in Need of Optimization. Journal of Investigative Dermatology, 145, 1033-1038. [Google Scholar] [CrossRef] [PubMed]
|
[4]
|
Son, D.O., Benitez, R., Diao, L., et al. (2024) How to Keep Myofibroblasts under Control: Culture of Mouse Skin Fibroblasts on Soft Substrates. Journal of Investigative Dermatology, 144, 1923-1934. [Google Scholar] [CrossRef] [PubMed]
|
[5]
|
Ye, C., Zhu, J., Wang, J., Chen, D., Meng, L., Zhan, Y., et al. (2022) Single‐Cell and Spatial Transcriptomics Reveal the Fibrosis‐Related Immune Landscape of Biliary Atresia. Clinical and Translational Medicine, 12, e1070. [Google Scholar] [CrossRef] [PubMed]
|
[6]
|
Chen, C., Kajita, H., Takaya, K., Aramaki-Hattori, N., Sakai, S., Asou, T., et al. (2022) Single-Cell RNA-Seq Analysis Reveals Cellular Functional Heterogeneity in Dermis between Fibrotic and Regenerative Wound Healing Fates. Frontiers in Immunology, 13, Article 875407. [Google Scholar] [CrossRef] [PubMed]
|
[7]
|
Hosseini, M., Brown, J., Khosrotehrani, K., Bayat, A. and Shafiee, A. (2022) Skin Biomechanics: A Potential Therapeutic Intervention Target to Reduce Scarring. Burns & Trauma, 10, tkac036. [Google Scholar] [CrossRef] [PubMed]
|
[8]
|
van Kuijk, K., McCracken, I.R., Tillie, R.J.H.A., Asselberghs, S.E.J., Kheder, D.A., Muitjens, S., et al. (2023) Human and Murine Fibroblast Single-Cell Transcriptomics Reveals Fibroblast Clusters Are Differentially Affected by Ageing and Serum Cholesterol. Cardiovascular Research, 119, 1509-1523. [Google Scholar] [CrossRef] [PubMed]
|
[9]
|
Correa-Gallegos, D., Ye, H., Dasgupta, B., Sardogan, A., Kadri, S., Kandi, R., et al. (2023) CD201+ Fascia Progenitors Choreograph Injury Repair. Nature, 623, 792-802. [Google Scholar] [CrossRef] [PubMed]
|
[10]
|
Sato, S., Hishida, T., Kinouchi, K., Hatanaka, F., Li, Y., Nguyen, Q., et al. (2023) The Circadian Clock CRY1 Regulates Pluripotent Stem Cell Identity and Somatic Cell Reprogramming. Cell Reports, 42, Article ID: 112590. [Google Scholar] [CrossRef] [PubMed]
|
[11]
|
Katoku-Kikyo, N., Lim, S., Yuan, C., Koroth, J., Nakagawa, Y., Bradley, E.W., et al. (2023) The Circadian Regulator PER1 Promotes Cell Reprogramming by Inhibiting Inflammatory Signaling from Macrophages. PLOS Biology, 21, e3002419. [Google Scholar] [CrossRef] [PubMed]
|
[12]
|
Ji, S., Li, Y., Xiang, L., Liu, M., Xiong, M., Cui, W., et al. (2024) Cocktail Cell‐Reprogrammed Hydrogel Microspheres Achieving Scarless Hair Follicle Regeneration. Advanced Science, 11, e2306305. [Google Scholar] [CrossRef] [PubMed]
|
[13]
|
Missinato, M.A., Murphy, S., Lynott, M., Yu, M.S., Kervadec, A., Chang, Y., et al. (2023) Conserved Transcription Factors Promote Cell Fate Stability and Restrict Reprogramming Potential in Differentiated Cells. Nature Communications, 14, Article No. 1709. [Google Scholar] [CrossRef] [PubMed]
|
[14]
|
Yu, H., Chen, M., Hu, Y., Ou, S., Yu, X., Liang, S., et al. (2022) Dynamic Reprogramming of H3K9me3 at Hominoid-Specific Retrotransposons during Human Preimplantation Development. Cell Stem Cell, 29, 1031-1050.e12. [Google Scholar] [CrossRef] [PubMed]
|
[15]
|
Du, Z., Zhang, K. and Xie, W. (2021) Epigenetic Reprogramming in Early Animal Development. Cold Spring Harbor Perspectives in Biology, 14, a039677. [Google Scholar] [CrossRef] [PubMed]
|
[16]
|
Deng, W., Wei, X., Dong, Z., Zhang, J., Huang, Z. and Na, N. (2021) Identification of Fibroblast Activation-Related Genes in Two Acute Kidney Injury Models. PeerJ, 9, e10926. [Google Scholar] [CrossRef] [PubMed]
|
[17]
|
Kozawa, S., Tejima, K., Takagi, S., Kuroda, M., Nogami-Itoh, M., Kitamura, H., et al. (2023) Latent Inter-Organ Mechanism of Idiopathic Pulmonary Fibrosis Unveiled by a Generative Computational Approach. Scientific Reports, 13, Article No. 21981. [Google Scholar] [CrossRef] [PubMed]
|
[18]
|
Wang, Z., Zhao, F., Xu, C., Zhang, Q., Ren, H., Huang, X., et al. (2024) Metabolic Reprogramming in Skin Wound Healing. Burns & Trauma, 12, tkad047. [Google Scholar] [CrossRef] [PubMed]
|
[19]
|
Li, Q., Ling, Y., Ma, Y., Zhang, T., Yang, Y. and Tao, S. (2024) Paracrine Signaling of Ferroptotic Airway Epithelium in Crystalline Silica-Induced Pulmonary Fibrosis Augments Local Fibroblast Activation through Glycolysis Reprogramming. Ecotoxicology and Environmental Safety, 271, Article ID: 115994. [Google Scholar] [CrossRef] [PubMed]
|
[20]
|
Liu, N., Zhu, X., Wu, C., Liu, Y., Chen, M. and Gu, J. (2024) PCK1 as a Target for Cancer Therapy: From Metabolic Reprogramming to Immune Microenvironment Remodeling. Cell Death Discovery, 10, Article No. 478. [Google Scholar] [CrossRef] [PubMed]
|
[21]
|
Wang, J., Wang, L., Wang, Z., Lv, M., Fu, J., Zhang, Y., et al. (2023) Vitamin C Down-Regulates the H3K9me3-Dependent Heterochromatin in Buffalo Fibroblasts via PI3K/PDK1/SGK1/KDM4A Signal Axis. Theriogenology, 200, 114-124. [Google Scholar] [CrossRef] [PubMed]
|
[22]
|
Caudal, A., Liu, Y., Pang, P.D., Maison, D.P., Nakasuka, K., Feng, J., et al. (2025) Transcriptomic Profiling of Human Myocardium at Sudden Death to Define Vulnerable Substrate for Lethal Arrhythmias. JACC: Clinical Electrophysiology, 11, 143-155. [Google Scholar] [CrossRef] [PubMed]
|
[23]
|
Kalgudde Gopal, S., Dai, R., Stefanska, A.M., Ansari, M., Zhao, J., Ramesh, P., et al. (2023) Wound Infiltrating Adipocytes Are Not Myofibroblasts. Nature Communications, 14, Article No. 3020. [Google Scholar] [CrossRef] [PubMed]
|
[24]
|
Zhao, S., Kong, H., Qi, D., Qiao, Y., Li, Y., Cao, Z., et al. (2025) Epidermal Stem Cell Derived Exosomes-Induced Dedifferentiation of Myofibroblasts Inhibits Scarring via the miR-203a-3p/PIK3CA Axis. Journal of Nanobiotechnology, 23, Article No. 56. [Google Scholar] [CrossRef] [PubMed]
|
[25]
|
Lin, L., Liu, Z., Tu, B., Song, K., Sun, H., Zhou, Y., et al. (2024) Epigenetic Signatures in Cardiac Fibrosis: Focusing on Noncoding RNA Regulators as the Gatekeepers of Cardiac Fibroblast Identity. International Journal of Biological Macromolecules, 254, Article ID: 127593. [Google Scholar] [CrossRef] [PubMed]
|
[26]
|
Long, C., Li, H., Liang, P., Chao, L., Hong, Y., Zhang, J., et al. (2023) Deciphering the Decisive Factors Driving Fate Bifurcations in Somatic Cell Reprogramming. Molecular Therapy Nucleic Acids, 34, Article ID: 102044. [Google Scholar] [CrossRef] [PubMed]
|
[27]
|
Lin, H., Wang, X., Chung, M., Cai, S. and Pan, Y. (2025) Direct Fibroblast Reprogramming: An Emerging Strategy for Treating Organic Fibrosis. Journal of Translational Medicine, 23, Article No. 240. [Google Scholar] [CrossRef] [PubMed]
|
[28]
|
Huang, P., Xu, J., Keepers, B., Xie, Y., Near, D., Xu, Y., et al. (2024) Direct Cardiac Reprogramming via Combined CRISPRa-Mediated Endogenous Gata4 Activation and Exogenous Mef2c and Tbx5 Expression. Molecular Therapy—Nucleic Acids, 35, Article ID: 102390. [Google Scholar] [CrossRef] [PubMed]
|
[29]
|
Gong, X., Zhao, Q., Zhang, H., Liu, R., Wu, J., Zhang, N., et al. (2024) The Effects of Mesenchymal Stem Cells-Derived Exosomes on Metabolic Reprogramming in Scar Formation and Wound Healing. International Journal of Nanomedicine, 19, 9871-9887. [Google Scholar] [CrossRef] [PubMed]
|
[30]
|
Rahnama, M., Ghasemzadeh, N., Ebrahimi, Y. and Golchin, A. (2024) A Comprehensive Evaluation of Dermal Fibroblast Therapy in Clinical Trials for Treating Skin Disorders and Cosmetic Applications: A Scoping Review. Stem Cell Research & Therapy, 15, Article No. 318. [Google Scholar] [CrossRef] [PubMed]
|
[31]
|
Xu, X., Liu, J., Xiao, Z., Li, S., Zhang, Y., Song, P., et al. (2024) Zeolitic Imidazolate Framework-90 Loaded with Methylprednisolone Sodium Succinate Effectively Reduces Hypertrophic Scar in Vivo. Nanoscale, 16, 6708-6719. [Google Scholar] [CrossRef] [PubMed]
|
[32]
|
Shen, Y., Huang, Y. and Cheng, Y. (2024) Advancements in Antioxidant-Based Therapeutics for Spinal Cord Injury: A Critical Review of Strategies and Combination Approaches. Antioxidants, 14, Article 17. [Google Scholar] [CrossRef] [PubMed]
|
[33]
|
Murakami, T. and Shigeki, S. (2024) Pharmacotherapy for Keloids and Hypertrophic Scars. International Journal of Molecular Sciences, 25, Article 4674. [Google Scholar] [CrossRef] [PubMed]
|
[34]
|
Goyal, N.N. and Gold, M.H. (2014) A Novel Triple Medicine Combination Injection for the Resolution of Keloids and Hypertrophic Scars. The Journal of Clinical and Aesthetic Dermatology, 7, 31-34.
|
[35]
|
Alfarafisa, N., Chou, Y., Santika, R., Riestiano, B., Soedjana, H. and Syamsunarno, M.R. (2025) Adipose-Derived Stem Cell Products and Combination Therapies for the Treatment of Pathological Scars: A Review of Current Preclinical and Clinical Studies. Clinical, Cosmetic and Investigational Dermatology, 18, 1309-1337. [Google Scholar] [CrossRef] [PubMed]
|
[36]
|
Wang, Q., Spurlock, B., Liu, J. and Qian, L. (2024) Fibroblast Reprogramming in Cardiac Repair. JACC: Basic to Translational Science, 9, 145-160. [Google Scholar] [CrossRef] [PubMed]
|
[37]
|
Han, Z., Wang, K., Ding, S. and Zhang, M. (2024) Cross-Talk of Inflammation and Cellular Senescence: A New Insight into the Occurrence and Progression of Osteoarthritis. Bone Research, 12, Article No. 69. [Google Scholar] [CrossRef] [PubMed]
|
[38]
|
Almet, A.A., Liu, Y., Nie, Q. and Plikus, M.V. (2025) Integrated Single-Cell Analysis Reveals Spatially and Temporally Dynamic Heterogeneity in Fibroblast States during Wound Healing. Journal of Investigative Dermatology, 145, 645-659.e25. [Google Scholar] [CrossRef] [PubMed]
|
[39]
|
Ding, J., Sun, L., Zhu, Z., Wu, X., Xu, X. and Xiang, Y. (2023) Nano Drug Delivery Systems: A Promising Approach to Scar Prevention and Treatment. Journal of Nanobiotechnology, 21, Article No. 268. [Google Scholar] [CrossRef] [PubMed]
|
[40]
|
Huang, Y., Li, J., Wang, Y., Chen, D., Huang, J., Dai, W., et al. (2023) Intradermal Delivery of an Angiotensin II Receptor Blocker Using a Personalized Microneedle Patch for Treatment of Hypertrophic Scars. Biomaterials Science, 11, 583-595. [Google Scholar] [CrossRef] [PubMed]
|
[41]
|
Gan, N., Li, X., Wei, M., Li, Z., Zhou, S. and Gao, B. (2025) Tongue Prick Bionic Angularly Adjustable Microneedles for Enhanced Scarless Wound Healing. Advanced Functional Materials, 35, Article ID: 2422602. [Google Scholar] [CrossRef]
|