|
[1]
|
Tørring, P.M., Larsen, M.J., Brasch-Andersen, C., Krogh, L.N., Kibæk, M., Laulund, L., et al. (2019) Is MED13L-Related Intellectual Disability a Recognizable Syndrome? European Journal of Medical Genetics, 62, 129-136. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Cafiero, C., Marangi, G., Orteschi, D., Ali, M., Asaro, A., Ponzi, E., et al. (2015) Novel De Novo Heterozygous Loss-Of-Function Variants in MED13L and Further Delineation of the MED13L Haploinsufficiency Syndrome. European Journal of Human Genetics, 23, 1499-1504. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Asadollahi, R., Zweier, M., Gogoll, L., Schiffmann, R., Sticht, H., Steindl, K., et al. (2017) Genotype-Phenotype Evaluation of MED13L Defects in the Light of a Novel Truncating and a Recurrent Missense Mutation. European Journal of Medical Genetics, 60, 451-464. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Smol, T., Petit, F., Piton, A., Keren, B., Sanlaville, D., Afenjar, A., et al. (2018) MED13L-Related Intellectual Disability: Involvement of Missense Variants and Delineation of the Phenotype. neurogenetics, 19, 93-103. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Caro-Llopis, A., Rosello, M., Orellana, C., Oltra, S., Monfort, S., Mayo, S., et al. (2016) De Novo Mutations in Genes of Mediator Complex Causing Syndromic Intellectual Disability: Mediatorpathy or Transcriptomopathy? Pediatric Research, 80, 809-815. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Muncke, N., Jung, C., Rüdiger, H., Ulmer, H., Roeth, R., Hubert, A., et al. (2003) Missense Mutations and Gene Interruption in prosit240, a Novel trap240-Like Gene, in Patients with Congenital Heart Defect (Transposition of the Great Arteries). Circulation, 108, 2843-2850. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Snijders Blok, L., Hiatt, S.M., Bowling, K.M., Prokop, J.W., Engel, K.L., Cochran, J.N., et al. (2018) De Novo Mutations in MED13, a Component of the Mediator Complex, Are Associated with a Novel Neurodevelopmental Disorder. Human Genetics, 137, 375-388. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Bessenyei, B., Balogh, I., Mokánszki, A., Ujfalusi, A., Pfundt, R. and Szakszon, K. (2022) MED13L-Related Intellectual Disability Due to Paternal Germinal Mosaicism. Molecular Case Studies, 8, a006124. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Utami, K.H., Winata, C.L., Hillmer, A.M., Aksoy, I., Long, H.T., Liany, H., et al. (2014) Impaired Development of Neural-Crest Cell Derived Organs and Intellectual Disability Caused by MED13L Haploinsufficiency. Human Mutation, 35, 1311-1320. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Adegbola, A., Musante, L., Callewaert, B., Maciel, P., Hu, H., Isidor, B., et al. (2015) Redefining the MED13L Syndrome. European Journal of Human Genetics, 23, 1308-1317. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Martínez, F., Caro-Llopis, A., Roselló, M., Oltra, S., Mayo, S., Monfort, S., et al. (2017) High Diagnostic Yield of Syndromic Intellectual Disability by Targeted Next-Generation Sequencing. Journal of Medical Genetics, 54, 87-92. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
van Haelst, M.M., Monroe, G.R., Duran, K., van Binsbergen, E., Breur, J.M., Giltay, J.C., et al. (2015) Further Confirmation of the MED13L Haploinsufficiency Syndrome. European Journal of Human Genetics, 23, 135-138. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Mariën, P., Ackermann, H., Adamaszek, M., Barwood, C.H.S., Beaton, A., Desmond, J., et al. (2014) Consensus Paper: Language and the Cerebellum: An Ongoing Enigma. The Cerebellum, 13, 386-410. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Jiménez-Romero, S., Carrasco-Salas, P. and Benítez-Burraco, A. (2018) Language and Cognitive Impairment Associated with a Novel p.Cys63Arg Change in the MED13L Transcriptional Regulator. Molecular Syndromology, 9, 83-91. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Yi, Z., Zhang, Y., Song, Z., Pan, H., Yang, C., Li, F., et al. (2020) Report of a De Novo C.2605C>T(p.Pro869Ser) Change in the MED13L Gene and Review of the Literature for MED13L-Related Intellectual Disability. Italian Journal of Pediatrics, 46, Article No. 95. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Hamada, N., Iwamoto, I. and Nagata, K. (2023) MED13L and Its Disease-Associated Variants Influence the Dendritic Development of Cerebral Cortical Neurons in the Mammalian Brain. Journal of Neurochemistry, 165, 334-347. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Iossifov, I., Ronemus, M., Levy, D., Wang, Z., Hakker, I., Rosenbaum, J., et al. (2012) De Novo Gene Disruptions in Children on the Autistic Spectrum. Neuron, 74, 285-299. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Iossifov, I., O’Roak, B.J., Sanders, S.J., Ronemus, M., Krumm, N., Levy, D., et al. (2014) The Contribution of De Novo Coding Mutations to Autism Spectrum Disorder. Nature, 515, 216-221. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Iossifov, I., Levy, D., Allen, J., Ye, K., Ronemus, M., Lee, Y., et al. (2015) Low Load for Disruptive Mutations in Autism Genes and Their Biased Transmission. Proceedings of the National Academy of Sciences, 112, E5600-7. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Benítez-Burraco, A. and Murphy, E. (2016) The Oscillopathic Nature of Language Deficits in Autism: From Genes to Language Evolution. Frontiers in Human Neuroscience, 10, Article ID: 120. [Google Scholar] [CrossRef] [PubMed]
|