起源识别复合体亚基1 (ORC1)在癌发生中的分子机制与治疗前景
Molecular Mechanism and Therapeutic Prospects of Origin Recognition Complex 1 (ORC1) in Carcinogenesis
摘要: 起源识别复合体亚基1 (ORC1)在调控DNA复制过程和维持细胞周期中发挥关键作用。此外,ORC1的表达在多种癌细胞中显著上调,并与癌症进展密切关联。进一步而言,ORC1在癌症中的功能紧密关联于细胞周期调控、细胞增殖、转移、免疫应答及DNA复制系统的维持。从机制上看,ORC1可能主要通过激活ERK/JNK信号通路促进癌变。因此,ORC1可作为重要的癌症生物标志物和潜在的治疗靶点。本文特别综述了ORC1在癌症进展中的作用机制及其治疗潜力的最新研究。对ORC1致癌功能的深入探索,有望为癌症诊断和治疗提供新策略。
Abstract: Origin Recognition Complex 1 (ORC1) plays a critical role in regulating the DNA replication process and maintaining the cell cycle. Additionally, ORC1 expression is significantly upregulated in various cancer cells and is closely associated with cancer progression. Furthermore, ORC1 functions in cancer are closely linked to regulating the cell cycle, cell proliferation, cell metastasis, immune responses, and maintaining the DNA replication system. Mechanistically, ORC1 may primarily promote carcinogenesis by activating the ERK/JNK signaling pathway. Therefore, ORC1 could serve as an important cancer biomarker and a potential therapeutic target. Specifically, this article summarizes the latest research on the mechanisms of ORC1 action in cancer progression and its potential therapeutic opportunities. Further investigations into the oncogenic functions of ORC1 may provide new approaches for cancer diagnosis and treatment.
文章引用:许珊, 赵廷宽. 起源识别复合体亚基1 (ORC1)在癌发生中的分子机制与治疗前景[J]. 临床医学进展, 2025, 15(10): 1112-1118. https://doi.org/10.12677/acm.2025.15102862

1. 引言

起始识别复合物亚基1 (ORC1)是真核生物起始识别复合物(ORC)的核心组分,通过调控复制起始点的选择与激活,确保基因组复制的时空精确性[1]-[3]。简言之,ORC1基因编码的蛋白质是细胞用于确保子代遗传相同DNA的关键调控因子。作为细胞周期的核心调控者,ORC1在G1期通过ATP依赖机制结合染色质,招募其他预复制复合物(pre-RC)成员如:细胞分裂周期蛋白6 (CDC6)、染色质许可与DNA复制因子1 (CDT1)、微型染色体维持蛋白2-7 (MCM2-7),形成复制许可结构,从而为S期DNA合成奠定基础[3]-[5]。值得注意的是,ORC1在不同物种间表现出功能特异性:在拟南芥中,ORC1a与ORC1b分别协作调控DNA复制和异染色质H3K27me1修饰沉积[1] [6],而在哺乳动物中,ORC1则将复制许可与表观遗传调控整合于一体[2] [3]。这种进化上的分歧凸显了ORC1在维持基因组稳定性中的核心作用,并暗示其在疾病背景中可能具有功能多样性。

近年来,ORC1在肿瘤发生中的作用受到广泛关注。研究表明,ORC1在胶质瘤[7]、弥漫大B细胞淋巴瘤(DLBCL) [8]、结直肠癌[9]、乳腺癌[9]、膀胱癌[10] [11]和宫颈癌[12]等多种恶性肿瘤中过表达,且与晚期病理分期和不良预后显著相关。例如,在神经胶质瘤中,ORC1通过激活ERK/JNK信号通路驱动肿瘤细胞的增殖与转移[7]。此外,ORC1通过调节肿瘤微环境中的免疫细胞浸润,抑制抗肿瘤免疫并促进免疫逃逸。值得注意的是,在多倍体组织(如肝细胞和胎盘滋养层细胞)中,ORC1缺陷细胞可通过不依赖ORC1的机制绕过复制许可过程,这提示癌症中基因组扩增存在替代通路——此为潜在的治疗干预方向[9]。这些研究结果表明,ORC1是一种有前景的诊断生物标志物和治疗靶点。

尽管在阐明ORC1致癌机制方面已取得进展,但其时空调控网络、与其他癌蛋白的协同互作及临床转化潜力尚未深入解析。本综述系统整合了当前关于ORC1分子特征、肿瘤相关功能及转化应用的研究进展,旨在为未来研究提供理论框架,并启发癌症治疗领域的创新策略。

2. ORC1的结构特征与亚细胞定位动态

如前所述,ORC1作为DNA复制许可调节因子在细胞周期进程中发挥关键作用,并执行多方面功能[13]。值得注意的是,ORC1在健康人体组织中表达水平较低,但在多种癌症中表达显著上调[14]。因此,理解ORC1的基本特征对于阐明其在肿瘤发生中的具体功能至关重要。

在ORC (起始识别复合物)家族中,最大亚基为ORC1,其N端附近包含一个由125个氨基酸组成的溴相邻同源(BAH)结构域。该结构域在哺乳动物中具有64%~99%的同源性。ORC1的N端BAH结构域介导蛋白质间相互作用,并通过促进ORC与染色质的结合,增强其在体内激活复制起点的能力。需强调的是,BAH结构域是ORC1独有的功能域,其他ORC亚基均不具备此特征[15]。ORC1在保守的C端结构域附近还包含一个AAA+基序[16]。此外,ORC1的AAA+ ATP酶结构域通过与CDC6相互作用,调控ORC1的分子内及分子间相互作用,从而控制其在细胞内的丰度[17] [18]。ORC1肽段含有两个残基K235和L237,它们与细胞周期蛋白A-CDK2复合物紧密结合。已知周期素(cyclin)蛋白通过与对应的周期素依赖性激酶(CDK)结合,介导阶段特异性细胞因子的磷酸化过程;而ORC1被认为通过与某些细胞周期蛋白相互作用参与基因组维护[19]。因此,在Cyclin-CDK轴系中,ORC1可能通过调控该复合物活性来驱动细胞周期进程。

蛋白质通常会定位在细胞的特定区域,且具有相应的分子功能,所以蛋白质的亚细胞定位信息对于解析其功能至关重要[20]。因此,要理解ORC1的功能与作用机制,需明确其亚细胞定位及分布特征。在利什曼原虫中,ORC1在所有细胞周期阶段均持续存在于细胞核内,但仅在G1期结合染色质。而哺乳动物细胞的研究则呈现矛盾结论:有研究表明其在整个细胞周期中持续结合染色质[21]。此外,ORC1在复制周期中的表达似乎也有物种差异。在胚胎的增殖细胞中,ORC1呈现优先且快速的表达模式;而在眼成虫盘中,ORC1在G1末期和S期积累至相对较高的表达水平,这主要受细胞周期调控的影响[22]。随着细胞通过G1期,ORC1在细胞核中心区域富集定位;但接近G1/S期边界时,其染色模式发生转变,ORC1转移至核周边区域;至S期中晚期,ORC1的免疫荧光信号再次集中于核中心;而在有丝分裂后期(anaphase),ORC1主要定位于细胞周边区域。这一动态定位模式表明,复制起点DNA序列的协调运动是真核复制起始位点的关键特征,而ORC1为追踪新复制染色质路径提供了便捷的分子标记[23]

3. ORC1在癌症中的表达和生物学功能

3.1. ORC1在多种癌症中的表达

尽管ORC1在静息细胞中表达水平较低,但其在不同类型癌症中的表达存在显著差异。Wu等人的研究表明,ORC1在肾上腺皮质癌(ACC)、肺腺癌(LUAD)、卵巢癌(OV)、皮肤黑色素瘤(SKCM)、肝细胞癌(HCC)、胰腺导管腺癌(PAAD)、直肠腺癌(READ)、肾嫌色细胞癌(KICH)和甲状腺癌(THCA)中均呈高表达状态。这种高表达与晚期病理分期、不良预后及免疫细胞浸润程度呈正相关[9]。既往研究表明,DLBCL中ORC1的高表达可能是导致治疗反应差及预后不良的关键因素[8]。Xiong等人发现,ORC1在胶质瘤中表达显著上调,表明其可能成为胶质瘤的新型诊断生物标志物[7]。Chen团队提出,ORC1的过度激活促进了宫颈癌的肿瘤发生和进展,为其表观遗传学诊断和治疗提供了新见解[12]。Dong及其同事研究发现,ORC1的激活促进了宫颈癌的发展[24]。机制上具体表现为增强宫颈癌细胞的增殖、迁移和侵袭能力[25]。Wang等人指出,ORC1在肝细胞癌和前列腺癌中呈现高表达趋势,表明其可能作为诊断标志物和预后因素[26]。此外,抑制ORC1表达可诱导胃癌细胞生长阻滞和DNA损伤,有效抑制肿瘤发生[27]。Ramiro等人揭示,ORC1水平影响视网膜母细胞瘤细胞的DNA复制活性,从而调控肿瘤进展[28]。值得注意的是,ORC1表达水平还可作为前列腺癌放射敏感性及预后的预测指标,其通过促进受辐照癌细胞的存活而影响治疗效果[29]。综合来看,这些研究表明ORC1在不同癌症类型中表达水平存在差异,不仅驱动肿瘤发生,还影响肿瘤治疗反应与预后。

3.2. ORC1对癌症细胞周期的调控

鉴于ORC1在癌症中的显著上调和多样功能,阐明其在肿瘤发生中的具体机制至关重要。

首先,鉴于ORC1是细胞周期的关键调控因子[12],其在肿瘤细胞中的表达通常上调,这可能是由于癌细胞快速增殖过程中对DNA复制的高需求所致[30]。敲低ORC1可显著提高肿瘤细胞对复制应激的敏感性,而对非肿瘤细胞影响甚微。这种差异可能源于肿瘤细胞高度依赖ORC1维持快速分裂并应对复制压力。值得注意的是,在DNA复制过程中,ORC1与CDC6、CDT1等蛋白协同作用,加载MCM2-7复合体形成pre-RC,这是DNA复制起始的关键步骤。ORC1缺失会减少复制起点的可用性,损害正常DNA复制。尤其在复制应激条件下,ORC1缺失会显著削弱细胞从复制停滞中恢复的能力,导致DNA损伤累积加剧。此外,研究表明ORC1缺失会延迟G1期向S期的转换,延长G1期持续时间——这一效应与ORC2缺陷的癌细胞系表型一致[31]

Xiong等人进一步证实,ORC1通过调控细胞周期和DNA复制影响肿瘤进展[7]。值得注意的是,ORC1在细胞周期调控中的作用可能与HBO1相关。HBO1因其与ORC1的相互作用而得名,通过与ORC1结合影响染色质结构或复制起始位点选择,从而调控细胞周期[30]。两种经典的DNA损伤应答(DDR)机制——共济失调毛细血管扩张突变(ATM)和Rad3相关激酶(ATR)的激活——也通过磷酸化修饰调控细胞周期和DNA修复[32]。活化的ATM和ATR磷酸化组蛋白H2AX,募集检查点激酶1 (Chk1)和DNA修复蛋白,延缓细胞周期进程。因此,ATM/ATR的底物参与细胞周期阻滞、DNA修复以及通过凋亡清除损伤细胞[33]。HBO1在与DDB2初始相互作用后发生ATM/ATR依赖性磷酸化,随后被CRL4DDB2泛素化降解[33]。先前研究已确定HBO1是DDR机制的候选底物,也是DNA损伤检查点的调控靶点[34]。HBO1还通过影响p53通路中多个基因的表达促进细胞增殖[35]

3.3. ORC1在癌症中对肿瘤微环境的调控

其次,ORC1可能通过调节细胞骨架重塑和转移相关通路来驱动肿瘤细胞侵袭。如前所述,ORC1通过抑制PLCδ1来调节上皮间质转化(EMT)过程,从而增强肿瘤细胞的侵袭性[36]。此外,研究表明,ORC1缺失会导致血管相关细胞的增殖停滞,从而抑制血管生成[37]。因此,ORC1基因有望成为抑制肿瘤血管生成的新型治疗靶点。此外,ORC1与癌症中的免疫浸润水平密切相关,表明其影响肿瘤微环境中免疫细胞的功能,以及癌症治疗效果和预后[9]。然而,ORC1在癌症中的具体功能和机制仍需进一步研究。综上所述,ORC1在肿瘤细胞迁移、侵袭和转移中发挥促进作用,使其成为未来癌症生物学研究的关键焦点。

4. ORC1在不同癌症中的作用机制

其次,ORC1通过多种通路影响肿瘤进展。Xiong等人研究表明,ERK/JNK通路抑制剂可抑制ORC1过表达诱导胶质瘤细胞的恶性行为[7]。Ming等人发现,ORC1过表达通过SLC7A11依赖机制使肺腺癌细胞逃避铁死亡[36]。Jian等人证实,ORC1通过抑制磷脂酶Cδ1 (PLCD1)调控肺腺癌细胞增殖、迁移和上皮–间质转化(EMT),提示其作为潜在治疗靶点[38]。此外,Han等人报道抑制ORC1可阻断Wnt通路激活,从而延缓肺腺癌进展[39]

5. ORC1在癌症中的上游失调机制

ORC1表达的调控机制同样值得关注。Chen等人揭示,在癌症中miR-140-5p通过靶向ORC1的3'非翻译区(3'UTR)抑制其表达,而长链非编码RNA (lncRNA) XIST通过海绵吸附机制结合miR-140-5p,解除其对ORC1的抑制[12]。他们的研究还表明,敲低ORC1可增强化疗药物的抗肿瘤效果,提示靶向ORC1可能改善癌症治疗结局。

6. 结论与展望

鉴于上述关于ORC1在肿瘤中的显著表达、调控机制和对肿瘤微环境的相关作用,我们可以对其在癌症进展中的多方面作用进行概括性总结。首先,ORC1通过调控细胞周期和DNA复制显著促进肿瘤细胞增殖。作为pre-RC的核心组分,ORC1在肿瘤细胞中调控细胞周期[30]。此外,ORC1激活多种信号通路,包括ERK和JNK,上调与增殖相关的蛋白质如Cyclin D1和p53,从而驱动肿瘤细胞分裂[7]。同时,ORC1与HBO1相互作用,调节染色质结构和复制起始点选择,从而维持快速肿瘤细胞增殖所需的基因组稳定性[30]。这些功能共同为肿瘤细胞的加速复制创造了最优条件。

同时ORC1也揭示着作为一个癌症靶点的重要意义,主要体现在下面几个方面。首先ORC1作为DNA复制起始和细胞周期调控的核心因子,在肿瘤发生过程中发挥着关键作用。其次,大量证据表明,ORC1在多种恶性肿瘤中显著过表达,且其表达水平与肿瘤的恶性生物学行为及不良预后密切相关[9]。此外,ORC1缺失会破坏血管生成并诱导复制应激,这表明其在促进肿瘤生长同时,也为治疗干预提供了潜在靶点[37]

ORC1在复制起始许可、表观遗传调控和信号传导中具有多种功能,使其成为潜在的生物标志物和治疗靶点。先前研究表明,抑制ORC1可增强癌细胞对复制应激诱导剂(如羟基脲)的敏感性,并提高化疗药物(如SHR2554和HBI8000)的疗效[8]。同时,ORC1在免疫微环境中的调控提示其与免疫治疗的协同潜力,尽管这一领域仍需进一步探索[9]

尽管取得了显著进展,ORC1的分子机制仍是一个谜。例如,其致癌功能的具体分子机制,如miR-140-5p/XIST轴[12]、表观遗传修饰因子如HBO1 [30]以及代谢通路的相互作用,仍需进一步阐明。此外,ORC1在肿瘤演进中的时空表达动态及其对治疗耐药性的贡献尚不明确。值得注意的是,ORC1在胚胎发育和组织再生等生理过程中至关重要,因此在靶向其致癌基因功能时,必须考虑正常细胞的活动,这为治疗策略的设计提出了更高的要求。

未来研究应重点开发针对ORC1的特异性抑制剂,例如基于其BAH结构域和AAA+ ATP酶结构域的结构特性设计的small molecule或肽类模拟物。通过高通量筛选破坏ORC1-DNA相互作用或其酶活性别构抑制的化合物,有望获得新型抗癌药物。此外,阐明ORC1在肿瘤异质性和干性中的作用可能为精准医学开辟新途径。临床上,将ORC1表达谱与液体活检和影像基因组学技术相结合,可提升癌症的早期诊断和风险分层。在转化医学层面,探索ORC1抑制剂与免疫检查点抑制剂、抗血管生成药物或表观遗传疗法的联合应用,有望通过协同作用提升疗效并克服药物耐药性。

综上所述,作为DNA复制、细胞周期调控及致癌基因信号网络的核心节点,ORC1为抗癌治疗提供了新的靶点。

NOTES

*通讯作者。

参考文献

[1] Vergara, Z., Gomez, M.S., Desvoyes, B., Sequeira-Mendes, J., Masoud, K., Costas, C., et al. (2023) Distinct Roles of Arabidopsis ORC1 Proteins in DNA Replication and Heterochromatic H3K27me1 Deposition. Nature Communications, 14, Article No. 1270. [Google Scholar] [CrossRef] [PubMed]
[2] Ortega, M.A., Nguyen, H. and Ward, W.S. (2015) ORC Proteins in the Mammalian Zygote. Cell and Tissue Research, 363, 195-200. [Google Scholar] [CrossRef] [PubMed]
[3] Kara, N., Hossain, M., Prasanth, S.G. and Stillman, B. (2015) Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells. Journal of Biological Chemistry, 290, 12355-12369. [Google Scholar] [CrossRef] [PubMed]
[4] Amin, A., Wu, R., Cheung, M.H., Scott, J.F., Wang, Z., Zhou, Z., et al. (2020) An Essential and Cell-Cycle-Dependent ORC Dimerization Cycle Regulates Eukaryotic Chromosomal DNA Replication. Cell Reports, 30, 3323-3338.e6. [Google Scholar] [CrossRef] [PubMed]
[5] Coster, G., Frigola, J., Beuron, F., Morris, E.P. and Diffley, J.F.X. (2014) Origin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase. Molecular Cell, 55, 666-677. [Google Scholar] [CrossRef] [PubMed]
[6] Diaz-Trivino, S. (2005) The Genes Encoding Arabidopsis ORC Subunits Are E2F Targets and the Two ORC1 Genes Are Differently Expressed in Proliferating and Endoreplicating Cells. Nucleic Acids Research, 33, 5404-5414. [Google Scholar] [CrossRef] [PubMed]
[7] Xiong, W., Xie, C., Qiu, Y., Tu, Z. and Gong, Q. (2020) Origin Recognition Complex Subunit 1 Regulates Cell Growth and Metastasis in Glioma by Altering Activation of ERK and JNK Signaling Pathway. Molecular and Cellular Probes, 49, Article ID: 101496. [Google Scholar] [CrossRef] [PubMed]
[8] Wang, X., Wang, D., Ding, N., Mi, L., Yu, H., Wu, M., et al. (2021) The Synergistic Anti-Tumor Activity of EZH2 Inhibitor SHR2554 and HDAC Inhibitor Chidamide through ORC1 Reduction of DNA Replication Process in Diffuse Large B Cell Lymphoma. Cancers, 13, Article 4249. [Google Scholar] [CrossRef] [PubMed]
[9] Wu, L., Chen, H. and Yang, C. (2023) Origin Recognition Complex Subunit 1 (ORC1) Is a Potential Biomarker and Therapeutic Target in Cancer. BMC Medical Genomics, 16, Article No. 243. [Google Scholar] [CrossRef] [PubMed]
[10] Chen, Z., Zhou, L., Wang, L., Kazobinka, G., Zhang, X., Han, X., et al. (2017) HBO1 Promotes Cell Proliferation in Bladder Cancer via Activation of Wnt/β‐Catenin Signaling. Molecular Carcinogenesis, 57, 12-21. [Google Scholar] [CrossRef] [PubMed]
[11] Li, S., Zhu, A., Ren, K., Li, S. and Chen, L. (2020) DEFA1B Inhibits ZIKV Replication and Retards Cell Cycle Progression through Interaction with Orc1. Life Sciences, 263, Article ID: 118564. [Google Scholar] [CrossRef] [PubMed]
[12] Chen, X., Xiong, D., Ye, L., Wang, K., Huang, L., Mei, S., et al. (2019) Up-Regulated lncRNA XIST Contributes to Progression of Cervical Cancer via Regulating miR-140-5p and ORC1. Cancer Cell International, 19, Article No. 45. [Google Scholar] [CrossRef] [PubMed]
[13] Okano-Uchida, T., Kent, L.N., Ouseph, M.M., McCarty, B., Frank, J.J., Kladney, R., et al. (2018) Endoreduplication of the Mouse Genome in the Absence of ORC1. Genes & Development, 32, 978-990. [Google Scholar] [CrossRef] [PubMed]
[14] Li, J. and Cox, L.S. (2003) Characterisation of a Sexual Stage-Specific Gene Encoding ORC1 Homologue in the Human Malaria Parasite Plasmodium Falciparum. Parasitology International, 52, 41-52. [Google Scholar] [CrossRef] [PubMed]
[15] Noguchi, K., Vassilev, A., Ghosh, S., Yates, J.L. and DePamphilis, M.L. (2006) The BAH Domain Facilitates the Ability of Human Orc1 Protein to Activate Replication Origins in Vivo. The EMBO Journal, 25, 5372-5382. [Google Scholar] [CrossRef] [PubMed]
[16] Deshmukh, A.S., Srivastava, S., Herrmann, S., Gupta, A., Mitra, P., Gilberger, T.W., et al. (2012) The Role of N-Terminus of Plasmodium Falciparum ORC1 in Telomeric Localization and Var Gene Silencing. Nucleic Acids Research, 40, 5313-5331. [Google Scholar] [CrossRef] [PubMed]
[17] Duncker, B.P., Chesnokov, I.N. and McConkey, B.J. (2009) The Origin Recognition Complex Protein Family. Genome Biology, 10, Article No. 214. [Google Scholar] [CrossRef] [PubMed]
[18] Hossain, M., Bhalla, K. and Stillman, B. (2021) Multiple, Short Protein Binding Motifs in ORC1 and CDC6 Control the Initiation of DNA Replication. Molecular Cell, 81, 1951-1969.e6. [Google Scholar] [CrossRef] [PubMed]
[19] Wang, B. and Song, J. (2019) Structural Basis for the ORC1‐Cyclin A Association. Protein Science, 28, 1727-1733. [Google Scholar] [CrossRef] [PubMed]
[20] Emanuelsson, O., Nielsen, H., Brunak, S. and von Heijne, G. (2000) Predicting Subcellular Localization of Proteins Based on Their N-Terminal Amino Acid Sequence. Journal of Molecular Biology, 300, 1005-1016. [Google Scholar] [CrossRef] [PubMed]
[21] Kumar, D., Mukherji, A. and Saha, S. (2008) Expression and Subcellular Localization of ORC1 in Leishmania Major. Biochemical and Biophysical Research Communications, 375, 74-79. [Google Scholar] [CrossRef] [PubMed]
[22] Asano, M. and Wharton, R.P. (1999) E2F Mediates Developmental and Cell Cycle Regulation of ORC1 in Drosophila. The EMBO Journal, 18, 2435-2448. [Google Scholar] [CrossRef] [PubMed]
[23] Coffman, F.D., Reyes, M., Brown, M., Lambert, W.C. and Cohen, S. (2011) Localization of ORC1 during the Cell Cycle in Human Leukemia Cells. Analytical Cellular Pathology, 34, 355-361. [Google Scholar] [CrossRef] [PubMed]
[24] Dong, P., Xiong, Y., Yu, J., Chen, L., Tao, T., Yi, S., et al. (2018) Control of PD-L1 Expression by miR-140/142/340/383 and Oncogenic Activation of the OCT4-miR-18a Pathway in Cervical Cancer. Oncogene, 37, 5257-5268. [Google Scholar] [CrossRef] [PubMed]
[25] Zheng, R., Lin, S., Guan, L., Yuan, H., Liu, K., Liu, C., et al. (2018) Long Non-Coding RNA XIST Inhibited Breast Cancer Cell Growth, Migration, and Invasion via miR-155/CDX1 Axis. Biochemical and Biophysical Research Communications, 498, 1002-1008. [Google Scholar] [CrossRef] [PubMed]
[26] Wang, X., Wang, Q., Huang, J., Zhang, L., Zhou, X., Liu, J., et al. (2020) Novel Candidate Biomarkers of Origin Recognition Complex 1, 5 and 6 for Survival Surveillance in Patients with Hepatocellular Carcinoma. Journal of Cancer, 11, 1869-1882. [Google Scholar] [CrossRef] [PubMed]
[27] Lan, H., Tang, Z., Jin, H. and Sun, Y. (2016) Neddylation Inhibitor MLN4924 Suppresses Growth and Migration of Human Gastric Cancer Cells. Scientific Reports, 6, Article No. 24218. [Google Scholar] [CrossRef] [PubMed]
[28] Mendoza-Maldonado, R., Paolinelli, R., Galbiati, L., Giadrossi, S. and Giacca, M. (2010) Interaction of the Retinoblastoma Protein with ORC1 and Its Recruitment to Human Origins of DNA Replication. PLOS ONE, 5, e13720. [Google Scholar] [CrossRef] [PubMed]
[29] Young, A., Berry, R., Holloway, A.F., Blackburn, N.B., Dickinson, J.L., Skala, M., et al. (2014) RNA-Seq Profiling of a Radiation Resistant and Radiation Sensitive Prostate Cancer Cell Line Highlights Opposing Regulation of DNA Repair and Targets for Radiosensitization. BMC Cancer, 14, Article No. 808. [Google Scholar] [CrossRef] [PubMed]
[30] Wang, W., Liu, H., Wu, Y., Hong, Y., Yang, J., Liu, Y., et al. (2010) Estrogen Receptor α (ERα) Mediates 17β-Estradiol (E2)-Activated Expression of HBO1. Journal of Experimental & Clinical Cancer Research, 29, Article No. 140. [Google Scholar] [CrossRef] [PubMed]
[31] Bicknell, L.S., Walker, S., Klingseisen, A., Stiff, T., Leitch, A., Kerzendorfer, C., et al. (2011) Mutations in ORC1, Encoding the Largest Subunit of the Origin Recognition Complex, Cause Microcephalic Primordial Dwarfism Resembling Meier-Gorlin Syndrome. Nature Genetics, 43, 350-355. [Google Scholar] [CrossRef] [PubMed]
[32] Sun, M., Feng, X., Liu, Z., Han, W., Liang, Y.X. and She, Q. (2018) An ORC1/CDC6 Ortholog Functions as a Key Regulator in the DNA Damage Response in Archaea. Nucleic Acids Research, 46, 6697-6711. [Google Scholar] [CrossRef] [PubMed]
[33] Matsunuma, R., Niida, H., Ohhata, T., Kitagawa, K., Sakai, S., Uchida, C., et al. (2016) UV Damage-Induced Phosphorylation of HBO1 Triggers CRL4DDB2-Mediated Degradation to Regulate Cell Proliferation. Molecular and Cellular Biology, 36, 394-406. [Google Scholar] [CrossRef] [PubMed]
[34] Matsuoka, S., Ballif, B.A., Smogorzewska, A., McDonald, E.R., Hurov, K.E., Luo, J., et al. (2007) ATM and ATR Substrate Analysis Reveals Extensive Protein Networks Responsive to DNA Damage. Science, 316, 1160-1166. [Google Scholar] [CrossRef] [PubMed]
[35] Avvakumov, N., Lalonde, M., Saksouk, N., Paquet, E., Glass, K.C., Landry, A., et al. (2012) Conserved Molecular Interactions within the HBO1 Acetyltransferase Complexes Regulate Cell Proliferation. Molecular and Cellular Biology, 32, 689-703. [Google Scholar] [CrossRef] [PubMed]
[36] Ming, L., Han, Z., Ai, Z., Yang, X., Lin, F., Zhang, N., et al. (2024) Up-Regulated ORC1 Promotes Lung Adenocarcinoma by Inhibiting Ferroptosis via SLC7A11 Dependent Pathway. Heliyon, 10, e30506. [Google Scholar] [CrossRef] [PubMed]
[37] Shu, M., Qin, Y. and Jiang, M. (2008) RNA Interference Targeting ORC1 Gene Suppresses the Proliferation of Vascular Smooth Muscle Cells in Rats. Experimental and Molecular Pathology, 84, 206-212. [Google Scholar] [CrossRef] [PubMed]
[38] Jian, Y., Qiao, Q., Tang, J. and Qin, X. (2022) Origin Recognition Complex 1 Regulates Phospholipase Cδ1 to Inhibit Cell Proliferation, Migration and Epithelialmesenchymal Transition in Lung Adenocarcinoma. Oncology Letters, 24, Article No. 252. [Google Scholar] [CrossRef] [PubMed]
[39] Han, L. and Li, F. (2022) Origin Recognition Complex Subunit 1 (ORC1) Augments Malignant Behaviors of Lung Adenocarcinoma Cells via Targeting WNT Signaling. Bioengineered, 13, 13520-13533. [Google Scholar] [CrossRef] [PubMed]